# An automated Bayesian optimization workflow for antimicrobial nanosurfaces

#### Hanfeng Zhai

#### SIBLEY GRADUATE RESEARCH SYMPOSIUM<sup>1</sup>

MAE, Cornell University

April 28, 2022

<sup>1</sup>work supervised by Prof. Jingjie Yeo

Hanfeng Zhai (hz253)

Antimicrobial materials design with BO

April 28, 2022

# General Background

Biofouling is a pain in ocean, energy engineering, biomedical treatments, etc. We hope to provide a **digital solution** for this hard problem.





#### Digital twins + optimization

The recent "Materials 4.0 Initiative" drives huge innovations in materials-by-design with the "computational modeling + ML" paradigm in various fields.

<sup>1</sup>https://www.clubmarine.com.au/exploreboating/articles/32-3-Keeping-A-Clean-Bottom <sup>2</sup>https:

//www.cs.montana.edu/webworks/projects/stevesbook/contents/chapters/chapter005/section002/blue/page005.html

Hanfeng Zhai (hz253)

# Inspirations & Technical Backgrounds

- The **super-hydrophobic surfaces** have been of interest for many years in the communities.
- Design the nanosurfaces (coatings) for antimicrobial properties have just recently been raised and the trend is growing drastically.
- **Bayesian optimization** for materials design is also becoming a new trend in the heated topic of ML algorithms for real-world problems.
- Individual-based modeling<sup>2</sup> is currently one of the most successful methods for accumulating M&M properties of biofilm modeling.



Zhang et al., Langmuir, 2019; Hizal et al., ACS Appl. Mater. Interfaces, 2017.

| <sup>2</sup> https://hanfengzhai.net/file/M | Biofilm_review.pdf                     |                | æ | ৩৫৫    |
|---------------------------------------------|----------------------------------------|----------------|---|--------|
| Hanfeng Zhai (hz253)                        | Antimicrobial materials design with BO | April 28, 2022 |   | 3 / 16 |

#### When there's a problem, there's a solution!

#### Traditionally, how do we solve this problem?



# If you rich and got plenty of time, you fine... :)) But can we solve this problem in a more "efficient" way?

https://www.youtube.com/watch?v=HF4blivJQ6o https://phys.org/news/2007-01-lotus-leaf-imitated-plastic-femtosecond.html https://researchoutreach.org/articles/breaking-down-fort-combatting-clinical-biofilms/ https://www.ucl.ac.uk/-ucahppe/research.html

< □ > < □ > < □ > < □ > < □ > < □ >

#### Basic workflow



Hanfeng Zhai (hz253)

Antimicrobial materials design with BO

April 28, 2022

#### Numerical setup

- Geometric Design variables:  $R_x, R_y, h, n$
- Simulation box: Geometry: 4 × 10<sup>-3</sup>m for x, y, z; Boundary conditions: fixed BCs on x, y, z; Initial bacteria area: 2 × 10<sup>-6</sup>m
- Bacteria cells: Initial No.: 50; Growth rate: 0.00028; Yield: HET: 0.61 & EPS: 0.18. Monod growth model. HET:  $K_s = 3.5 \times 10^{-5}$
- Material properties: Heterotrophs:  $\rho = 150$ ;  $d = 10^{-6}$ ;  $m = 7.854 \times 10^{-17}$ ; Substrate:  $\rho = 4410$ ;  $d = 5^{-7}$ ;  $m = 9.1875 \times 10^{-17}$ .
- Biofilm simulation: Grow:  $2 \times 10^4 (\times 10)$ ; Shear:  $2 \times 10^4 (\times 2.5)$ ; Vibration:  $1 \times 10^3 (\times 10^3)$ ;



Hanfeng Zhai (hz253)

Antimicrobial materials design with BO

April 28, 2022

#### Biofilm removal: shear and vibration



Hanfeng Zhai (hz253)

Antimicrobial materials design with BO

April 28, 2022

#### Bayesian coupled workflow for materials design



Hanfeng Zhai (hz253)

Antimicrobial materials design with BO

April 28, 2022

A D N A B N A B N A B N

# Optimization workflow



#### Technical Implementation

1. The whole optimization workflow is dependent on Python-LAMMPS interface.

2. Calculation on 100 CPU cores usually requires approximately 30 hours.

3. Variables are passed from randomization in Python to LAMMPS as a string (%s).

< ∃⇒

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A

The active surfaces with shorter cones and mild thick shapes seem to effectively resist biofilm growth.



April 28, 2022

< 円

For the shear flow biofilm detach, a "thin pillar"-shaped cone designs shows extraordinary biofilm removal effect.



#### Results: vibration detachment

Strangely, but not strangely, for the vibration case, all the optimized active surfaces tend to exhibit very similar structures.



### Verification



Hanfeng Zhai (hz253)

Antimicrobial materials design with BO

April 28, 2022

# Summary & Discussions

- This study presents a **digital solution** for materials design targeting antifouling problems with low cost and high efficiency.
- An automated **optimization workflow** enabled by discrete element multiphysics simulation is presented for materials design.
- Different **optimized geometries** based on different loading cases are generated from the workflow.

#### 3D Printing



Generated CAD file  $\rightarrow$  3D printing with hard materials for experimental verification



- Bowen Li et al., 2019. *PLoS Comput Biol*. 15(12): e1007125.
- NUFEB. Accessed on https://github.com/nufeb/NUFEB
- PyLAMDO. Under construction. Accessed on https://github.com/hanfengzhai/PyLAMDO
- Fernando Nogueira. 2014. Accessed on https://github.com/fmfn/BayesianOptimization
- Peter I. Frazier. 2018. arXiv:1807.02811
- Hizal et al., ACS Appl. Mater. Interfaces. 2017, 9, 13, 12118–12129.
- Dongil Shin et al., *Adv Mat*. 2022, 34, 2106248.





# Thanks for listening!

Any Questions ...?

< A > <

→ ∃ →