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CHAPTER 1. Introduction to Computational Fluid Dynamics 

© Hanfeng Zhai 

School of Mechanics and Engineering Science, Shanghai University 

Shanghai 200444, China 

Abstract 

Introduce the concept of computational fluid dynamics (CFD) continued from fluid 

mechanics. Provide the governing equations, conceptions, and related parameters in CFD. 

Explained the basic ideology and goal for CFD. 

Computational fluid dynamics (CFD), is a method to solve fluid mechanics problems through 

numerical methods. Navier-Stokes equation is the governing equation for fluid phenomena and 

physics. Due to the nonlinear nature of the Navier-Stokes equation, analytical solution for fluidic 

problems are limited to specific situations. Hence, to obtain solutions for more generalized fluidic 

problems, we introduce numerical methods like CFD to discretize the equations for results. 

In fluid mechanics (or fluid dynamics), the governing equation for fluid motion and physics 

is the Navier-Stokes equation, which takes the form 

𝜌
𝑑𝑽

𝑑𝑡
= 𝜌𝑔 − ∇𝑃 + 𝜇∇2𝑽 

(1) 

Which can be written in the coordinate system for 3D situation: 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = 𝑓𝑥 −

𝜕𝑃

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
) 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = 𝑓𝑦 −

𝜕𝑃

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
+
𝜕2𝑣

𝜕𝑧2
) 

𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
) = 𝑓𝑧 −

𝜕𝑃

𝜕𝑧
+ 𝜇 (

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
+
𝜕2𝑤

𝜕𝑧2
) 

 

(2) 

Where 𝜌 is the fluidic density, 𝑽 is the speed vector; 𝑃 is the pressure on fluid, 𝑢, 𝑣, 𝑤 are the 

velocity component in the 𝑥, 𝑦, 𝑧 directions, respectively. 𝒇 is the force acting on the unit 

volume. The constant 𝜇 is the dynamics viscosity. 

 The Navier-Stokes equation taking the form in Eq. 2 elucidate the physics of fluidic nature. 

Yet for computation, we write the Navier-Stokes equation in the following terms for discretization. 

𝜕𝑈

𝜕𝑡
+
𝜕𝐸𝑖
𝜕𝑥𝑖

−
𝜕𝐸𝑣𝑖
𝜕𝑥𝑖

− 𝑃𝑖 = 0 (3) 

Where 𝑃𝑖 , 𝐸𝑣𝑖  marks the external forces and viscosity terms, respectively. 

In 3D situation, consider the coordinate system as compared with Eq. 2, Eq. 3 takes the form: 
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𝜕𝑈

𝜕𝑡
+
𝜕𝐸

𝜕𝑥
+
𝜕𝐹

𝜕𝑦
+
𝜕𝐺

𝜕𝑧
−
𝜕𝐸𝑣
𝜕𝑥

−
𝜕𝐹𝑣
𝜕𝑦

−
𝜕𝐺𝑣
𝜕𝑧

− 𝑃 = 0 (4) 

Where  

𝑈 =

(

 
 

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝜌𝐸)

 
 
,𝐸 =

(

 
 

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝑢𝑤
𝜌𝑢𝐻 )

 
 
, 𝐹 =  

(

 
 

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
𝜌𝑣𝑤
𝜌𝑣𝐻 )

 
 
, 𝐺 =  

(

 
 

𝜌𝑤
𝜌𝑢𝑤
𝜌𝑣𝑤

𝜌𝑤2 + 𝑝
𝜌𝑤𝐻 )

 
 

 

(5) 

𝑃 =

(

  
 

0
𝜌𝑓𝑥
𝜌𝑓𝑦
𝜌𝑓𝑧

𝜌(𝑢𝑓𝑥 + 𝑣𝑓𝑦 +𝑤𝑓𝑧))

  
 
, 𝐸𝑣 =

(

 
 
 

0
𝜎𝑥𝑥
𝜎𝑥𝑦
𝜎𝑥𝑧

𝑢𝜎𝑥𝑥 + 𝑣𝜎𝑥𝑦 + 𝑤𝜎𝑥𝑧 + 𝜅
𝜕𝑇

𝜕𝑥)

 
 
 
, 

𝐹𝑣 =  

(

 
 
 

0
𝜎𝑦𝑥
𝜎𝑦𝑦
𝜎𝑦𝑧

𝑢𝜎𝑦𝑥 + 𝑣𝜎𝑦𝑦 + 𝑤𝜎𝑦𝑧 + 𝜅
𝜕𝑇

𝜕𝑥)

 
 
 

, 𝐺𝑣 = 

(

 
 
 

0
𝜎𝑧𝑥
𝜎𝑧𝑦
𝜎𝑧𝑧

𝑢𝜎𝑧𝑥 + 𝑣𝜎𝑧𝑦 +𝑤𝜎𝑧𝑧 + 𝜅
𝜕𝑇

𝜕𝑥)

 
 
 

 

(6) 

Where 𝑝 = 𝜌𝑅𝑇 = 𝜌(1 − 𝛾) (𝜌𝐸 −
1

2
(𝑢2 + 𝑣2 + 𝑤2)). 

Here, for classic aerodynamics problems, we neglect the external force as in specific flow fields 

(Lagrangian viewpoint). we take the equation in 2D situation for example: 

𝜕𝑈

𝜕𝑡
+
𝜕𝐸

𝜕𝑥
+
𝜕𝐹

𝜕𝑦
−
𝜕𝐸𝑣
𝜕𝑥

−
𝜕𝐹𝑣
𝜕𝑦

= 0 (7) 

Where  

𝑈 = (

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝐸

) ,𝐸 = (

𝜌

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝑢𝐻

) , 𝐹 = (

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
𝜌𝑣𝐻

) 

(8) 

𝐸𝑣 =

(

 
 

0
𝜎𝑥𝑥
𝜎𝑥𝑦

𝑢𝜎𝑥𝑥 + 𝑣𝜎𝑥𝑦 − 𝜅
𝜕𝑇

𝜕𝑥)

 
 
,𝐹𝑣 =

(

 
 

0
𝜎𝑥𝑦
𝜎𝑦𝑦

𝑢𝜎𝑥𝑦 + 𝑣𝜎𝑦𝑦 − 𝜅
𝜕𝑇

𝜕𝑦)

 
 

 

(9) 

In the given terms, 𝑝 is the pressure, 𝜎𝑥𝑖𝑥𝑖 are the viscous terms. The given variables have 

the following relations: 

The pressure 𝑝, temperature 𝑇, and terms 𝐻, 𝐸 follows: 

𝑝 = 𝜌𝑅𝑇 (10) 

𝜌𝐻 = 𝜌𝐸 + 𝑝 (11) 

𝐸 =
𝑅

𝛾 − 1
 (12) 
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Where 𝛾 = 𝜌𝑔 and 𝑅 is the thermal constant. 

 The viscous term 𝜎𝑥𝑖𝑥𝑖 takes the form: 

𝜎𝑥𝑖𝑥𝑖 = 𝜇 (
𝜕𝑢𝑖
𝜕𝑥𝑖

) (13) 

Where 

{
  
 

  
 𝜎𝑥𝑥 = 𝜇 (

4

3

𝜕𝑢

𝜕𝑥
−
2

3

𝜕𝑢

𝜕𝑦
)

𝜎𝑦𝑦 = 𝜇 (
4

3

𝜕𝑣

𝜕𝑥
−
2

3

𝜕𝑣

𝜕𝑦
)

𝜎𝑥𝑦 = 𝜎𝑦𝑥 = 𝜇 (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)

 

(13) 

In fluid mechanics, the constants have the following relations: 

The sound velocity: 

𝑐 = √
𝛾𝑃

𝜌
 

(14) 

 The Reynold’s number: 

𝑅𝑒 =
𝜌𝑢𝑙

𝜇
 (15) 

 The thermal constant: 

𝜅 =
𝛾𝑅

𝑃𝑟(𝛾 − 1)
𝜇 (16) 

Where  

𝜇 =
𝑀

𝑅𝑒
√𝛾 

(17) 

In which 𝑅𝑒, 𝑃𝑟,𝑀 is the Reynold’s number, Prandtl number and Mach number, respectively. 

 The constants relations showed from Eq. 14 to 17 will be further applied on the 

nondimensionalization for the equations to be given in Chap. 2.  

REFERENCES 

[1] Yuxin Ren. Computational Fluid Dynamics (Basic). Department of Engineering Mechanics, 

Tsinghua University. 2003. 

[2] Eleuterio F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag 

Berlin Heidelberg 2009. ISBN 978-3-540-25202-3. DOI 10.1007/978-3-540-49834-6. 

[3] Antony Jameson. Advanced Computational Fluid Dynamics AA215A Lecture 4. Winter Quarter, 

2012, Stanford, CA. 

X. -Q. Yang. Computational Fluid Dynamics (2020). 

Full notes series could be found at http://hanfengzhai.net/categories/note 

http://hanfengzhai.net/categories/note


 1 

CHAPTER 2. Nondimensionalization for Variables 

© Hanfeng Zhai 

School of Mechanics and Engineering Science, Shanghai University 

Shanghai 200444, China 

Abstract 

Introduce the nondimensionalization methods for the equations involved in computational 

fluid dynamics. Provide an example with different reference variables on Euler equation to 

show basic strategies of nondimensionalization. 

To solve the governing equations as given in Chap. 1, magnitude of variables needed to be 

considered. In storing the variables for calculations, the last few decimal points are neglected 

when magnitude doesn’t match. Hence, nondimensionalization of variables in equations is 

important for computations for accurate results. 

For nondimensionalizations, here we adopt the Navier-Stokes equation in 1D situation 

neglecting the spatial term as an example: 

𝜕𝑈

𝜕𝑡
−
𝜕𝐸𝑣
𝜕𝑥

= 0 
(1) 

Where  

𝑈 = (

𝜌
𝜌𝑢
𝜌𝐸
) , 𝐸 = (

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝐻

) 
(2) 

In coordinate system, Eq. 1 can be expanded to the form: 

𝜕𝜌𝑢

𝜕𝑡
− 𝜇

𝜕2𝑢

𝜕𝑥2
= 0 

(3) 

Recalled from Chap. 1, The pressure 𝑝, temperature 𝑇, and terms 𝐻, 𝐸 follows: 

{

𝑝 = 𝜌𝑅𝑇
𝜌𝐻 = 𝜌𝐸 + 𝑝

𝐸 =
𝑅

𝛾 − 1

 

(4) 

Hence, we obtains: 

𝜌𝐸 =
𝑝𝑅

𝛾 − 1
+
𝜌

2
(𝑢2 + 𝑣2) (5) 

⟹ 𝜌 = (𝛾 − 1) [𝜌𝐸 −
1

2
𝜌(𝑢2 + 𝑣2)] (6) 

Here, we chose the reference variables for nondimensionalization: 
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{
 

 
[𝜌] = 𝜌∞ = 1
[𝑝] = 𝑝∞ = 1
[𝑇] = 𝑇∞ = 1
[𝑙] = 𝑙∞ = 1

 

(7) 

Therefore, the time and velocity can be obtained through calculation as: 

{
  
 

  
 [𝑡] =

[𝑥]

[𝑢]
=

𝑙

√
𝑝∞
𝜌∞

𝑢∞ = 𝑐 = √
𝛾𝑝

𝜌

 

(8) 

Hence, all the terms involved in the equation can be nondimensionalized to the following forms: 

{
 
 
 
 
 

 
 
 
 
 

𝜌 = 𝜌′[𝜌] = 𝜌′𝜌∞
𝑝 = 𝑝′[𝑝] = 𝑝′𝑝∞
𝑇 = 𝑇′[𝛵] = 𝑇′𝑇∞
𝑥 = 𝑥′[𝑙] = 𝑥′𝑙∞
𝜇 = 𝜇′[𝜇] = 𝜇′𝜇∞

𝑢 = 𝑢′[𝑢] = 𝑢′[𝑐] = 𝑢′√
𝑝∞
𝜌∞

𝑡 = 𝑡′[𝑡] = 𝑡′
𝑙∞
𝑢
= 𝑡′

𝑙∞

√
𝑝∞
𝜌∞

 

(9) 

Substituting Eq. 9 into Eq. 3, we obtains: 

𝜕𝜌′𝑢′

𝜕𝑡′
+

𝜇∞

𝜌∞𝑙∞√
𝑝∞
𝜌∞

𝜕2𝑢′

𝜕𝑥′2
= 0 

(10) 

Due to 𝑅𝑒 =
𝜌∞𝑢∞𝑙∞

𝜇∞
  and 𝑀 =

𝑢∞

𝑐
= 𝑢∞√

𝜌∞

𝛾𝑝∞
 , the nondimensionalized equation can be 

written in the form: 

𝜕𝜌′𝑢′

𝜕𝑡′
+
𝑀√𝛾

𝑅𝑒

𝜕2𝑢′

𝜕𝑥′2
= 0 

(11) 
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CHAPTER 3. Finite Volume Method 

© Hanfeng Zhai 

School of Mechanics and Engineering Science, Shanghai University 

Shanghai 200444, China 

Abstract 

Provide the reasoning of finite volume method based on the integration to discretize the 

Euler equation. We first integrate the Euler equation and hence simplify each term of 𝑈 and 𝐻 

separately. We therefore give the full term to discretize the Euler equation. 

We first give the Euler equation as the controlling equation: 

𝜕𝑈

𝜕𝑡
+
𝜕𝐸

𝜕𝑥
+
𝜕𝐹

𝜕𝑦
= 0 (1) 

Where  

𝑈 = (

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝐸

) ,𝐸 = (

𝜌𝑢

𝜌𝑢2 + 𝑃
𝜌𝑢𝑣
𝜌𝑣𝑢

) , 𝐹 = (

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑃
𝜌𝑣𝑢

) 

(2) 

We hence integral the Euler equation, as visualized in Fig. 1: 

∫(
𝜕𝑈

𝜕𝑡
+
𝜕𝐸

𝜕𝑥
+
𝜕𝐹

𝜕𝑦
) 𝑑𝑆 = 0 (3) 

 

Fig. 1 The integral area of the finite volume method based on single mesh element. 

Eq. 3 can be written as: 

∫(
𝜕𝑈

𝜕𝑡
)𝑑𝑆 + ∫(

𝜕𝐸

𝜕𝑥
+
𝜕𝐹

𝜕𝑦
)𝑑𝑆 = 0 (4) 

Now we define the term H: 

�⃗⃗� = 𝐸𝑖 + 𝐹𝑗  (5) 

With the Green-Gauss integration, the right term in Eq. 4 can be written as: 

∫𝑣 ∙ �⃗⃗� 𝑑𝛺 = ∮ �⃗⃗� 𝑑𝑆  (6) 

   = ∑ 𝐻𝑖𝑛𝑖

𝛥

𝑖=1
𝛥𝑆𝑖  

(7) 
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Based on the Taylor expansion, the term U can be written as: 

𝑈 = 𝑈𝑐 +
𝜕𝑈

𝜕𝑥
(𝑥 − 𝑥𝑐) +

𝜕𝑈

𝜕𝑦
(𝑦 − 𝑦𝑐) + 𝑂(𝛥

2) (8) 

Hence, the mean of the term U can be obtained through integration: 

∫
𝑈𝑑𝛺

𝑑𝛺
= ∫𝑈𝑐𝑑𝛺 (9) 

 =
𝑈𝑑𝛺

𝑑𝛺
+ ∫

𝜕𝑈

𝜕𝑥
(𝑥 − 𝑥𝑐)𝑑𝛺 (10) 

 Ηere we define the mean of U as: 

∫
𝑈𝑐𝑑𝛺

𝑑𝛺
= �̅� (11) 

The term 𝑈 = 𝑈(𝑥, 𝑡) can be decomposed as the separation of variation: 

𝑈 =∑ 𝑈𝑖(𝑡)𝑏(𝑥𝑖)
𝑁

𝑖=1
 (12) 

Thence, the term U can be considered: 

𝑈(𝑥, 𝑡) ≅ �̅�(𝑡) (13) 

The integration of the first term is written as: 

∫
𝜕𝑈

𝜕𝑡
𝑑𝛺 = ∫

𝑑𝑈

𝑑𝑡
𝑑𝛺 =

𝑑𝑈

𝑑𝑡
𝛺 (14) 

Hence, Euler equation can be written as: 

𝑑𝑈

𝑑𝑡
𝛺 + ∮ �⃗⃗� ∙ �⃗� ∙ 𝑑𝑆 = 0 (15) 

The right term can be discretized as the following form. 

∮ �⃗⃗� ∙ �⃗� ∙ 𝑑𝑆 = �̅�  

= 𝐻
𝑖+
1
2,𝑗
−𝐻

𝑖−
1
2,𝑗
+ 𝐻

𝑖,𝑗+
1
2
− 𝐻

𝑖,𝑗−
1
2
 (16) 

We therefore define the term in Eq. 16 as RHS. 

𝑅𝐻𝑆 = 𝐻
𝑖+
1
2
,𝑗
−𝐻

𝑖−
1
2
,𝑗
+ 𝐻

𝑖,𝑗+
1
2
− 𝐻

𝑖,𝑗−
1
2
 (17) 

 The discretized form of the Euler equation is given as the form. 

𝑑𝑈

𝑑𝑡
𝛺 + 𝑅𝐻𝑆 = 0 

(18) 

APPENDIX. Jacobian Matrix 

The Jacobian matrix 𝐴 as formerly introduced in Chap. 1 can be further diagonalized for 

obtaining the eigenvalue 𝜆. Here we show how the 𝐴 matrix and the eigen value is derived. 
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We first give the term H based on Eq. 5: 

𝐻 = �⃗⃗� ∙ �⃗�   

= (

𝜌𝑔
𝜌𝑢𝑔 + 𝑃𝑛𝑥
𝜌𝑣𝑔 + 𝑃𝑛𝑦
𝜌𝐻𝑔

) 

(19) 

Where  

𝜌𝐻 = 𝜌𝐸 + 𝑃 (20) 

Hence, we deduce that the Jacobian matrix A can be written as: 

𝐴 =
𝜕𝐻

𝜕𝑈
 

 

=

(

 
 
 
 

𝑔
𝑃𝑛𝑥 + 𝜌𝑔𝑢

𝑟
𝑃𝑛𝑦 + 𝜌𝑔𝑣

𝑟
𝑃𝑔 + 𝜌𝐸𝑔

𝑟

  0
 
  0
 
  0
 
  0

    0
 
    0
 
    0
 
    0

    0
 
    0
 
    0
 
    0)

 
 
 
 

 

(21) 

Therefore, matrix A is written as: 

𝐴 =
𝜕𝐸

𝜕𝑢
𝑛𝑥 +

𝜕𝐸

𝜕𝑣
𝑛𝑦 

(22) 

The eigenvalues of matrix A are 

                     

{
 
 

 
 𝜆1 = 𝑞 = 𝑢𝑛𝑥 + 𝑣𝑛𝑦

𝜆2 = 𝑞 = 𝑢𝑛𝑥 + 𝑣𝑛𝑦
𝜆3 = 𝑞 + 𝑐 = 𝑢𝑛𝑥 + 𝑣𝑛𝑦 + 𝑐

𝜆4 = 𝑞 − 𝑐 = 𝑢𝑛𝑥 + 𝑣𝑛𝑦 + 𝑐

 

(23) 
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CHAPTER 4. Finite Difference Method 
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School of Mechanics and Engineering Science, Shanghai University 

Shanghai 200444, China 

Abstract 

Provide the reasoning of finite difference method (FDM) from discretize the derivative of 

the flux. A continued method for discretization of unequal distance meshing is provided based 

on FDM from the meshing transformation as to be introduced in Chap. 7. 

We first give the Euler equation as in 1D situation: 

𝜕𝑈

𝜕𝑡
+
𝜕𝐸

𝜕𝑥
= 0 

(1) 

 For the 1D situation, the boundary conditions and the governing equation can be written in 

combined as in Eq. 2, as visualized in 0: 

𝜕𝑈

𝜕𝑡
+ 𝑎

𝜕𝑈

𝜕𝑥
= 0 

(2) 

 

Fig. 1 Schematic for a 1D shock wave equation. 

 

Fig. 2 Schematic for spatial discretization in a row. 

As shown in Fig. 2, the spatial term in 𝑥 direction can be expanded as Taylor series: 

𝑈𝑖−1 = 𝑈𝑖 −
𝜕𝑈

𝜕𝑥𝑖
∆𝑥 + 𝑂(∆2) + ⋯ (3) 

𝑈𝑖+1 = 𝑈𝑖 +
𝜕𝑈

𝜕𝑥𝑖
∆𝑥 + 𝑂(∆2) + ⋯ (4) 

Subtracting Eq. 4 to Eq. 3, one obtains: 

𝑈𝑖+1 − 𝑈𝑖−1 = 2
𝜕𝑈

𝜕𝑥𝑖
∆𝑥 (5) 

Hence, Eq. 5 can be reduced to: 

𝜕𝑈

𝜕𝑥
|
𝑖
=
𝑈𝑖+1 −𝑈𝑖−1

2∆𝑥
 (6) 

n
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Which the discretization method is nominated as the central difference method (CDS). 

Based on Eq. 3, we can write: 

𝑈𝑖+1 ≈ 𝑈𝑖 +
𝜕𝑈

𝜕𝑥𝑖
∆𝑥 (7) 

Subtracting Eq. 7 to 𝑈𝑖  one obtains: 

𝑈𝑖+1 − 𝑈𝑖 =
𝜕𝑈

𝜕𝑥𝑖
∆𝑥 (8) 

Hence, Eq. 7 can be reduced to: 

𝜕𝑈

𝜕𝑥
|
𝑖
=
𝑈𝑖+1 − 𝑈𝑖

∆𝑥
 (9) 

Which the discretization is called the front difference scheme (FDS). 

Referred from what is shown form Eq. 7 to 8, we obtains: 

𝑈𝑖−1 = 𝑈𝑖 −
𝜕𝑈

𝜕𝑥𝑖
∆𝑥 (10) 

Subtracting Eq. 10 to 𝑈𝑖  one obtains: 

𝑈𝑖 − 𝑈𝑖−1 =
𝑈𝑖 − 𝑈𝑖−1

∆𝑥
 

(11) 

Therefore, the derivative takes the form 

𝜕𝑈

𝜕𝑥
|
𝑖
=
𝑈𝑖 − 𝑈𝑖−1

∆𝑥
 (12) 

Which is called the back-difference scheme (BDS). 

 For spatial discretization, we have 

𝜕𝑈

𝜕𝑥
|
𝑖
=

{
 
 

 
 
𝑈𝑖+1 − 𝑈𝑖

∆𝑥
→ FDS

𝑈𝑖 − 𝑈𝑖−1
∆𝑥

→ BDS

𝑈𝑖+1 −𝑈𝑖−1
2∆𝑥

→ CDS

 

(13) 

For discretization of time derivatives, we apply similar strategies: 

𝑑𝑈

𝑑𝑡
|
𝑖
=

{
  
 

  
 
𝑈𝑛+1 − 𝑈𝑛

∆𝑥
→ FDS

𝑈𝑛 −𝑈𝑛−1

∆𝑥
→ BDS

𝑈𝑛+1 − 𝑈𝑛−1

2∆𝑥
→ CDS

 

(14) 

Here we give the artificial dissipative term as to be discussed in Chap. 6 in spatial discretization 

based on CDS: 

𝑈𝑖+1 −𝑈𝑖−1
2∆𝑥

+ 𝜅1
𝜕2𝑢

𝜕𝑥2
− 𝜅2

𝜕4𝑢

𝜕𝑡4
= 0 

(15) 
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Also, for unequal distance meshing as to be introduced in Chap. 7 as visualized in Fig. 3, we 

can discretize the term 
𝜕𝑈

𝜕𝑥
 in the forms: 

𝜕𝑈

𝜕𝑥
=
𝜕𝑈

𝜕𝜁

𝜕𝜁

𝜕𝑥
 (16) 

=
𝑈𝜁+1 −𝑈𝜁

∆𝜁

𝜕𝜁

𝜕𝑥
 (17) 

  =
𝑈𝑖+1 −𝑈𝑖

∆𝑥
 

(18) 

Where 𝜁 =
1

∆𝑥
. 

 

Fig. 3 Schematic for the unequal distance meshing in a row. 

Here, we expand the Euler equation as in 2D situation: 

𝜕𝑈

𝜕𝑡
+
𝜕𝐸

𝜕𝑥
+
𝜕𝐹

𝜕𝑦
= 0 (19) 

Where 

{
 
 

 
 𝜕𝐸

𝜕𝑥
=
𝜕𝐸

𝜕𝜁
𝜁𝑥 +

𝜕𝐸

𝜕𝜂
𝜂𝑥

𝜕𝐹

𝜕𝑦
=
𝜕𝐹

𝜕𝜁
𝜁𝑦 +

𝜕𝐹

𝜕𝜂
𝜂𝑦

 

(20) 

Hence, the 2D Euler equation takes the form: 

𝜕𝑈

𝜕𝑡
+
𝜕𝐸

𝜕𝜁
𝜁𝑥 +

𝜕𝐸

𝜕𝜂
𝜂𝑥 +

𝜕𝐹

𝜕𝜁
𝜁𝑦 +

𝜕𝐹

𝜕𝜂
𝜂𝑦 = 0 (21) 
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CHAPTER 5. Boundary Conditions 
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Shanghai 200444, China 

Abstract 

Introduce the basic strategy to analyze and give the boundary conditions in different 

scenarios based on an 1D non-viscous situation (Euler equation). Introduce the boundary 

conditions in three different scenarios. 

In solving mechanics problems, whether involved in fluid or solid, boundary conditions 

(BCs) are always considered one of the most important factors. In computational fluid dynamics 

(CFD), slightly difference in BCs may strongly variate the calculation results. Therefore, choosing 

the right BCs for whether specific engineering problems or research works are critical and must be 

scrutinized. Here, we introduce three basic BCs model commonly encountered in CFD. 

We first give the Euler equation as in 1D situation: 

𝜕𝑈

𝜕𝑡
+
𝜕𝐸

𝜕𝑥
= 0 

(1) 

 For the 1D situation, the boundary conditions and the governing equation can be written in 

combined as in Eq. 2, as recalled from Chap. 4, can be visualized in Fig. 1: 

{

𝜕𝑈

𝜕𝑡
+ 𝑎

𝜕𝑈

𝜕𝑥
= 0

𝑈 = 𝑈0
𝑈𝐵𝐶 = ∁

 

(2) 

 

Fig. 1 Schematic for a 1D shock wave equation. 

Recall the flux 𝐻 as referred form Eq. 7 and Eq. 11 in Chap. 1, we have: 

𝐻 = (

𝜌𝑞
𝜌𝑢𝑞 + 𝑝𝑛𝑥
𝜌𝑣𝑞 + 𝑝𝑛𝑦

𝜌𝐻𝑞

) 

(3) 

Where 𝑞 = 𝑢𝑛𝑥 + 𝑣𝑛𝑦. 

 Here, we introduce the three basic scenarios for different boundary conditions: 

n
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I. No-slip wall 

 The no-slip wall BCs is the most commonly encountered BCs when the fluid-solid interactions 

are involved. Here, Fig. 2 visualize a typical model with meshing on of the no-slip BCs, which 

shows how the continuum pressure values is discretized nearing the wall boundary when the normal 

vector is parallel to the pressure variation. 

 

Fig. 2 Schematic for the no-slip boundary conditions. 

For no-slip BCs, we have 𝑞 = 0, thence the flux takes the form: 

𝐻 = (

0
𝑝𝑛𝑥
𝑝𝑛𝑦
0

) 

(4) 

 The velocities on the wall obeys:  

{
𝑢𝑤𝑎𝑙𝑙 = 0
𝑣𝑤𝑎𝑙𝑙 = 0

 (5) 

 The pressure on the wall obeys: 

𝑃𝑤𝑎𝑙𝑙 = 𝑃𝐿 (6) 

Here we provide a coding example (FORTRAN) on giving the no-slip wall boundary conditions. 

Where the mesh generation of a 2D situation applied on a no-slip BCs is shown. 

1 FOR J = JL, i = 1, IL 

2      FOR I = 1, j = 1, JL 

3           FOR = 1L, j = 1, JL, J = JL 

4                  CUT J = 1, I = 1, I0I 

5                  CUT J = 1, I = I0I, LL  

6           END 

7      END 

8 END 

II. Symmetry wall 

Symmetry wall BCs are widely encountered for symmetric geometries including the NACA 

“00 series” airfoils, bullets, ships, etc. Here in Fig. 3 we show a schematic of the symmetry BCs 

with 𝑽 = (
𝑢1
𝑣1
) as the velocity vector and 𝒏 as the position vector. 
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Fig. 3 Schematic for the symmetry boundary conditions. 

For symmetry situation, the velocities follows: 

𝑢𝑤𝑎𝑙𝑙𝑛𝑥 + 𝑣𝑤𝑎𝑙𝑙𝑛𝑦 = 0 (7) 

Where the velocities in the two directions obeys 

𝑢𝑤𝑎𝑙𝑙 = 𝑢1 − (𝑢1𝑛𝑥 + 𝑣1𝑛𝑦) ∙ 𝑛𝑥 (8) 

𝑣𝑤𝑎𝑙𝑙 = 𝑣1 − (𝑢1𝑛𝑥 + 𝑣1𝑛𝑦) ∙ 𝑛𝑦 (9) 

The flux on the boundary takes the form 

𝐻 = (

0
𝑝𝑛𝑥
𝑝𝑛𝑦
0

) 

(10) 

The pressure obeys: 

𝑃𝑤𝑎𝑙𝑙 = 𝑃𝐿 (11) 

 

III. Far field 

Far field BCs are widely applied on noise calculation, thermal estimation and other problems 

common in aerodynamics. Here in Fig. 4 we show how a typical far field BCs is adopted based on 

an airfoil meshing, where mostly applied on noise calculations. Usually, for aerodynamic and fluid 

mechanics, the flow field is chosen to be much larger than the targeted structure to obey the far field 

BCs. 

 

Fig. 4 Schematic for the far field boundary conditions, with a structural meshing of an airfoil. 

n
V
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The far field BCs involves the following situations: 

i. For 𝑀𝑎 ≤ −1: 

When the Mach number obeys 𝑀𝑎 ≤ −1, we refer the situation as “supersonic outlet”, where 

the flux 𝑈 can be written as: 

(

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝐸

)

1

= (

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝐸

)

2

= (

𝜌∞
𝜌𝑢∞
𝜌𝑣∞
𝜌𝐸∞

) 

(12) 

Hence the flux 𝐻 can be reasoned: 

⟹𝐻 = (

𝜌∞𝑞∞
𝜌𝑢∞𝑞∞ + 𝑝∞𝑛𝑥
𝜌𝑣∞𝑞∞ + 𝑝∞𝑛𝑦

𝜌𝐻∞𝑞∞

) 

(13) 

ii. For −1 < 𝑀𝑎 < 0: 

The BCs obeys −1 < 𝑀𝑎 < 0 are considered as “subsonic inlet”, where the flux 𝐻 can also 

be reasoned through the flux 𝑈: 

(

𝜌
𝜌𝑢1
𝜌𝑣1
𝜌𝐸1

) = (

𝜌∞
𝜌𝑢∞
𝜌𝑣∞
𝜌𝐸∞

)⟹ 𝐻 = 𝐹(𝑢1) + 𝐹(𝑢2) + 𝐷1 +⋯ 

(14) 

iii. For 0 < 𝑀𝑎 < 1: 

The BCs is considered “subsonic outlet”, where the flux takes the form: 

(

𝜌
𝜌𝑢1
𝜌𝑣1

) = (

𝜌∞
𝜌𝑢∞
𝜌𝑣∞

)⟹ 𝜌𝐸1 =
𝑝∞
𝛾 − 1

+
𝜌2
2
(𝑢2

2 + 𝑣2
2) 

(15) 

Hence the flux 𝐻 is reasoned: 

⟹ 𝐻 = (

𝜌2𝑞2
𝜌𝑢2𝑞2 + 𝑝2𝑛𝑥
𝜌𝑣2𝑞2 + 𝑝2𝑛𝑦
𝜌𝐸2 + 𝑝∞

) 

(16) 

iv. For 𝑀𝑎 > 1: 

The BCs 𝑀𝑎 > 1 is the “supersonic outlet”, where the flux 𝐻 can be reasoned: 

(

𝜌
𝜌𝑢1
𝜌𝑣1
𝜌𝐸1

) = (

𝜌
𝜌𝑢2
𝜌𝑣2
𝜌𝐸2

)⟹ 𝐻 = (

𝜌2𝑞2
𝜌𝑢2𝑞2 + 𝑝2𝑛𝑥
𝜌𝑣2𝑞2 + 𝑝2𝑛𝑦

𝜌𝐸2

) 

(17) 

Where  
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𝜌𝐸 =
𝑝∞
𝛾 − 1

+
𝜌

2
𝑉2 (18) 

and 

𝜌𝐻 = 𝜌𝐸 + 𝑝 (19) 
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CHAPTER 6. Artificial Dissipative Terms 

© Hanfeng Zhai 
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Abstract 

The artificial dissipative term was raised by A. Jameson in applying Runge-Kutta method 

solving Euler equations by finite volume method [Jameson et al., 1981]. Here we show how the 

artificial dissipative term is derived from the flux 𝐻. 

We first start with the Euler equation: 

𝜕𝑈

𝜕𝑡
+

𝜕𝐸

𝜕𝑥
+

𝜕𝐹

𝜕𝑦
= 0 (1) 

 We apply the finite volume method as given in Chap. 3 on the equation and obtains  

∫ (
𝜕𝑈

𝜕𝑡
) 𝑑𝑆 + ∫ (

𝜕𝐸

𝜕𝑥
+

𝜕𝐹

𝜕𝑦
) 𝑑𝑆 = 0 (2) 

The second term can be transformed through the Green-Gauss transformation: 

∫ (
𝜕𝐸

𝜕𝑥
+

𝜕𝐹

𝜕𝑦
) 𝑑𝑆 = ∮ (𝛦𝑛𝑥 + 𝐹𝑛𝑦)

 

𝜕𝛺

𝑑𝑆 (3) 

Referred from Chap. 3, the term in Eq. 3 is considered as 𝑅𝐻𝑆, taking the form: 

𝑅𝐻𝑆 = 𝐻
𝑖+

1
2

,𝑗
− 𝐻

𝑖−
1
2

,𝑗
+ 𝐻

𝑖,𝑗+
1
2

− 𝐻
𝑖,𝑗−

1
2
 (4) 

Referred from Eq. 18 which is given in Chap. 3, the form of Euler equation that discretized by 

the finite volume method can be written as: 

𝑑𝑈

𝑑𝑡
𝛺 + 𝑅𝐻𝑆 = 0 

(5) 

 

Fig. 1 Discretization on the boundary. 

The timing step can be discretized as: 

𝑈
𝑖+

1
2,𝑗

=
1

2
(𝑈𝑖+1,𝑗 + 𝑈𝑖,𝑗) (6) 

Based on the discretization on the boundary surface, and as referred from Eq. 4, the 
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discretization of the flux 𝐻 on the boundary surface can be written as: 

𝐻
𝑖+

1
2,𝑗

=
1

2
(𝐻𝑖+1,𝑗 + 𝐻𝑖,𝑗) − 𝐷 (7) 

Where 𝐷 is the artificial dissipative term. 

The artificial dissipative term 𝐷 = 𝐷𝑖,𝑗  is derived from the discretization of the boundary 

surface flux 𝐻
𝑖+

1

2
,𝑗

. Here, the term 𝐷𝑖,𝑗 takes the form: 

𝐷𝑖,𝑗 = 𝐷
𝑖+

1
2,𝑗

− 𝐷
𝑖−

1
2,𝑗

+ 𝐷
𝑖,𝑗+

1
2

− 𝐷
𝑖,𝑗−

1
2
 (8) 

Where the artificial dissipative term on the boundary surface can be discretized as: 

𝐷
𝑖+

1
2

,𝑗
=

𝐻
𝑖+

1
2,𝑗

𝛥𝑡
(𝜀

𝑖+
1
2,𝑗

(2)
(𝑈𝑖+1,𝑗 − 𝑈𝑖,𝑗) − 𝜀

𝑖+
1
2,𝑗

(4)
(𝑈𝑖+2,𝑗 − 3𝑈𝑖+1,𝑗 + 3𝑈𝑖,𝑗 − 𝑈𝑖−1,𝑗)) 

(9) 

Where  

𝜀
𝑖+

1
2,𝑗

(2)
= 𝜅(2)𝑚𝑎𝑥 (𝑣𝑖+1

(2)
, 𝑣𝑗

(2)
 ) (10) 

𝜀
𝑖+

1
2,𝑗

(4)
= 𝑚𝑎𝑥 (0, (𝜅(4) − 𝜀

𝑖+
1
2,𝑗

(2)
)) 

(11) 

Hence, based on Eq. 7, and the discretization of the artificial dissipative term on the boundary 

surface shown from Eq. 8 and 9, we deduce that  

𝐻
𝑖+

1
2,𝑗

=
1

2
(𝐻𝑖,𝑗 − 𝐻𝑖+1,𝑗) −

1

2
𝐷

𝑖+
1
2,𝑗

 (9) 
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CHAPTER 7. Meshing Transformation & Viscosity Discretization 

© Hanfeng Zhai 

School of Mechanics and Engineering Science, Shanghai University 

Shanghai 200444, China 

Abstract 

In meshing objects with structural meshes such as meshing of airfoils, we need to 

transform the meshing to the coordinate system. The transformation process of the meshing 

coordinates is provided. The methods for discretization of the viscosity is hence given. 

We first recall the viscous term as gives in the Navier-Stokes equation in Chap. 1: 

𝜎𝑥𝑖𝑥𝑖 = 𝜇 (
𝜕𝑢𝑖
𝜕𝑥𝑖

) (1) 

Here, the derivative term takes the form based on the Green-Gauss integration: 

𝜕𝑢

𝜕𝑥
=
∫
𝜕𝑢
𝜕𝑥 𝑑𝛺

∫𝑑𝛺
=
1

𝛺
∮ �⃗� ∙ �⃗� 𝑑𝑆 

(2) 

=
1

𝛺
𝑢
𝑖+
1
2,𝑗
𝑛
𝑖+
1
2,𝑗
𝛥𝑆 (3) 

Hence, the partial derivatives of 𝑢 can be discretized taking the forms: 

𝜕𝑢

𝜕𝑥
|
𝑖,𝑗
=

1

𝛺𝑖,𝑗
(𝑢𝑠

𝑖+
1
2,𝑗
− 𝑢𝑠

𝑖−
1
2,𝑗
+ 𝑢𝑠

𝑖,𝑗+
1
2

− 𝑢𝑠
𝑖,𝑗−

1
2

) (4) 

Substituting the relation as given in Eq. 3, we deduce 

𝜕𝑢

𝜕𝑥
|
𝑖,𝑗
=

1

2𝛺𝑖,𝑗
(𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗)𝑛𝑖+1

2
,𝑗
𝑆
𝑖+
1
2
,𝑗
+ (𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗)𝑛𝑖,𝑗+1

2
𝑆
𝑖,𝑗+

1
2

− (𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗)𝑛𝑖−12,𝑗
𝑆
𝑖−
1
2,𝑗
− (𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1)𝑛𝑖,𝑗−12

𝑆
𝑖,𝑗−

1
2
 

(5) 

Here, the meshing elements in a row can be visualized as shown in Fig. 1. The structural 

mesh are shown in the x-y coordinates (adapted mesh). The transformed mesh in the coordinate 

system is the ζ-η system as shown in the down view. 

 

Fig. 1 Schematic for meshing elements in a row. 



 2 

The derivatives on the top side can be transformed to the coordinate system as written: 

𝜕𝑢

𝜕𝑥
=
𝜕𝑢

𝜕𝜁
𝜁𝑥 +

𝜕𝑢

𝜕𝜂
𝜂𝑥 (6) 

In which the term 
𝜕𝑢

𝜕𝜁
 can be written as 

𝜕𝑢

𝜕𝜁
= (𝑢

𝑖+
1
2,𝑗
− 𝑢

𝑖−
1
2,𝑗
) (7) 

Where the two terms on the right side can be derived from the down view in Fig. 1: 

𝑢
𝑖+
1
2,𝑗
=
𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗

2
 (8) 

𝑢
𝑖−
1
2
,𝑗
=
𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗

2
  

 Similarly, the component in the 𝜂 can also be decomposed as: 

𝜕𝑢

𝜕𝜂
= (𝑢

𝑖,𝑗+
1
2
− 𝑢

𝑖,𝑗−
1
2
) (9) 

Where the two terms follows 

𝑢
𝑖,𝑗+

1
2
=
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

2
 (10) 

𝑢
𝑖,𝑗−

1
2
=
𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1

2
  

 Thence, the term 
𝜕𝑢

𝜕𝑥
 can be discretized as: 

𝜕𝑢

𝜕𝑥
|
𝑖,𝑗
=
𝜕𝑢

𝜕𝜁
𝜁𝑥|

𝑖+
1
2,𝑗

−
𝜕𝑢

𝜕𝜂
𝜂𝑥|

𝑖+
1
2,𝑗

 
(11) 

=
1

4
(
𝜕𝑢

𝜕𝑥
|
𝑖+
1
2,𝑗
+
𝜕𝑢

𝜕𝑥
|
𝑖−
1
2,𝑗
+
𝜕𝑢

𝜕𝑥
|
𝑖,𝑗+

1
2

+
𝜕𝑢

𝜕𝑥
|
𝑖,𝑗−

1
2

) 
(12) 

 

Fig. 2 Schematic for the meshing transformation of the two coordinates with an airfoil. 

Here in Fig. 2 we present an example of the meshing transformation based on an airfoil. The 
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x-y coordinate indicate the original structural meshing corresponds to the coordinate system ζ-η. 

With the presented transformation, we can discretize the terms �⃗⃗� ∙ �⃗�  of the viscosity term as 

given in Chap. 3 considering a 2D situation: 

�⃗⃗� ∙ �⃗� =

(

  
 

0
𝜎11𝑛𝑥 + 𝜎12𝑛𝑦
𝜎12𝑛𝑥 + 𝜎22𝑛𝑦

(𝑢1𝜎11 + 𝑢2𝜎12)𝑛𝑥 + (𝑢1𝜎12 + 𝑢2𝜎22)𝑛𝑥 + 𝜅 (
𝜕𝛵

𝜕𝑥
𝑛𝑥 +

𝜕𝛵

𝜕𝑦
𝑛𝑦))

  
 

 

(13) 

Where the derivatives can be transformed through the Green-Gauss integration: 

∫
𝜕𝛵

𝜕𝑥
𝑑𝛺 = ∮𝛵 ∙ 𝑛𝑥𝑑𝑆 (14) 

∫
𝜕𝛵

𝜕𝑦
𝑑𝛺 = ∮𝛵 ∙ 𝑛𝑦𝑑𝑆 (15) 

Referring from Eq. 7 to 8, we can write derivatives  

{
 
 

 
 𝜕𝑢

𝜕𝑥
=
𝜕𝑢

𝜕𝜁
𝜁𝑥 +

𝜕𝑢

𝜕𝜂
𝜂𝑥

𝜕𝑢

𝜕𝑦
=
𝜕𝑢

𝜕𝜁
𝜁𝑦 +

𝜕𝑢

𝜕𝜂
𝜂𝑦

 

(16) 

 Here, based on Eq. 13, let us consider the derivative terms on the boundary as shown in Fig. 3: 

𝜕𝑢

𝜕𝑥
|
𝑖+
1
2

=
𝑢𝑖+1 − 𝑢𝑖

𝛥𝜁
 (17) 

= (𝑢𝑖+1 − 𝑢𝑖)𝜁𝑥
𝑖+
1
2

+ (𝑢𝑗+1 − 𝑢𝑗)𝜂𝑥
𝑗+
1
2

 (18) 

 

Fig. 3 The meshing points in the row in i-direction. 
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CHAPTER 8. Implicit Difference Scheme 

© Hanfeng Zhai 

School of Mechanics and Engineering Science, Shanghai University 

Shanghai 200444, China 

Abstract 

Provide an implicit scheme method with a given half differential equation. We first 

discretize the equation with finite difference; hence elicit the terms 𝐷, 𝐿, 𝑈 to linearize the 

given equation and update the solution 𝑤. 

Let us consider a simple differential equation: 

𝑑𝑤

𝑑𝑡
= 𝑅𝐻𝑆 

(1) 

The equation can be discretized with the finite difference method; in the n+1 moment: 

𝑤𝑛+1 − 𝑤𝑛

𝛥𝑡
= 𝑅𝐻𝑆𝑛+1 

(2) 

In which  

𝑅𝐻𝑆𝑛+1 = 𝑅𝐻𝑆𝑛 +
𝜕𝑅𝐻𝑆

𝜕𝑤
(𝑤𝑛+1 − 𝑤𝑛) + 𝑂(𝛥𝑤2) 

(3) 

Let us consider 𝑤𝑛+1 − 𝑤𝑛 = 𝛥𝑤. Hence, Eq. 3 can be reduced to 

𝑅𝐻𝑆𝑛+1 ≈ 𝑅𝐻𝑆𝑛 + (
𝜕𝑅𝐻𝑆

𝜕𝑤
𝛥𝑤)

𝑛

 
(4) 

Eq. 2 can be further written as  

𝛥𝑤

𝛥𝑡
−

𝜕𝑅𝐻𝑆

𝜕𝑤
𝛥𝑤 = 𝑅𝐻𝑆𝑛 

(5) 

Which can be reduced to 

(
𝐼

𝛥𝑡
−

𝜕𝑅𝐻𝑆

𝜕𝑤
) 𝛥𝑤 = 𝑅𝐻𝑆𝑛 

(6) 

Now, we can consider Eq. 6 as a simple linear equation form, which is written as: 

𝐴𝛥𝑤 = 𝑅𝐻𝑆𝑛 (7) 

 

Fig. 1 Schematic for the single mesh element. 
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From Fig. 1, the term RHS can be decomposed as: 

(𝑅𝐻𝑆)𝑖𝑗 = 𝐻
𝑖+

1
2,𝑗

− 𝐻
𝑖−

1
2,𝑗

+ 𝐻
𝑖,𝑗+

1
2

− 𝐻
𝑖,𝑗−

1
2
 (8) 

In which 

𝐻
𝑖+

1
2,𝑗

= 𝐻(𝑤𝑖,𝑗 , 𝑤𝑖+1,𝑗  ) (9) 

𝐻
𝑖−

1
2,𝑗

= 𝐻(𝑤𝑖,𝑗 , 𝑤𝑖−1,𝑗  ) (10) 

𝐻
𝑖,𝑗+

1
2

= 𝐻(𝑤𝑖,𝑗 , 𝑤𝑖,𝑗+1 ) (11) 

𝐻
𝑖,𝑗−

1
2

= 𝐻(𝑤𝑖,𝑗 , 𝑤𝑖,𝑗−1 ) (12) 

 Here we define three terms from term RHS and w: 

𝐷 =
𝜕𝑅𝐻𝑆𝑖𝑗

𝜕𝑤𝑖𝑗
 (13) 

𝐿 =
𝜕𝑅𝐻𝑆𝑖𝑗

𝜕𝑤𝑖−1,𝑗
+

𝜕𝑅𝐻𝑆𝑖𝑗

𝜕𝑤𝑖,𝑗−1
 (14) 

𝑈 =
𝜕𝑅𝐻𝑆𝑖𝑗

𝜕𝑤𝑖+1,𝑗
+

𝜕𝑅𝐻𝑆𝑖𝑗

𝜕𝑤𝑖,𝑗+1
 (15) 

Hence the linear equation Eq. 7 could be written as: 

(𝐿 + 𝐷 + 𝑈)𝛥𝑤 =
𝜕𝑅𝐻𝑆

𝜕𝑤
 

(16) 

From Eq. 14 to 15, we obtain: 

𝐿𝛥𝑤 =
𝜕𝑅𝐻𝑆𝑖𝑗

𝜕𝑤𝑖−1,𝑗
𝛥𝑤𝑖−1,𝑗 +

𝜕𝑅𝐻𝑆𝑖𝑗

𝜕𝑤𝑖,𝑗−1
𝛥𝑤𝑖,𝑗−1 (17) 

𝑈𝛥𝑤 =
𝜕𝑅𝐻𝑆𝑖𝑗

𝜕𝑤𝑖+1,𝑗
𝛥𝑤𝑖+1,𝑗 +

𝜕𝑅𝐻𝑆𝑖𝑗

𝜕𝑤𝑖,𝑗+1
 𝛥𝑤𝑖,𝑗+1 (18) 

 Therefore, we could simplify Eq. 16 as 

(𝐿 + 𝐷 + 𝑈)𝛥𝑤 ≈ (𝐿 + 𝐷)𝐷−1(𝑈 + 𝐷) 𝛥𝑤 (19) 

The right term in Eq. 19 could be further simplified as: 

(𝐿 + 𝐷)𝐷−1(𝑈 + 𝐷)𝛥𝑤 = (𝐿 ∙ 𝐷−1 + 𝐼)(𝑈 + 𝐷) 𝛥𝑤   

                                                        = 𝐿 ∙ 𝐷−1𝑈 + (𝐿 + 𝑈 + 𝐷) 𝛥𝑤−1 (20) 

Where 𝐿 ∙ 𝐷−1𝑈 could be considered as an infinitesimal of high order. 

 Substituting Eq. 19 into Eq. 16: 

(𝐿 + 𝐷)𝐷−1(𝑈 + 𝐷)𝛥𝑤 = 𝑅𝐻𝑆 (21) 

Eq. 21 can be further linearized as: 

(𝐿 + 𝐷)𝛥𝑄 = 𝑅𝐻𝑆 (22) 
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𝐷𝛥𝑄 = 𝑅𝐻𝑆 − 𝐿𝛥𝑄 (23) 

𝛥𝑄 = 𝐷−1(𝑅𝐻𝑆 − 𝐿𝛥𝑄) (24) 

 

Fig. 2 Schematic for the meshing. 

From Fig. 2 we could write the term 𝛥𝑄𝑖𝑗 as the following terms: 

𝛥𝑄11 = 𝐷11
−1𝑅𝐻𝑆11 (25) 

𝛥𝑄21 = 𝐷11
−1(𝑅𝐻𝑆21 − 𝐿21𝛥𝑄11 ) (26) 

𝛥𝑄12 = 𝐷11
−1(𝑅𝐻𝑆12 − 𝐿12𝛥𝑄11 ) (27) 

… 

𝛥𝑄𝑛𝑚 = ⋯ (28) 

Hence, the full sets of the implicit scheme algorithm could be summarized as: 

Step 1: 𝛥𝑄 = 𝐷−1(𝑅𝐻𝑆 − 𝐿𝛥𝑄) 

Step 2: 𝛥𝑄 = (𝐷−1𝑈 + 𝐼)𝛥𝑤 

𝛥𝑤 =  𝛥𝑄 − 𝐷−1𝑈 𝛥𝑤 

The solution can be updated as 

↓ 

Step 3: 𝑤𝑛+1 = 𝑤𝑛 + 𝛥𝑤 
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