
Tutorial on FEniCS: solving 2D Poisson equation
Hanfeng Zhai

hzhai@stanford.edu

January 4, 2025

Introduction

This tutorial demonstrates how to solve the Poisson equation using the finite element method (FEM)
with the FEniCS library1. The Poisson equation is a widely used partial differential equation (PDE)
that models physical phenomena such as heat conduction, electrostatics, and diffusion.

Mathematical Formulation

The Poisson equation in two dimensions is written as:

−∇ · (k∇u) = f in Ω, (1)

where:

• u is the unknown scalar field (e.g., temperature).

• k is the thermal conductivity (assumed constant in this example).

• f is the source term (e.g., heat generation). f = 0 in this example.

• Ω is the computational domain (R2).

The boundary conditions are defined as:

u = gD on ΓD, (2)

−k
∂u

∂n
= gN on ΓN , (3)

where ΓD and ΓN are Dirichlet and Neumann boundaries, respectively, and n is the outward normal
vector.

In this example, we solve Equation (1) with Dirichlet boundary conditions on all boundaries.

Implementation in FEniCS

The following Python code implements the solution of the Poisson equation using FEniCS. The
computational domain is a square, and the Dirichlet boundary conditions set u = 1000 on all edges
of the domain. The source term is constant, f = 0.2, and k = 2× 10−4. The solution is visualized
as a heatmap and as a 3D surface plot.

1We use FEniCS 2019 version

1

mailto:hzhai@stanford.edu
https://fenicsproject.org/
https://en.wikipedia.org/wiki/Poisson%27s_equation

Schematic of the Domain

The computational domain is a square defined as [−1, 1] × [−1, 1]. The boundaries are labeled as
follows:

• Boundary 1: y = −1,

• Boundary 2: x = 1,

• Boundary 3: y = 1,

• Boundary 4: x = −1.

Boundary 1 (y = −1)

Boundary 2 (x = 1)

Boundary 3 (y = 1)

Boundary 4 (x = −1) Ω

Key Steps in the Code

1. Mesh Generation: The domain is discretized using a triangular mesh generated by Gmsh
and converted for use in FEniCS.

2. Boundary Conditions: Dirichlet boundary conditions are applied on all edges of the square.

3. Variational Formulation: The weak form of the Poisson equation is derived as:∫
Ω
k∇u · ∇v dx =

∫
Ω
fv dx, (4)

where v is the test function.

4. Solution Computation: The linear system resulting from the discretization is solved, yield-
ing the scalar field u.

5. Visualization: The solution is plotted as a 2D heatmap and a 3D surface.

[]: # installing required packages
try:

import dolfin
except ImportError:

!wget "https://fem-on-colab.github.io/releases/fenics-install-real.sh" -O "/
↪→tmp/fenics-install.sh" && bash "/tmp/fenics-install.sh"

import dolfin
!pip install meshio
!apt-get install gmsh
!gmsh --version
!pip install --upgrade gmsh

2

We begin with importing the necessary packages.

[]: import gmsh, meshio
from fenics import *
import matplotlib.pyplot as plt
from matplotlib.tri import Triangulation
from dolfin import *
import numpy as np
from mesh_converter import msh_to_xdmf

The mesh is defined accordingly given the geometry.

[]: def Tutorialmesh(Hmax, elementOrder, elementType):
Given Hmax, construct a mesh to be read by FEniCS
gmsh.initialize()
gmsh.model.add('Tutorialmesh')
meshObject = gmsh.model

Points for the outer boundary
point1 = meshObject.geo.addPoint(-1,-1,0,Hmax, 1)
point2 = meshObject.geo.addPoint(1,-1,0,Hmax, 2)
point3 = meshObject.geo.addPoint(1,1,0,Hmax, 3)
point4 = meshObject.geo.addPoint(-1,1,0,Hmax, 4)

Construct lines from points
line1 = meshObject.geo.addLine(1, 2, 101)
line2 = meshObject.geo.addLine(2, 3, 102)
line3 = meshObject.geo.addLine(3, 4, 103)
line4 = meshObject.geo.addLine(4, 1, 104)

Construct closed curve loops
outerBoundary = meshObject.geo.addCurveLoop([line1, line2, line3, line4],␣

↪→201)

Define the domain as a 2D plane surface with holes
domain2D = meshObject.geo.addPlaneSurface([outerBoundary], 301)

Synchronize gmsh
meshObject.geo.synchronize()

Add physical groups for firedrake
meshObject.addPhysicalGroup(2, [301], name='domain')

meshObject.addPhysicalGroup(1, [line2], 1)
meshObject.addPhysicalGroup(1, [line3], 2)
meshObject.addPhysicalGroup(1, [line4], 3)
meshObject.addPhysicalGroup(1, [line1], 4)

3

Set element order
meshObject.mesh.setOrder(elementOrder)

if elementType == 2:
Generate quad mesh from triangles by recombination
meshObject.mesh.setRecombine(2, domain2D)

Generate the mesh
gmsh.model.mesh.generate(2)
gmsh.write('mesh.msh')

gmsh.finalize()
mesh_from_gmsh = meshio.read("mesh.msh")

triangle_mesh = meshio.Mesh(
points=mesh_from_gmsh.points,
cells={"triangle": mesh_from_gmsh.get_cells_type("triangle")},

)

meshio.write("mesh.xml", triangle_mesh)
msh_to_xdmf('mesh')
mesh = Mesh("mesh.xml")

return mesh

The mesh of the domain is generated via

[]: # Generate the mesh
elementOrder = 1 # Polynomial order in each element (integer)
elementType = 1 # 1 - Triangle; 2 - Quad
HMax = 0.1

mesh = Tutorialmesh(HMax, elementOrder, elementType)
'''visualize the mesh (the object)'''
mesh

4

[]: <dolfin.cpp.mesh.Mesh at 0x7fd76fd93f10>

[]: mesh = Mesh()
with XDMFFile('mesh' + ".xdmf") as infile:

infile.read(mesh)
load boundary markers from facet file
mvc_facet = MeshValueCollection("size_t", mesh, mesh.topology().dim() - 1)
with XDMFFile('mesh' + "_facets.xdmf") as infile:

infile.read(mvc_facet, "facet_marker")
boundaries = cpp.mesh.MeshFunctionSizet(mesh, mvc_facet)
ds = Measure("ds", subdomain_data=boundaries)

[]: V = FunctionSpace(mesh, "CG", 1)
boundary_markers = MeshFunction("size_t", mesh, mesh.topology().dim()-1)

DirBC = [DirichletBC(V, Constant(1000.0), boundaries, marker) for marker in␣
↪→[1,2,3,4]]

bcs = DirBC

[]: ke = Constant(2e-4)

f = Constant(0.2)
u = TrialFunction(V)
v = TestFunction(V)

a = ke * inner(grad(u), grad(v)) * dx
L = dot(f, v) * dx

u_sol = Function(V)

solve(a == L, u_sol, bcs)

[]: coordinates = mesh.coordinates()
values = u_sol.compute_vertex_values(mesh)
x, y = coordinates[:, 1], coordinates[:, 0]

triang = Triangulation(x, y, mesh.cells())
plt.figure(figsize=(6,5))

plt.tricontourf(triang, values, cmap='jet')
plt.colorbar()
plt.triplot(triang, 'k-', lw=0.5)
plt.xlabel('x')
plt.ylabel('y')
plt.savefig(f'heat_2d', dpi=300, transparent=True); plt.show()

5

point = Point(0.25, 0.25)
u_value = u_sol(point)
print(f"Solution at point {point}: {u_value}")

Solution at point <dolfin.cpp.geometry.Point object at 0x7fd76fd9c430>:
1263.3179567734976

[]: fig = plt.figure(figsize=(5, 5))
ax = fig.add_subplot(111, projection='3d')

x, y, z = triang.x, triang.y, values

ax.plot_trisurf(x, y, z, triangles=triang.triangles, cmap='jet',␣
↪→edgecolor='none')

mappable = ax.collections[0] # Extract the mappable object

plt.tight_layout()
fig.colorbar(mappable, ax=ax, shrink=0.5, aspect=10)
plt.savefig('heat_3d', dpi=300, transparent=True)
plt.show()

6

The code can be accessed via Google Colab.

Summary

This coding procedure outlined a systematic approach to simulating and visualizing heat conduction
in a square domain using Python. The key steps included:

• Defining the computational domain with clear specifications for the grid and material prop-
erties.

• Applying boundary conditions to model the physical constraints accurately.

• Solving the governing equations using numerical methods for heat transfer.

• Visualizing the results to gain insights into the temperature distribution across the domain.

Students are encouraged to experiment with the provided framework by modifying the boundary
conditions, such as changing the fixed temperatures or implementing insulated boundaries. Ob-
serving the resulting changes in temperature distribution provides a deeper understanding of how
boundary conditions influence the system’s behavior. This iterative process fosters critical thinking
and reinforces concepts of heat transfer and numerical modeling.

7

https://colab.research.google.com/drive/1qgJjzNV3Z-oT-adHCySqAQcY4x-lTIzj?usp=sharing

