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Abstract

Micromotors have been widely studied due to the nonequilibrium statistical

mechanics observed at the initial regime. These microswimmers have wide

applications in biophysics. The motion of the Janus micromotor at small

time intervals, especially in and around the ’ballistic mode’ remains an open

problem. Moreover, the time dependence of active particles’ mean squared

displacement (MSD) constrained in polymers is little studied. Our goal is to

study the diffusiophoresis of micromotors experimentally by setting randomly

distributed Janus particles coated by Pt in polyethylene oxide (PEO) and

H2O2, and study its velocity, MSD, mean squared rotational angle (MSRA),

the displacement probability distribution (DPD), etc., with regards to a time

dependency. We hope to conclude a new paradigm of physical distribution

at a short time diffusion stage, and explain it by mesoscale theory (Langevin

Eq.).
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1 Introduction

1.1 Related works

Vicsek et al., 1995 [1]: Develop a model to show that velocity-driven particles result

in a kinetic phase transition. Kulinskii et al., 2005 [2]: Developed a discrete algorithm

for a continuum model based on Vicsek et al.’s work. ♠Howse et al., 2007 [4]: Ex-

perimental investigation: short time: lots of direct motion & velocity depends on fuel

molecules concentration; long time: random walks & diffusion. Chang et al., 2007 [3]:

Study the electro-osmotic flow propelled semiconductor devices. Gibbs et al., 2011 [6]:

Study nanomotors with arms and found curvature, angular frequency, and radius of

curvature of the trajectories change as a function of arm’s length. Angelani et al., 2011

[5]: Demonstrate that active baths are also capable of mediating effective interactions
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between suspended bodies. Kümmel et al., 2013 [8]: Study asymmetric nanomotors

(weird shaped) circular motion on a substrate and near channel boundaries, which re-

sults agree with Brownian dynamics for asymmetric self-propelled particles. ♠Zheng et

al., 2013 [7]: Non-Gaussian statistics of spherical Janus particles in a long time. Butti-

noni et al., 2013 [10]: Study the diffusiophoresis of Janus particles and found that the

driving stabilizes small clusters at low densities & the suspension undergoes a phase

separation into large clusters and a dilute gas phase at higher densities. Bialké et al.,

2013 [9]: Report a dynamical instability leading to phase separation from numerical

and analytical studies. Hagen et al., 2014 [12]: Demonstrate that a shape anisotropy

alone is sufficient to induce gravitactic motion with either preferential upward or down-

ward swimming. Zöttl and Stark, 2014 [11]: Simulate hydrodynamic flow fields with

multiparticle collision dynamics. Wittmeier et al., 2015 [13]: Introduce Differential

Dynamic Microscopy (DDM), and apply it to a single Janus particle to the rotational

movement. ♠Gomez-Solano et al., 2016 [15]: Found an increase of up to 2 orders of

magnitude of the rotational diffusion to the velocity of Janus particles. Bechinger et

al., 2016 [14]: A comprehensive review on active particles. Molotilin et al., 2016 [16]:

Multiscale simulation investigation of Janus particles in an electric field. Scholz et

al., 2018 [17]: Experimentally demonstrate the significance of inertia on macroscopic

self-propelled particles, and observe a distinct inertial delay between orientation and

velocity of particles. Löwen, 2019 [18]: Extend the active Brownian motion model

to active Langevin dynamics which include inertia to describe particles with inertia.

Sahu et al., 2020 [19]: Indicate that dipolar force density produced by electric field in-

teractions causes dielectric-forward (metal-forward) motion of the colloids. Shee et al.,

2020 [20]: Compute Gaussian polymers and found that end-to-end distribution exhibits

Gaussian behavior for short lengths, which changes to the form of semiflexible filaments

at intermediate lengths, to finally go back to a Gaussian form for long contour lengths.

1.2 Anomalous diffusion

Anomalous diffusion is a diffusion process with a non-linear relationship between the

mean squared displacement (MSD), 〈r2(τ)〉, and time. Anomalous diffusion has been
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widely studied numerically and experimentally for active particles in non-constraint

systems (i.e., water, H2O2) or in constraint systems (i.e., viscoelastic fluid, gel, poly-

mers).

Havlin and Ben-Avraham, 2002 [21]: Diffusion in disordered systems: factual (linear

stage) and random walks. Weigel et al., 2011 [24]: Diffusion in the plasma membrane

of living cells: ergodic process resembles a fractal structure & nonergodic process can

be modeled by a continuous-time random walk. ♠Bronstein et al., 2009 [22]: Telomeres

diffusion in the nucleus of eukaryotic cells: short times the motion is subdiffusive with

〈r2〉 ∼ tα and it changes to normal diffusion at longer times. Short time diffusion: rep-

utation model. Sagi et al., 2011 [23]: The width of the cloud exhibits a power-law time

dependence with an exponent that depends on the lattice depth. ♠Regner et al., 2013

[25]: Cytoskeletal transport along microtubules and diffusion in the cytosolic fraction

exhibit anomalous (nonFickian) behavior and posses statistically distinct signatures;

and continuous time random walk provides the best representation of diffusion. ♠Zheng

et al., 2013 [7]: Three stages: simple Brownian motion at short times, superdiffusion

at intermediate times, and finally diffusive behavior again at long times. Metzler et al.,

2014 [26]: A comprehensive review on anomalous diffusion. Ramirez et al., 2018 [28]:

Brownian dynamics simulation: three mechanisms of molecular diffusion of polymers

at large length scales: hindered diffusion, walking diffusion, and molecular hopping.

Krott et al., 2016 [27]: MD simulation of nanoparticles confined between two flat par-

allel plates: superdiffusive regime associated with a collective reorientation in a highly

structured phase is observed. Benhamou, 2018 [29]: A comprehensive explanation on

anomalous diffusion in Condensed Matter Physics. ♠Joo et al., 2020 [30]: Langevin dy-

namics simulation: the ABP cross-linker attains an active subdiffusion with the scaling

〈∆r2(t)〉 ∼ tα with α� 1/2, through the viscoelastic feedback from the polymer. Sabri

et al., 2020 [31]: Single-particle tracking experiments: particles stochastically switch

between different mobility states, most likely due to transient associations with the

cytoskeleton-shaken endoplasmic reticulum network. ♠Zheng et al., 2020 [32]: MSD &

DPD: sub-diffusive behavior at short times and the non-Gaussianity at long times; The

origin of the non-Gaussian anomaly at long times are elucidated as the non-ergodicity.
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Woringer et al., 2020 [33]: A quick overview of the existing techniques used to analyze

anomalous diffusion in cells.

1.3 Our approach

Inspired by Gomez-Solano et al.’s work [15], we are curious about the anomalous

diffusion of Janus particles in viscoelastic fluids.

In Gomez-Solano et al.’s approach, they measure the MSRA 〈∆φ(t)2〉 distribution

and found an correlation with the effective rotational diffusion coefficient D
(Wi)
r , related

with the Weissenberg number:

〈∆φ(t)2〉 = 2D(Wi)
r t

Such a relation is verified through experiments in their approach for long-time dif-

fusion (up to 100s). For short-time diffusion, it is still an open case. Also, the time

dependence of MSD is not discussed.

Our goal is to study the anomalous diffusion of Janus particles in viscoelastic fluid

focusing on the short time diffusion through experiments to observe and conclude

stages/modes for active particles’ motion

2 Mathematical derivation

2.1 Brownian motion

We start the derivation from the theory of forced Brownian diffusiophoresis. Based

on molecular thermodynamics, the relation of MSD 〈∆r〉 and diffusion coefficient Dt

writes

〈∆r〉2 = 2nDtt

where n = 1, 2, 3 are the dimensions. and the diffusion coefficient Dt takes the form

Dt =
RT

NA

1

3πηd
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where R is the Molar gas constant, equals 8.314472J/(mol ·K), T is the temperature,

NA is the Avogadro’s constant, η is the viscosity of the fluids and d is the sphere’s

diameter.

We therefore elicit the Stokes-Einstein relation for difussion coefficient, where Dt is

the translational Brownian motion:

Dt =
kBT

3πηd

where kB is the Boltzmann constant, equals R/NA.

For polymers and nanoparticles, the thermal motion with the surrounding atoms

also includes rotational Brownian motion, Dr. With the relations Dr = 3Dt/d
2 we

have:

Dr =
kBT

πηd3

Langevin, 1908: single particle’s Brownian motion

m
d2x

dt
= −λdx

dt
+ F (t)

where λ is Stokes drag, writes λ = 3πηd, F (t) is the stochastic term, 〈F (t)〉 = 0; is the

total instantaneous force acting on the particle, writes

〈Fi(t)Fj(t′)〉 = 2λkBTδijδ(t− t′)

Considering the external force K(t), Langevin equation writes

m
d2x

dt
= −λdx

dt
+ F (t) +K(t)

The normalized form of Langevin equation writes:

dx(t)

dt
= v(t)

dv(t)

dt
= − λ

m
v(t) +

1

m
F (t) +

K(t)

m
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2.2 Effective diffusion coefficient

In diffusiophoresis situations, the diffusion coefficient is stated by effective diffusion

coefficient Deff , instead of Dt, taking the form

Deff =
〈(∆r)2〉

2nt

which can be also calculted through the half-height c1 from Gaussian distribution:

Deff =
c21
4t

For micromotors, the self propel equivalent diffusion corfficient can be derived from

the Langevin equation:

Deff =
4R2

3τr
+

1

4
V 2τr +

V 2τr
8t

(e
−2t
τr − 1)

where τr is the rotational characteristic time for Janus particles, taking the form

τr =
πηd3

kBT
=

1

Dr

Therefore, Deff writes


Deff = Dt +

1

4
V 2t, t� τr

Deff = Dt +
1

4
V 2τr, t� τr

♠When t � τr, Deff linearly correalted with Dt, where the gradient is related

with the self-propel velocity. When t � τr, Deff remains a constant, unrelated with

observation time intervals.

7



3 Janus micromotor in polymers

3.1 Stages of MSD distribution

Recalling the Langevin equation

m
d2x

dt
= −λdx

dt
+ F (t) +K(t)

where for self-propelled particles, external force K(t) taking the form K = fU; for

particles constrained in polymer networks, external force agrees K = f(x).

Theoretically, for active particles constrained in cross-links, the following stages

might exists within micromotors’ motion:

• ♠Ballistic stage. 〈r2〉 ∼ t2 (cannot be observed in exp.)

• Short time diffusion. 〈r2〉 ∼ Dst

• Sub-diffusion. 〈r2〉 ∼ tα, α < 1

• Long time diffusion. 〈r2〉 ∼ Dlt

• Self propelled. 〈r2〉 ∼ tα, α > 1

• Brownian-like motion. 〈r2〉 ∼ t

4 Experimental setup

4.1 Equipment

• Optic Microscope & High Speed Camera: Observe and collect the video shot

of micromotors’ movement in the solution.

• Pt-coated Janus Particles: SiO2 (2000nm) from CUP.

• PEO: Polyethylene Oxide, PEO is a high-molecular-weight and non-ionic polymer.

It is hydrophilic, linear and not cross-linked, and highly soluble in both aqueous

and organic solvents. Mw = 105. PEO 0.1 %, 0.5 %, 1 %.

• H2O2 Solution: 30%.
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Figure 1: Schematic view of NP motion observations. The camera is placed on top to capture NP’s
motion at different altitudes (signified by Top, Middle, Bottom). ImageJ is utilized to preprocess the
video for observation. Video Spot Tracker is used to capture different NPs, as illustrated on the right.

4.2 Software

• ImageJ: Record nanoparticles’ rotational motion, measure displacements for MSRA

〈∆φ2〉, DPRD, etc.

• Video Spot Tracker: Record nanoparticles’ transnational motion, measure dis-

placements for MSD 〈∆r2〉, DPD, etc.

5 Laboratory reports

5.1 Brownian motion of nanoparticles in water

Here we investigate the Brownian motion of nanoparticles (NP) distributed at dif-

ferent altitudes in water, marked as top, middle, and bottom. We first study the NPs’

properties at the bottom by tracing six NP’s motions. Then we study how NPs’ Brow-

nian motion behave at different altitudes by studying their Gaussianity, MSD, and

related physical quantities.

5.1.1 NP at the bottom

We first analyze the NPs’ motion at the bottom side. Six NPs are marked and fol-

lowed for their coordinates’ recordings. For each NP, 500 coordinates (x1, y1), (x2, y2), ..., (x500, y500)

was collected marking their motion in the full time scale.
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Figure 2: The displacements of the six NPs with regards to time. Six different NPs were signified by
triangle dots of different colors. The black dotted line indicates zero displacements.

Figure 1 signifies our experimental process, where the motion of NPs are recorded at

the prementioned different altitudes. Here we traced six NPs marked as No. 0, 1, ..., 5

as shown in the right subfigure in figure 1. The displacements of each NP are collected

representing their Brownian motion in collected time. The probability distribution of

each NP is measured as in figure 3, indicating non-Gaussianity of specific NP at the

whole time scale. To analyze the probability of single NP, standard deviation σ and

Kurtosis γ2 =
(
x−x
σ

)4
of the NPs are represented as in figure 4.

5.1.2 NP in full space domain

The double logarithmic plot of the MSD 〈∆r2〉 to time is shown in figure 5, where

the relationships are linear, corresponds to the theory of NP self-diffusion in water. The

probability distribution of all the six NPs recorded in the full-time scale is shown in

figure 3, where Gaussianity is obeyed.
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Figure 3: The probability distribution of the six NPs’ displacements with regards to time. Note that
the red solid line indicate the Gaussian distribution. A to F indicate NP from No. 0 to No. 5.
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Figure 4: Error estimation of the probability distribution. The blue solid line indicates the standard

deviation σ. The orange dotted line indicates the excess Kurtosis γ2 =
(
x−x
σ

)4
of the probability

distribution.
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Figure 5: Double logarithmic plot of the experimental results for the MSD of NPs in water at different
altitudes. The MSD is interpreted as a linear relation with time intervals ∆t.
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Figure 6: The probability distribution of NPs in the whole time scale in three different altitudes. Sub
figure A indicates NPs in the top side, B indicates NPs in the middle side and C indicates NPs in the
bottom side.
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[9] Biaklé, J., Löwen, H., and Speck, T. (2013). Microscopic theory for the phase separation of

self-propelled repulsive disks. EPL J. 103(30008).
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