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MAE 5350: HW #1

Hanfeng Zhai
∗

Multidisciplinary Design Optimization

September 20, 2021

Part (a)

Q1. Motivation

Summarize in 5-10 sentences why you decided to take this class. What do you expect to learn?

How does this knowledge fit in with your career or research plans?

• Summarize in 5-10 sentences why you decided to take this class. This class attracts me mainly

because its name: Multidisciplinary Design Optimization. For Multidisciplinary : I was involved

in many projects are in the intersections of many disciplines: thermal engineering, structural

engineering, chemical engineering, bioengineering, etc., and I’m a huge fan of multiphysics system

simulation. Usually we solve each modules separately and couple them from specific variables

that occurred in both the governing equations. So I’m curious whether the same strategy applies

for the Multidisciplinary here. Second, I’m excited about the term Optimization: data-driven,

quasi-static, & physics-informed machine learning methods are extremely powerful and popular

terms in my field, and started to be adopted by both academia and the industry. All of these

methods are based on di↵erent optimization methods to ”train” a learning structure. Therefore,

the know more details about the optimization methods is the main attraction for me.

• What do you expect to learn? Basic optimization methods that can be applied to many engineering

& scientific fields. Currently, MDO already proved its e↵ectiveness in spacecraft engineering,

underwater vehicles, aerofoil design, wind turbine system etc. and became very successful in the

industry. I believe it can also be applied to micro&nano system, circuits, batteries, lab-on-chip,

and many ”small” systems!

• How does this knowledge fit in with your career or research plans? I hope to apply what I’ve learnt in

MDO course to my current research of multiscale mechanics, and many potential field of interests

∗ www.hanfengzhai.net
Sibley School of Mechanical and Aerospace Engineering, Cornell University
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including microfluidics, lab-on-chip system, batteries, etc. Also, I believe I got more chances to

be involved in many industrial projects to view them from the perspective of MDO.

Q2. System decomposition

In Sections 1.1 and 1.2 of Papalambros and Wilde, the authors discuss hierarchical levels in system

definition and hierarchical system decomposition. To answer the questions below, consider one of the

following engineering systems: a wind turbine power system, an Unmanned Aerial Vehicle (UAV), or

an underwater vehicle: Woods Hall Oceanographic Institute’s Alvin.

1) Describe the system boundary that you would choose in setting up a model for your system.

What are the inputs and outputs that cross this system boundary and characterize your system?

• System Chosen: Wind turbine power system.

• System Boundary: The constraints in this system includes 1Basic rule of physics (i.e. Navier-

Stokes equation for fluid dynamics, thermodynamics, equilibrium of forces applied to structures),

2Boundaries of local area for setting up the turbines, 3budget, 4the maximum energy that area

can support, 5the height limit based on the turbine structure, etc.

• Inputs: The inputs of the system includes 1the number of turbines, 2the geometrical parameters

of wind turbine (i.e., volume / size, height, occupation area, etc.), 3The shape of the blade (i.e.,

angles, area shapes, etc.), 4the materials for turbine, 5the average distance between turbines.

• Outputs: The outputs of the system includes 1the power generation per turbine, 2stress acting

on the blade, 3the deformation of the turbine body, 4costs per turbine, 5vibration caused by the

turbine working.

2) Propose a component decomposition for your system (use a similar level of detail to that shown

in Papalambros and Wilde Fig. 1.10).

See Figure 1.

3) Propose an aspect decomposition for your system (use a similar level of detail to that shown in

Papalambros and Wilde Fig. 1.12).

See Figure 2.

Q3. Simple Unconstrained Optimization/Math Review

When solving the following problem you may use computational tools, but please apply the methods

taught in class before doing any computation and show your derivations.

The Rosenbrock function is often used as a simple test problem for optimization algorithms:

f(x) = 100(x2 � x2
1)

2 + (1� x1)
2
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Figure 1: Component decomposition for the wind turbine system (solution for (2)).

Wind Turbine System

ThermodynamicsFluid Dynamics Electromagnetic

Turbine Size & 
Geometric Parameters Limited Budget

Rotating Cycle

Multibody Dynamics Vibration & Control

Structural Fatigue Materials SciencesBiology

Acoustic

Figure 2: Aspect decomposition for the wind turbine system (solution for (3)).
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a) Compute the gradient (vector of first derivatives) and Hessian (matrix of second derivatives) of

f(x).

Gradient:

rf(x) =

2

4
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@f
@x2
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5 =

2

4�400x1x2 + 400x3
1 + 2x1 � 2

200x2 � 200x2
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5

Hessian:

Hf(x) =

2

4
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@x2
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b) Show that x⇤ = (1, 1) is the only local minimizer of this function, and that the Hessian matrix

at that point is positive definite.

If we expand the form, we get f(x) = 100x2
2 � 200x2

1x2 + 100x4
1 + 1 � 2x1 + x2

1 If we let fx1 = 0

and fx2 = 0, we get 8
<

:
�400x1x2 + 400x3

1 + 2x1 � 2 = 0

200x2 � 200x2
1 = 0

Solving the equation we obtain x1 = 1 and x2 = 1 (because from second row we have x2 � x2
1 = 0 and

from the first row implies both x2 � x2
1 = 0 and x1 � 1 = 0), thus we can say that x⇤ only critical

(stationary) point.

Here we obtain the critical point (1, 1). Substitute this point into the Hessian Hf(1, 1) we get2

4 802 �400

�400 200

3

5. Now we can observe that D1 = fxx = 802 > 0 and D2 = detH = 400 > 0, therefore

the point (1, 1) is a local minimum.

c) Make a contour plot of the objective value of the Rosenbrock function versus the design variables

x1 and x2 and verify the local minimum graphically.

See Figure 3.

d) Show that the function

f(x) = 8x1 + 12x2 + x2
1 � 2x2

2

has only one stationary point, and that it is neither a maximum or minimum, but a saddle point.

We first need to compute the gradient of the function

rf(x) =

2

4
@f
@x1
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@x2
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5 =

2
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12� 4x2

3

5
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Figure 3: Rosenbrock function contour plot with regards to the coordinates in 2D and 3D. The local
minimum point was plotted black in the left sub figure and plotted red in the right sub figure.

Computing the Hessian of the matrix we obtain

Hf(x) =

2

42 0

0 �4

3

5

Let the gradient equals zero we obtain x1 = �4 and x2 = 3, from H we know that x1 = �4 is the

local maximum and x2 = 3 is the local minimum. Computing the determinant of matrix we have

detH = �8 < 0, therefore we say (�4, 3) is a saddle point.

To verify this point, we substitute these two points and plot them we obtain figure 4.

From figure 4 we observe that the critical point is the lowest in the x1 direction and highest for x2

direction, points verified.

Q4. Papalambros and Wilde

When solving the following problem you may use computational tools, but please apply the methods

taught in class before doing any computation and show your derivations.

a) Sketch the function f(x) = (x2 � x1)4 + 8x1x2 � x1 + x2 + 3 in the interval �2 < xi < 2. Solve

for the optimal point (x⇤) and add the point to your plot. Does the result match your intuition?

Let the gradient of the function equals zero we obtain

rf(x) =

2

4
@f
@x1

@f
@x2

3

5 =

2

48x2 + 4(x1 � x2)3 � 1

8x1 � 4(x1 � x2)3 + 1

3

5 = 0 (1)

We can then derive the numerical solution withMatlab vpasolvemodule, generating the following

code:
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Figure 4: The plot of f(x) on fixed x2 = 3 and x1 = �4.

1 >> syms x1 x2

2 >> f = @(x1,x2) (x2-x1)^4+8*x1*x2-x1+x2+3;

3 >> eq1 = diff(f,x1)

4 eq1 = 8*x2 + 4*(x1 - x2)^3 - 1

5 >> eq2 = diff(f,x2)

6 eq2 = 8*x1 - 4*(x1 - x2)^3 + 1

7 % according to equation (1), we know that eq1 - eq2 = 0, of which we derive that x1 =

-x2 , then substitute into Eq. (1)

8 >> eqn = 8*(-x1) + 4*(x1 + x1)^3 - 1

9 >> fpasolve(eqn , x1)

10 ans =

11

12 -0.13479721820272227913146897567463

13 0.55357993584438379685387442521215

14 -0.41878271764166151772240544953752

15 % then we can get the three points ’ coordinate based on x1 = -x2

The function and the three points is sketched as in figure 5. Based on the subfigure B and C we can

see that the optimal point is (0.55357993584438379685387442521215,�0.55357993584438379685387442521215).

b) Sketch f(x) in the same interval �2 < xi < 2 but additionally sketch the constraint g(x) =

x4
1�2x2x2

1+x2
2+x2

1�2x1  0. Solve for the the optimal point (x⇤) given this new constraint and add

the point to your plot. Is it di↵erent from the result you got in part a)? Why? Hint: is g(x) an active

or inactive constraint? How can we use this information to help solve the new optimization problem?

As we can observe from figure 6 (especially from subfigure C), the inequality constraint g(x) < 0

doesn’t include any area where f(x) locate. Therefore, the critical point remains the same, and the

constraint is an inactive constraint.

6



A B C

Figure 5: The sketch of function f(x), the three solution points for rf = 0, with highlighting the
optimal point, in di↵erent numerical ranges. A. the sketch in the range of [0, 150]. B. the sketch in
the range pf [0, 10]. C. a di↵erent angular view for subfigure B.

B C

A

Figure 6: The sketch of the objective function f(x) and inequality constraint g(x) from di↵erent angles
and di↵erent numerical ranges. A. the sketch in the range of [0, 150] as can be compared with Figure
5, with the optimal point. B. the sketch in [0, 50]. C. the sketch in [0, 10], highlighting the optimal
point.
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MAE 5350: HW #2
Multidisciplinary Design Optimization

Hanfeng Zhai

hz253@cornell.edu

Sibley School of Mechanical and Aerospace Engineering, Cornell University

October 9, 2021

Q1. Design of experiments

Recall the airplane design experiment we did in Lecture 4. You can download the results from Canvas.

(The code for Q1 can be downloaded through https://hanfengzhai.net/data/MDO_A2_Q1.mlx)

(a) Calculate the mean and variance for each experiment (9 experiments).

Solution: The mean value is calculated through

Di =

PN
i Di

N

where D stands for the distance and N stands for the total numbers of attempts, i is the experiments

numbers. Based on such we can calculate the following mean for the nine experiments in Table 1.

The variance is calculated through the absolute minus between the mean values per experiments to

the overall mean value, written as Vi:

Vi =

PN
i=1(xi � xi)2

N

The variance for the nine experiments in Table 2.

(b) Calculate the e↵ect of each design variable setting (12 e↵ects).

D1 D2 D3 D4 D5 D6 D7 D8 D9

19.415 16.43 10.94 15.138 17.207 18.438 21.955 16 14.855

Table 1: The mean value for the nine experiments.

1
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V1 V2 V3 V4 V5 V6 V7 V8 V9

3.2547 22.8058 2.7175 19.0957 45.8479 157.8374 0.0156 7.1289 0.7731

Table 2: The variance for the nine experiments.

MA1 MA2 MA3 MB1 MB2 MB3

-0.9944 -0.0366 0.2075 0.9913 -0.0912 -1.9645
MC1 MC2 MC3 MD1 MD2 MD3

1.6323 -1.1568 -1.0587 0.4505 1.3113 -2.8262

Table 3: The main e↵ect for the twelve variables.

Solution: Calculating the main e↵ect of Ai, named as MAi :

MAi = D(Ai) �
NX

i

Di

With such an equation we compute the e↵ects for 12 variables as in Table 3.

(c) What are the design variable settings of the predicted “optimal” airplane?

Solution: From Table 3 comparing MAi we can deduce that the optimal design is A3. Similarly,

observing MBi we can deduce that the optimal design is B1; observing MCi we can deduce that the

optimal design is C1. And similarly we have D2 for optimal design.

(d) Assuming that the e↵ects can be added linearly, estimate the range of the predicted optimal

airplane.

Solution:

Since the main e↵ects can be added linearly, then the optimal design is {A3, B1, C1, D2}. We first

calculate the sum main e↵ect by adding the main e↵ects:

X
M = MA3 +MB1 +MC1 +MD2 = 4.1424

Then we can calculate the range by adding such to the overall mean

X
M+D = 20.4963

(e) Download the airplane template from Canvas, build the predicted optimal airplane, and fly it

5 times*. Report your results and discuss similarities/di↵erences between the predicted and actual

performance.

Solution:

Expts. # 1 2 3 4 5

Dist. (ft) 29.8 25.3 25.9 18.2 20.1
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Expts. # / Factor A B C D
1 A3 B1 C1 D2

2 A2 B1 C1 D2

3 A1 B1 C1 D2

4 A3 B2 C1 D2

5 A3 B3 C1 D2

6 A3 B1 C2 D2

7 A3 B1 C3 D2

8 A3 B1 C1 D1

9 A3 B1 C1 D3

Table 4: The experiment matrix for parameter study.

Most of the experimental distance was larger than the predicted value, three reasons might be ac-

counted for this ”inaccuracy”: (1) I got better throwing skills (doubt about it); (2) There are errors for

my measurement; (3) Errors of measurement by other students.

(f) If we were now to perform a parameter study using the predicted optimal airplane as the baseline,

what would the experimental matrix be? Comment on what, if any, new information this new experiment

might bring.

Solution:

Compared with the original design table, this table could present us information on when three

parameters are fixed at the optimal design, whether the changing of the other parameters may variate

the results. It also give us numerous experiments that the original table does not cover. So we may be

able to see how each factors variate the final distance more specifically through di↵erent experiments.

(g) In one paragraph, discuss the variance results computed in part (a). Explain the possible signifi-

cance of these results and how they might be used to inform an actual design process.

Solution: In probability theory and statistics, variance is the expectation of the squared deviation

of a random variable from its population mean or sample mean. Variance is a measure of dispersion,

meaning it is a measure of how far a set of numbers is spread out from their average value [Wikipedia].

Based on such definition, we can deduce that the bigger the variant the higher error of the experiments.

Or in other words, when we are approaching the more ”accurate” experimental results we should expect

to see a smaller variance. Here, from Table 2 we can see that experiments # 2, 4, 5, 6 have a general

larger variance, especially for Exp. # 6. Here we can say that the reliability of these experiments are

lower than the rest.

3
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Q2. Gradient-Based Optimization: optimal can sizing problem

Consider the simple constrained optimization problem of minimizing the surface area of a cylinder

subject to an equality constraint on its volume:

min
x

f(x1, x2) = 2⇡x1(x1 + x2)

subject to h(x1, x2) = ⇡x2
1x2 � V = 0

where x1 is the radius of the cylinder, x2 is the height of the cylinder, and V is the required volume.

(a) Formulate the Lagrangian function, derive the optimality conditions, and solve the resulting

system of equations to determine the dimensions of the minimum-surface-area cylinder that has a volume

of 1 liter (1000 cm3). (We know V = 0.001m3 (SI Unit))

Solution: According to the definition of a Lagrangian function:

L(x,�) = J(x) +
m1X

j=1

�igj(x) +
m2X

k=1

�m1+khk(x)

Substituting the given condition to the function L we have:

L(x,�) = 2⇡x1(x1 + x2) + �(⇡x2
1x2 � V ) (1)

By solving rx1,x2,�L(x,�) = 0, we have:

✓
@L

@x1
,
@L

@x2
,
@L

@�

◆
= 0 ()

8
>>><

>>>:

2⇡x1 + 2⇡(x1 + x2) + 2⇡�x1x2 = 0

�⇡x2
1 + 2⇡x1 = 0

⇡x2x2
1 � V = 0

(2)

Solving the above equations, applying the vpasolve function we have1:

x1 = 0.054192607013928900874456136482964

x2 = 0.10838521402785780174891227296593

� = �36.90540297288056838193607759178

NOTE THAT THE UNIT IN THIS COMPUTATION IS IN SI UNIT (The answer hasn’t change

since my last version but I switched all the answers to SI Unit to make it more clear and avoid confusion)

I switched the answer from the original cm to m is because Jiayi asked how did I solve the problem and
1Codes can be downloaded through https://hanfengzhai.net/data/MDO_A2_Q2.mlx
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I explained it to him, and he get confused about my unit, so here I switch all the unit to SI Unit to

avoid similar issues.

(b) Repeat the optimization for a constrained volume of 12 US fl oz (355 ml) and compare your

dimensions against the standard U.S. beverage can (https://en.wikipedia.org/wiki/Beverage_can)

and explain any di↵erences.

Solution: For this problem, an inequality constraint was added as V  355 ⇥ 10�6[m3], which is

written as V � 0.355 = 0 in the standard form. Hence the Lagrangian (Eq. 1) should be rewritten in

the form:
min
x

f(x1, x2) = 2⇡x1(x1 + x2)

subject to h(x1, x2) = ⇡x2
1x2 = V, where V = 355⇥ 10�6

�! L(x,�) = 2⇡x1(x1 + x2) + �(⇡x2
1x2 � 355⇥ 10�6)

With the given setup, we write out the Karush-Kuhn-Tucker (KKT) Conditions:

✓
@L

@x1
,
@L

@x2
,
@L

@�

◆
= 0 ()

8
>>><

>>>:

2⇡x1 + 2⇡(x1 + x2) + 2⇡�x1x2 = 0

�⇡x2
1 + 2⇡x1 = 0

⇡x2x2
1 � V = 0

(3)

By solving Eq. 3 with vpasolve we have:

x1 = 0.038372152480156730624817304791733

x2 = 0.076744304960313461249634609583465

� = �52.121131360411789506046960254401

According to the provided reference, The US standard can is 4.83 in or 12.3 cm high, 2.13 in or 5.41

cm in diameter at the lid, and 2.6 in or 6.60 cm in diameter at the widest point of the body. So here

our optimized results can be identified as a ”shorter” and ”fatter” version compared with the standard

soda can.

(c) Formulate the can optimization problem as a geometric program in standard form.

Solution: Write such a problem into geometric form:

min
x

2⇡x2
1 + x1x2

subject to 2.8169⇥ 103⇡x2
1x2 = 1

(d) Use Python/MATLAB/R/Julia to independently solve the problem numerically using either the
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cvxpy library for Python, the CVX library for MATLAB, CVXR for R or Convex.jl in Julia*. Does the

solution agree with your analytical solution found in part (a)?

Solution: We construct the following code based on the course materials:

1 cvx_begin gp

2 variables x1 x2 lambda

3 minimize( 2*pi*x1*(x1 + x2) )

4 subject to

5 pi*x1*x2 == 355e-6

6 cvx_end

And we obtain the following results:

x1 = 8.4782⇥ 10�21

x2 = 1.3328⇥ 1016

� = 1

Which is very di↵erent from what we obtain in (a) with gradient based methods.

Q3. Gradient-Based Optimization: Newton’s method

Consider the function

f(x1, x2) =
1

2
(x2

1 � x2)
2 +

1

2
(1� x1)

2

(a) At what point does f attain a minimum?

Solution: Solving rx1f = 0 & rx2f = 0, we have x1 = x2 = 1.

(b) Perform (by hand) one iteration of Newton’s method using the starting point:x1 = 2, x2 = 2.

Solution: Based on Newton’s method, the search direction can be computed as

S = �[H(x0)]�1rJ(x0)

Here, J = f(x), and x0 = (2, 2). So we first compute the gradient and Hessian:

rJ =

2

4x1 � 2x1(�x2
1 + x2)� 1

�x2
1 + x2

3

5 & H =

2

46x
2
1 � 2x2 + 1 �2x1

�2x1 1

3

5

For the first step, substituting the first coordinate into the direction S we have

S(2, 2) = �[H(2, 2)]�1rJ(2, 2) = [�0.2, 1.2]T
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Q4. Gradient-Based Optimization: constraint qualifications

Consider the problem

min
x

f(x1, x2) = x2
1 + x2

2

subject to h(x1, x2) = x2
2 � (x1 � 1)3 = 0

(a) Formulate the Lagrangian function and derive the KKT optimality conditions. Can you solve the

resulting system of equations to determine the optimal solution? Explain why this method might fail

for this problem.

Solution: We first formulate the Lagrangian function:

L(x,�) = J(x) +
m1X

j=1

�igj(x) +
m2X

k=1

�m1+khk(x)

Substitute f = J and the equality constraint h we have:

L(x,�) = x2
1 + x2

2 + �
�
x2
2 � (x1 � 1)3

�

By solving the Lagrangian we have

✓
@L

@x1
,
@L

@x2
,
@L

@�

◆
= 0 ()

8
>>><

>>>:

2 x1 � 3� (x1 � 1)2 = 0

2 x2 + 2� x2 = 0

x2
2 � (x1 � 1)3 = 0

(4)

We then derive the KKT condition: if there exists a feasible optimal point x⇤,

�igj(x
⇤) = 0, j = 1, ...,mi,�i � 0

2

42x1

2x2

3

5+ �i

2

4�3 (x1 � 1)2

2 x2

3

5 = 0

Try solving this equation with Matlab Built-in function vpasolve we generate the following codes:

1 >> syms x1 x2 lambda

2 >> L = x1^2 + x2^2 + lambda *(x2^2 - (x1 - 1)^3);lagran = [diff(L,x1); diff(L,x2); diff(L,lambda)]

3 >> eq1 = lagran (1); eq2 = lagran (2); eq3 = lagran (3)

4 >> [x1sol , x2sol , lambdasol] = vpasolve ([eq1 ,eq2 ,eq3],[x1 ,x2 ,lambda ])

5 x1sol =

6 0.66666666666666666666666666666667 - 0.74535599249992989880305788957709i

7 0.66666666666666666666666666666667 + 0.74535599249992989880305788957709i

8 0.66666666666666666666666666666667 + 0.74535599249992989880305788957709i
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9 0.66666666666666666666666666666667 - 0.74535599249992989880305788957709i

10

11 x2sol =

12 - 0.72898887936316829444036282580464 - 0.11360575564930422273334997589706i

13 - 0.72898887936316829444036282580464 + 0.11360575564930422273334997589706i

14 0.72898887936316829444036282580464 - 0.11360575564930422273334997589706i

15 0.72898887936316829444036282580464 + 0.11360575564930422273334997589706i

16

17 lambdasol =

18 -1.0

19 -1.0

20 -1.0

21 -1.0

From the results we can then deduce that the system cannot be solved. Based on the Nunemacher,

2003 paper we know that the reason why the Lagrangian multiplier fails when the constraints’ geometry

is not smooth or the critical point is neglected (”But to be assured that the method succeeds, we must

know that the geometry is right—that is, the set defined by g(x, y) = k is a smooth curve in the plane”)

(b) Solve this problem using the exterior penalty method discussed in L8, using a quadratic penalty

function. (Hint: derive an expression for the solution as a function of the penalty parameter ⇢, and then

take the limit as ⇢ �! +1)

Solution: we first formulate a pseudo-objective �Q with the Quadratic Penalty Function for exterior

penalty method:

�Q(x, ⇢p) = x2
1 + x2

2 + ⇢p
�
x2
2 � (x1 � 1)3

�2

We then first calculate the gradient of the pseudo-objective function:

r�Q =

0

@ 2 x1 + 6 ⇢p
�
(x1 � 1)3 � x2

2
�
(x1 � 1)2

2 x2 � 4 ⇢p x2

�
(x1 � 1)3 � x2

2
�

1

A

and also the Hessian:

H�Q =
0

@ 18 ⇢p (x1 � 1)4 + 6 ⇢ (2 x1 � 2)
�
(x1 � 1)3 � x2

2
�
+ 2 �12 ⇢p x2 (x1 � 1)2

�12 ⇢p x2 (x1 � 1)2 8 ⇢p x2
2 � 4 ⇢p

�
(x1 � 1)3 � x2

2
�
+ 2

1

A

Here, by analyzing the second term of the gradient r�Q we can rewrite it into the form:

2x2

�
1� 4⇢p((x1 � 1)3 � x2

2)
�
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Figure 1: The sketch for the objective and constraint.

And we can deduce that if we let x2 = 0 agrees for r�Q = 0; therefore the first term of the gradient

can be written as 2x1 + 6⇢p(x1 � 1)5 = 0, taking ⇢p �! 1 we get x1 = 1.

x =

2

41

0

3

5

(c) Plot the contours of the objective function and the equality constraint. Explain how the plot

relates to your answers in (a) and (b).

The codes for running the program are shown as belows:

1 x1 = -10:0.1:10; x2 = x1;

2 [x1 ,x2] = meshgrid(x1,x2);

3 f =x1.^2 + x2.^2;

4 h = x2.^2 - (x1 - 1).^3;

5 x1 = -10:0.1:10; x2 = x1;

6 contour(x1,x2,f);hold on

7 contour(x1,x2,h)

The figure containing the objective and the constraint are shown as in the following figure, where our

estimated optimal point are plotted in the red dot.

Appendix. Data & Code

Code for Q1

The following code used for Q1 is written in Matlab R2021a.

1 >> %% --------------Code for Q1 - (a)--------------

9



2 >> %% Calculating the mean value

3 >> D_1 = mean(data (1 ,2:5)); D_2 = mean(data (2 ,2:7)); D_3 = mean(data (3 ,2:5)); D_4 = mean(data (4 ,2:7));

D_5 = mean(data (5 ,2:5)); D_6 = mean(data (6 ,2:5)); D_7 = mean(data (7 ,2:3)); D_8 = mean(data (8 ,2:3));

D_9 = mean(data (9 ,2:5));

4 >> D_matrix = [D_1 , D_2 , D_3 , D_4 , D_5 , D_6 , D_7 , D_8 , D_9]

5 D_matrix =

6 19.415 16.43 10.94 15.138 17.207 18.438 21.955 16 14.855

7 >> % Calculate the overall mean value

8 >> D_overall = mean(D_matrix)

9 D_overall =

10 16.709

11 >> %% Calculate the variance

12 >> V_1 = D_1 - D_overall; V_2 = D_2 - D_overall; V_3 = D_3 - D_overall; V_4 = D_4 - D_overall; V_5 =

D_5 - D_overall; V_6 = D_6 - D_overall; V_7 = D_7 - D_overall; V_8 = D_8 - D_overall; V_9 = D_9 -

D_overall;

13 >> V_matrix = [V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 , V_9]

14 V_matrix =

15 2.7063 -0.2787 -5.7687 -1.5704 0.4988 1.7288 5.2463 -0.7087 -1.8537

1 >> %% --------------Code for Q1 - (b)--------------

2 >> M_A_1 = mean([D_1 ,D_2 ,D_3]) - D_overall; M_A_2 = mean([D_4 ,D_5 ,D_6]) - D_overall; M_A_3 = mean([D_7 ,

D_8 ,D_9]) - D_overall;

3 >> M_A = [M_A_1 , M_A_2 , M_A_3 ];

4 >> M_B_1 = mean([D_1 ,D_4 ,D_7]) - D_overall; M_B_2 = mean([D_2 ,D_5 ,D_8]) - D_overall; M_B_3 = mean([D_3 ,

D_6 ,D_9]) - D_overall;

5 >> M_B = [M_B_1 , M_B_2 , M_B_3 ];

6 >> M_C_1 = mean([D_1 ,D_6 ,D_8]) - D_overall; M_C_2 = mean([D_2 ,D_4 ,D_9]) - D_overall; M_C_3 = mean([D_3 ,

D_5 ,D_7]) - D_overall;

7 >> M_C = [M_C_1 , M_C_2 , M_C_3 ];

8 >> M_all = [M_A; M_B; M_C]

9 M_all =

10 -1.1137 0.21907 0.89463

11 2.1274 -0.16287 -1.9645

12 1.2421 -1.2343 -0.0078704
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Q1. Penalty Methods continued

Consider the problem

min x+ y

subject to x2 + y2 = 2
(1)

(a) Apply KKT conditions to solve the problem

Solution: We first rewrite the problem in standard form:

min x+ y

subject to x2 + y2 � 2 = 0
(2)

We first write out the pseudo objective:

(x+ y) + �(x2 + y2 � 2) = 0 (3)

By applying the KKT condition:

1 + 2x� = 0

1 + 2y� = 0

�(x2 + y2 � 2) = 0

� � 0

(4)

∗Email: hz253@cornell.edu
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By solving this problem with vpasolve in Matlab® and generate the following code in an

.mlx file to directly output the LATEX font results:

1 syms x y lambda

2 eqn1 = 1+ 2* lambda*x == 0; eqn2 = 1+2* lambda*y == 0; eqn3 = lambda *(x^2 + y^2 - 2) == 0;

3 eqns = [eqn1 ,eqn2 ,eqn3];

4 vars = [x y lambda ];

5 answer = vpasolve(eqns , vars);

6 [( answer.x) ,(answer.y),(answer.lambda)]

The solutions are: 0

@ 1.0 1.0 �0.5

�1.0 �1.0 0.5

1

A (5)

Since we already know � � 0, therefore the solutions are obtained

x = y = �1; � = 0.5 (6)

(b) Formulate a quadratic penalty function for this problem. Derive the corresponding optimality

conditions as a function of the penalty parameter ⇢.

Solution: We first write out the Quadratic Penalty Function:

�Q(x, ⇢p) = (x+ y) + ⇢p(x
2 + y2 � 2)2 (7)

We then first calculate the gradient of the pseudo-objective function:

r�Q =

0

BBB@

1 + 4 ⇢p x (x2 + y2 � 2)

1 + 4 ⇢p y (x2 + y2 � 2)

(x2 + y2 � 2)2

1

CCCA
= 0 (8)

To obtain the optimal point we need r�Q = 0, analyzing the three terms, we chose exterior

penalty function method to let ⇢p �! +1 we know that (x3 + xy2 � 2) = (x2y + y3 � 2) =

(x2 + y2 � 2)2 = 0, in such case we deduce that x = y = ±1.

(c) Plot the contours of your quadratic penalty pseudo-objective for the case of ⇢ = 0.5 and ⇢ = 5.

Graphically determine the optimal solution in each case and comment.

From Figure 1 we can deduce from the scheme boundary as the black dotted lines from sub

figures A and B as ⇢ increases the cruve is approximating the point (�1,�1). Therefore we can

obtain that optimal point is x = y = �1.

2



Figure 1: The contour plot for the two quadratic penalty pseudo-objective functions, when A. ⇢ = 0.5. B. ⇢ = 5.

Q2. Simulated Annealing

A cantilever beam of uniform cross-section with linear dimension d and thickness t (see figure below)

has to be designed for minimum mass. The beam is of fixed length l = 0.3m and carries a tip load

of P = 1kN at the free end. There are four di↵erent geometries available for the beam cross-section:

square, circle, equilateral triangle, and I-beam. Finally, the beam can be made of steel, aluminum, or

titanium.

There are two explicit constraints given for this design problem:
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Part (a) - individual assignment (60 points) 
 
Q1. Penalty Methods continued (10 points) 
Consider the problem 

 
(a) Apply KKT conditions to solve the problem. 
(b) Formulate a quadratic penalty function for this problem. Derive the 

corresponding optimality conditions as a function of the penalty parameter ρ. 
(c) Plot the contours of your quadratic penalty pseudo-objective for the case of 

ρ=0.5 and ρ=5. Graphically determine the optimal solution in each case and 
comment. 
 

Q2. Simulated Annealing (30 points) 
A cantilever beam of uniform cross-section with linear dimension d and thickness t (see 
figure below) has to be designed for minimum mass. The beam is of fixed length l = 0.3 
m and carries a tip load of P =1 kN at the free end. There are four different geometries 
available for the beam cross-section: square, circle, equilateral triangle, and I-beam. 
Finally, the beam can be made of steel, aluminum, or titanium. 

 
There are two explicit constraints given for this design problem: 
(1) Maximum bending stress in the beam has to be less than 90% of the yield stress of the material

chosen:

�max,x =
Plys
Is

 0.9Sm

where �max,x is the normal stress in the x-direction, ys is the maximum distance from the shape centroid

to the top or bottom edge, Is is the cross-sectional moment of inertia of the shape chosen, and Sm is

3



the yield stress of the material.

(2) Maximum tip deflection of the beam has to be less than 3mm:

� =
Pl3

3EmIs
 0.003

where Em is the Young’s modulus of the material chosen and Is the same as in (1).
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(1) Maximum bending stress in the beam has to be less than 90% of the yield stress 

of the material chosen: 

 
where σmax,x is the normal stress in the x-direction, ys is the maximum distance 

from the shape centroid to the top or bottom edge, Is is the cross-sectional 

moment of inertia of the shape chosen, and Sm is the yield stress of the material. 

(2) Maximum tip deflection of the beam has to be less than 3mm: 

  
 where Em is the Young’s modulus of the material chosen and Is the same as in 

(1). 

 

The table below summarizes key relationships for each of the different beam sections: 

 
The table below summarizes key material properties of steel, aluminum, and titanium: 
 

Material Young’s modulus Em 
[GPa] 

Yield stress Sm 
[MPa] 

Density ρm [kg/m3] 

Steel 200 300 7600 

Aluminum 75 200 2700 

Titanium 120 800 4400 

 

(a) Find a constraint relating d and t as a function of the shape to upper-bound t, and 

a constraint relating d and l to upper-bound d. Finally, use engineering judgment to 

lower-bound t. Formulate the full optimization problem in standard form including 

the bounding constraints on t and d. 

(b) Solve this constrained optimization problem using the Simulated Annealing (SA) 

algorithm.  

(c) Describe the optimal beam design in terms of geometry and material choice.  

(d) Explore how you can “tune” the SA algorithm (e.g., cooling/annealing schedule, 
initial guess, stopping criteria) and report your findings on their impact on the 

solution quality and computational time in a concise format.  

(e) Based on your findings, discuss which SA tuning parameters most affect the 

solution quality and computation time.  

(f) What is your final suggested design? 

(a) Find a constraint relating d and t as a function of the shape to upper-bound t, and a constraint

relating d and l to upper-bound d. Finally, use engineering judgment to lower-bound t. Formulate the

full optimization problem in standard form including the bounding constraints on t and d.

Solution: First, the constraints of yield stress and tip deflection can be simplified to:

ys
Is

 0.9
Sm

Pl

Is �
1000Pl3

9Em

where ys and Is are related to t and d.

According to the given table, we can write ys = ys(d), As = As(t, d), and Is = Is(t, d). Therefore

we assume there exists functions f and g that t = f(ys, As, Is) and d = g(ys, As, Is).

The mass of the beam can be written as m = ⇢mVm, where ⇢m is adapted from the given table.

4



The volume Vm can be calculated from Vm = Asys, where for the three di↵erent beam sections:

square :Vm = (d2 � (d� 2 t)2)l

circle :Vm =
l⇡

�
d2 � (d� 2 t)2

�

4

triangle :Vm = �
l
p
3
⇣�

d� 2
p
3 t

�2 � d2
⌘

4

I� beam :Vm = l(3 d t� 2 t2)

(9)

We can then write out the problem in standard form

min ⇢mVm

s.t.
P lys
Is

 0.9Sm

Pl3

3EmIs
 0.003

(10)

Also, considering the lower and upper bounds, we reconsider the schematic figures given in the

instructions. We know that the geometry cannot violate basic physical sense; therefore we can

write out the relations between t and d as for the upper bounds for t:

Upper bounds for t : For square : t  d

2

For circle : t  d

2

For triangle : t  d

2
p
3

For I� beam : t  d

2

For the upper bounds for d, we know that with the definition of a cantilever beam, the width

cannot exceeds its length, therefore:

Upper bounds for d : d  l

And for real-world applications, a beam usually has a thickness of 200 - 300 mm [Ref.]. Therefore

we set the lower bound of t as 100 mm.

(b) Solve this constrained optimization problem using the Simulated Annealing (SA) algorithm.

Solution: To solve this problem, we first need to formulate the objective function (evaluation

function in SA), nominated as objectiveBeam.m (As shown in the following codes). Here, we

5
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impose the constraints as in the objective function (evaluation function), by using the absolute

penalty function method: the pseudo objective can be written as J = J + ⇢p(|constraint1| +

|constraint2| + ...), where J is the pseudo objective and J is the original objective function, ⇢p

is the multiplier for the constraints1. However, it should be noted that this methods does not

guarantee all the constraints will be perfectly satisfied, since there are multiple constraints and is

we multiplying them to the same ⇢p there might be some solutions violating the constraints2. In

this objective function, the input is taken as a vector containing four components of the design

variables: t, d, materials and shapes. The parameters corresponding to the four input variables

are given in the form of if loops. And the eventual objective is the mass, which also contain the

constraints as we just mentioned.

1 function mass = objectiveBeam(x0)

2 Input = x0;

3 %% Input the vars.

4 t = Input (1); d = Input (2); material = Input (3); shape = Input (4);

5 %% optimization constants

6 P = 1e3; l = .3;

7 %% judge loop for materials

8 if material == 1 % steel

9 Em = 200e9;

10 S_m = 300e6;

11 rho_m = 7600;

12 elseif material == 2 % alum

13 Em = 75e9;

14 S_m = 200e6;

15 rho_m = 2700;

16 elseif material == 3 % titanium

17 Em = 120e9;

18 S_m = 800e6;

19 rho_m = 4400;

20 end

21 %% judge loop for shape

22 if shape == 1 % square

23 y_s = d./2;

24 A_s = d.^2 - (d - 2.*t).^2;

25 I_s = (1/12) .*(d.^4 - (d - 2.*t).^4);

26 elseif shape == 2 % circle

27 y_s = d./2;

28 A_s = (pi./4) .*(d.^2 - (d - 2.*t).^2);

29 I_s = (pi./64) .*(d.^4 - (d - 2.*t).^4);

30 elseif shape == 3 % triangle

31 y_s = (1 - 1./(2.* sqrt (3))).*d;

1In this way we impose the constraints to the evaluation function for simulated annealing.
2This will be further discussed in the next few sub questions.
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32 A_s = (sqrt (3) ./4) .*(d.^2 - (d - 2.* sqrt (3).*t).^2);

33 I_s = (sqrt (3) ./96) .*(d.^4 - (d - 2.* sqrt (3).*t).^4);

34 else % I-beam

35 y_s = d./2;

36 A_s = 3.*d.*t - 2.*t.^2;

37 I_s = (t./12) .*((d - 2.*t).^3 + 2.*d.*t.^2 ...

38 + 6.*d.*(d - t).^2);

39 end

40

41 %% judge if constraints are violated

42

43 sigma_max = (P.*l.*y_s)./( I_s);

44 delta = (P.*l.^3) ./(3.* Em.*I_s);

45

46 rho_p = 1e7; % penalty function --> this value is very important !!

47

48 P = rho_p * abs(sigma_max -0.9* S_m) + rho_p * abs(delta -0.003) + rho_p * abs(2*t - d) + rho_p * abs

(d - l);

49 mass=rho_m*A_s*l + P;

50

51 % relation of mass to t & d

52 end

And then we can write out the perturbation function, nominated as perturbBeam.m: taking

similar strategy as the objective (evaluation) function, we first input the design variables in a

vector form, then we use the Matlab built-in randi function to randomly generate a number

between 1 to 4 to judege which inout design variables to perturb. Then if the variables are shape

or materials, we perturb them by randomly generate a new number within the design range. If the

perturbed design variables are t or d, we first perturb either t or d by randomly generate a real

number within the given range ([0, 1] in our problem), and link the other with the geometric inner

constraint as we given in Q1:

1 function [xp]= perturbBeam(x0)

2 Input = x0;

3 t = Input (1); d = Input (2); material = Input (3); shape = Input (4);

4 %

5 num = randi ([1 4]);

6 %%

7 if num == 3

8 matrl = randi ([1 3]);

9 xp = [t d matrl shape];

10 end

11

12 if num == 4

13 shap = randi ([1 4]);

7



14 xp = [t d material shap];

15 end

16 %%

17 xp_t=x0(1);

18 xp_d=x0(2);

19 xlb =0;

20 xub =1;

21 %

22 if num == 1

23 % indx=round(rand (1) +1);

24 dx=(xub -xlb)*rand (1)+xlb;

25 xp_t=dx;

26 if shape == 1 %square

27 xp_d = 2*xp_t - dx;

28 elseif shape == 2 %circle

29 xp_d = 2*xp_t - dx;

30 elseif shape == 3 %triangle

31 xp_d = 2*sqrt (3)*xp_t - dx;

32 elseif shape == 4 %I-beam

33 xp_d = 2*xp_t - dx;

34 end

35 xp = [xp_t xp_d material shape];

36 end

37

38 if num == 2

39 % indx=round(rand (1) +1);

40 dx=(xub -xlb)*rand (1)+xlb;

41 xp_d=dx;

42 if shape == 1 %square

43 xp_t = xp_d/2 + dx;

44 elseif shape == 2 %circle

45 xp_t = xp_d/2 + dx;

46 elseif shape == 3 %triangle

47 xp_t = xp_d /(2* sqrt (3)) + dx;

48 elseif shape == 4 %I-beam

49 xp_t = xp_d/2 + dx;

50 end

51 xp = [xp_t xp_d material shape];

52 end

53

54 end

And to execute the main file, we input the following commands to run the main file with our

evaluation and perturbation function. We

1 >> xo = [0.0500 0.2000 3.0000 1.0000];

2 >> file_eval = ’objectiveBeam ’;

3 >> file_perturb = ’perturbBeam ’;
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Figure 2: The changing history of the four design variables [t, d,materials, shape] with the simulated annealing
iterations.

4 >> [xbest ,Ebest ,xhist ]=SA(xo,file_eval ,file_perturb);

And by then we generate the eventual output with a history diagram as shown in Figure 2. The

eventual optimal point is [0.1044, 0.2572, 2.0000, 3.0000].

(c) Describe the optimal beam design in terms of geometry and material choice.

Solution: Based on our results, we know that for the optimized design, the thickness t and

length d are: t = d = 0.356, in unit [m]. And the materials and shape obeys material = 2,

which is Aluminum, and shape is I-beam. Obviously this violates our constraints on the geometric

relation between t and d. This is because that the four constraints are imposed through Absolute

Penalty Function methods, which does not guarantee all the constraints are perfectly satisfied. We

thence increase the value of ⇢p to 10 times of its original value (manually), and the optimal point

is manually changed as shown in Table 1.

(d) Explore how you can “tune” the SA algorithm (e.g., cooling/annealing schedule, initial guess,

stopping criteria) and report your findings on their impact on the solution quality and computational

time in a concise format.

Solution: Now, there are a couple of things that we can change in the SA algorithm: (1) the

multiplier ⇢p we used in the Absolute Value Penalty Function (we used 1⇥107 in the original code).

(2) the cooling methods (we used exponential cooling in the original code). (3) the initial point

(we used (0.05, 0.1, 3, 1) in the original design).

For the first parameters, we switched the value of ⇢p for a couple of values and generated the

following results as in Table 1. From the results we first know that the Absolute Value Penalty

Function penalty methods does not satisfies that the constraints are strongly enforced to optimiza-
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⇢p value Final Design

103 (0.0522 0.1287 2.0000 3.0000)
104 (0.0500 0.1000 2.0000 1.0000)
105 (0.2035 0.5015 2.0000 3.0000)
106 (0.0486 0.1198 2.0000 3.0000)
107 (0.2435 0.2435 2.0000 4.0000)
108 (0.1844 0.1844 2.0000 4.0000)
109 (0.1495 0.1495 2.0000 4.0000)
1010 (0.1230 0.3031 2.0000 3.0000)
1011 (0.0500 0.1000 2.0000 4.0000)
1012 (1.3878 0.9252 2.0000 1.0000)
1013 (0.0703 0.1732 2.0000 3.0000)
1014 (1.4589 0.9726 2.0000 1.0000)
1015 (0.5949 1.4658 2.0000 3.0000)

Table 1: Di↵erent optimal points align with di↵erent ⇢p values.

Methods Final Design

Exponential cooling (0.0690 0.1700 2.0000 3.0000)
Linear cooling (0.1199 0.1199 2.0000 4.0000)

Table 2: Di↵erent optimal points corresponding to the SA di↵erent cooling methods.

tion problems. Therefore some points in the optimal does not perfectly satisfy all the constraints.

From Table 1 we can deduce the optimized materials and shape is (2, 3), which are Aluminum and

Triangle.

(2) We can also tune the cooling methods. Based on Table 1 we think ⇢p = 1011 would be a

good fit for the SA algorithm. The switched results are shown in Table 2.

Estimating the final design of the two cooling methods we can deduce that for Linear cooling the

final mass is 11.6446 (here numerical value is su�cient to deduce optimality) and the exponential

cooling mass is 8.4654. Hence we can deduce exponential cooling is the more preferred method

(only for this case). Note that due to the constraints are imposed through the Absolute Value

Penalty Function method, and since there are many constraints in this problem. We weight each

constraints the same, thence there are some solutions (optimal point) does not perfectly satisfy the

constraints.

(3) Later on, by tuning initial guesses, we generate Table 3 to show how di↵erent initial points

generate di↵erent optimal points. Here, our strategy is we randomly give an initial point, and let

the SA find the optimized point, and we take the optimal point as the initial again until the optimal

point are no longer renewed.

(e) Based on your findings, discuss which SA tuning parameters most a↵ect the solution quality and

computation time.

Solution:
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Initial Point Final Design

(0.0100 0.2100 3.0000 1.0000) (0.0100 0.2100 2.0000 3.0000)
(0.0100 0.2100 2.0000 3.0000) (0.0745 0.0745 2.0000 4.0000)
(0.0050 0.1360 3.0000 4.0000) (0.1441 0.3552 2.0000 3.0000)
(0.1441 0.3552 2.0000 3.0000) (0.0649 0.0649 2.0000 4.0000)
(0.0500 0.2100 1.0000 1.0000) (0.1504 0.3707 2.0000 3.0000)
(0.0160 0.2990 3.0000 4.0000) (1.1067 0.7378 2.0000 1.0000)
(1.1067 0.7378 2.0000 1.0000) ( 0.0330 0.0812 2.0000 3.0000)
(0.0330 0.0812 2.0000 3.0000) (0.0317 0.0317 2.0000 4.0000)

Table 3: Di↵erent optimal points corresponds to di↵erent initial points.

Cooling method CPU time

Exponential cooling 6.0984e+03
Linear cooling 6.5275e+03

Table 4: The results of the CPU time corresponding to di↵erent cooling methods.

Solution quality: From the above tables, it can be detected that cooling schedules (methods)

strongly variate the results of the optimal point with same initial point and conditions.

CPU time: For computation time, to quantitatively describe the di↵erence, we create the

following tables: we first consider changing the cooling methods, and then we fix the method and

change the initial points to see how the CPU computation time variate.

Based on the observations from Tables 4, 5, 6; we can deduce that initial points has very little

influence on the CPU time, and for di↵erent ⇢p values, the change by the power of 10 only variate

CPU time by the scale of 10�2; but for di↵erent cooling schedules (methods), the CPU time are

strongly variate by di↵erent methods. We therefore deduce that cooling methods playing a more

significant role in both solution quality and computation time.

(f) What is your final suggested design?

Solution: As proposed and explained many times previously, due to the methods we chose and

the paralleled multiple constraints, the final optimal points (suggested design may not perfectly

satisfy all the constraints). Yet due to many attempts in the previous tables we can still pick

a ”acceptable” choice of design based on our general engineering background for the problem (a

general ”lightweight design” of the beam that can take the loading and satisfies the constraints can

be accepted).

Initial point CPU time

(0.0100 0.2100 3.0000 1.0000) 6.9235e+03
(0.0200 0.2800 3.0000 4.0000) 6.9407e+03
(0.0160 0.1200 1.0000 1.0000) 6.9614e+03
(0.0136 0.2300 1.0000 3.0000) 6.9740e+03
(0.0310 0.2970 2.0000 1.0000) 6.9875e+03

Table 5: The results of the CPU time corresponding to di↵erent initial points.
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⇢p value CPU time

1010 7.0713e+03
1020 7.0820e+03
1030 7.0879e+03
1040 7.0937e+03
1050 7.1016e+03
1060 7.1794e+03
1070 7.1848e+03
1080 7.1905e+03
1090 7.1951e+03

Table 6: The results of the CPU time corresponding to di↵erent ⇢p values.

During the attempts to optimize the design problem, we notice a design in Table 4 (the red

marked one) presents a generally ”good” design as we explained previously: (1) It satisfies all the

engineering constraints. (2) The choice of material and shape agrees with most of the results as

displayed in Tables 3, 4, 5, 6. (3) It already go through three optimization processes to this point.

We therefore pick it as the final design. Hence, the final suggested design is thickness t = 0.033,

in meters, cross section diameters d = 0.0812, in unit meters, shape as circle and materials as

Titanium. Based on these parameters and variables, the optimized mass is 1.9280kg.

For this problem, I discussed with Mads and Gabrielle, and also asked Prof. Maha Haji for help.

I also helped my teammates after I generated the results.

After a short discussion with Mads on Sunday, I found out that my methods may not be the best

methods since enforcing the four constraints simultaneously to the objective may be the reason

that some solutions violates the constraints, as I stated and explained previously. Therefore I

think it is important to add this part to my Q2 as a patch to my individual part.

If we take all the methods same as previously, yet only changing the strategy that applying

four constraints simultaneously to the evaluation, to only enforce the given two constraints in the

instructions, and take the quadratic penalty function instead of absolute penalty function, the

evaluation function writes:

1 function mass = objectiveBeam(x0)

2 Input = x0;

3 %% Input the vars.

4 t = Input (1); d = Input (2); material = Input (3); shape = Input (4);

5 %% optimization constants

6 P = 1e3; l = .3;

7 %% judge loop for materials

8 if material == 1 % steel

9 Em = 200e9;
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10 S_m = 300e6;

11 rho_m = 7600;

12 elseif material == 2 % alum

13 Em = 75e9;

14 S_m = 200e6;

15 rho_m = 2700;

16 elseif material == 3 % titanium

17 Em = 120e9;

18 S_m = 800e6;

19 rho_m = 4400;

20 end

21 %% judge loop for shape

22 if shape == 1 % square

23 y_s = d./2;

24 A_s = d.^2 - (d - 2.*t).^2;

25 I_s = (1/12) .*(d.^4 - (d - 2.*t).^4);

26 elseif shape == 2 % circle

27 y_s = d./2;

28 A_s = (pi./4) .*(d.^2 - (d - 2.*t).^2);

29 I_s = (pi./64) .*(d.^4 - (d - 2.*t).^4);

30 elseif shape == 3 % triangle

31 y_s = (1 - 1./(2.* sqrt (3))).*d;

32 A_s = (sqrt (3) ./4) .*(d.^2 - (d - 2.* sqrt (3).*t).^2);

33 I_s = (sqrt (3) ./96) .*(d.^4 - (d - 2.* sqrt (3).*t).^4);

34 else % I-beam

35 y_s = d./2;

36 A_s = 3.*d.*t - 2.*t.^2;

37 I_s = (t./12) .*((d - 2.*t).^3 + 2.*d.*t.^2 ...

38 + 6.*d.*(d - t).^2);

39 end

40

41 %% judge if constraints are violated

42

43 sigma_max = (P.*l.*y_s)./( I_s);

44 delta = (P.*l.^3) ./(3.* Em.*I_s);

45

46 rho_p = 1e50; % penalty function --> this value is very important !!

47

48 P = rho_p * max([0, sigma_max -0.9* S_m])^2 + rho_p * max([0, delta -0.003]) ^2;

49 % P = rho_p * abs(sigma_max -0.9* S_m) + rho_p * abs(delta -0.003) + rho_p * abs(2*t - d) + rho_p *

abs(d - l);

50 mass=rho_m*A_s*l + P;

51

52 % relation of mass to t & d

53 end

And we also do a slight change for the constraint function, by enforcing di↵erent perturbation
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for variables t and d:

1 function [xp]= perturbBeam(x0)

2 Input = x0;

3 l = .3;

4 t = Input (1); d = Input (2); material = Input (3); shape = Input (4);

5 %

6 num = randi ([1 4]);

7 %%

8 if num == 3

9 matrl = randi ([1 3]);

10 xp = [t d matrl shape];

11 end

12

13 if num == 4

14 shap = randi ([1 4]);

15 xp = [t d material shap];

16 end

17 %%

18 xp_t=x0(1);

19 xp_d=x0(2);

20 xlb =0;

21 xub =1;

22 %

23

24 if num == 1

25 xp = [t d material shape ];

26 if shape ==3

27 xub=d/(2* sqrt (3));

28 xlb =0.01;

29 else

30 xub=d/2;

31 xlb =0.01;

32 end

33 indx=round (1);

34 dx=(xub -xlb)*rand (1)+xlb;

35 xp(indx)=dx;

36 end

37 if num == 2

38 xp = [t d material shape ];

39 if shape ==3

40 xub=l;

41 xlb=t*(2* sqrt (3));

42 else

43 xub=l;

44 xlb=t*2;

45 end

46 indx=round (2);
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47 dx=(xub -xlb)*rand (1)+xlb;

48 xp(indx)=dx;

49 end

50 end

In this way as many tries the output won’t violate the constraints:

1 ...

2 Counter: 158 Temp: 591.3979 P(dE)= 0.99141

3 Counter: 158 Temp: 591.3979 Accepted inferior configuration (uphill)

4 Counter: 158 Temp: 591.3979 Need to reach equilibrium at this temperature

5 Counter: 158 Temp: 591.3979 Perturbing configuration

6

7 xp =

8

9 0.0238 0.1268 1.0000 2.0000

10

11 Counter: 159 Temp: 591.3979 P(dE)= 0.99387

12 Counter: 159 Temp: 591.3979 Accepted inferior configuration (uphill)

13 Counter: 159 Temp: 591.3979 System nearly frozen

14

15 tt =

16

17 230.8100

18

19 Counter: 159 Temp: 532.2581 System frozen , SA ended

20 Best configuration:

21

22 xbest =

23

24 0.0197 0.0815 2.0000 3.0000

25

26 Lowest System Energy: 2.2659

As stated, this is a patch or supplementary to my original solution in Q2, and I hope this can

provide a reference.

Q3. Heuristic Optimization (PSO or GA)

Problem B – Genetic Algorithm

Consider the problem

min f(x1, x2, x3) = |x1|0.8 + 5 sin(x3
1) + |x2|0.8 + 5 sin(x3

2) + |x3|0.8 + 5 sin(x3
3)

subject to � 5  xi  5, for i = 1, 2, 3
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(a) Use the Genetic Algorithm to solve this problem.

Solution: We apply the Optimization Toolbox in Matlab®:

We first define the objective function in Matlab, nominated as objectiveFcn:

1 function f = objectiveFcn(x,a)

2 a = 0.8;

3 f = abs(x(1)).^a + 5*sin(x(1) .^3) + abs(x(2)).^a + 5*sin(x(2) .^3) + abs(x(3)).^a + 5*sin(x(3)

.^3);

4 end

And running the genetic algorithm optimization by calling the Matlab built-in function ga, by

recalling the previously defined objective function objectiveFcn, first select the nonlinear class

for Objective, and define the lower and upper bounds lb = -5 & ub = 5:

1 clear; clc

2 a = 0.8;

3 % Pass fixed parameters to objfun

4 objfun5 = @(x)objectiveFcn(x,a);

5

6 % Set nondefault solver options

7 options = optimoptions(’ga’, ...

8 ’CrossoverFcn ’,{@crossoverheuristic ,1.6},’Display ’ ,...

9 ’iter’, ...

10 ’FunctionTolerance ’, 1e-6, ...

11 ’PopulationSize ’, 50, ...

12 ’CrossoverFraction ’, 0.7 ,...

13 ’MaxGenerations ’, 2000 ,...

14 ’ConstraintTolerance ’, 1e-6 ,...

15 ’MutationFcn ’,{@mutationadaptfeasible });

16 bo = 3;

17 % Solve

18 [solution ,objectiveValue] = ga(objfun5 ,bo ,[],[],[],[], repmat(-5,bo ,1) ,...

19 repmat(5,bo ,1) ,[],[], options);

20 % Clear variables

21 clearvars objfun5 options5

22 % Display the results

23 solution

24 objectiveValue

The results of the optimization is shown in Figure 3. The optimal point is obtained as x1 =

x2 = �1.1527 & x3 = 1.6745, as shown in sub figure D in Figure 3.

(b) Explore various “tuning” parameters (e.g., number of generations, population size, mutation rate)

and report your findings on their impact on the solution quality and computational time in a concise

format.

Solution: Based on the instructions and the functionality of the Matlab ga function, the
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Figure 3: Calculation results of optimization based on genetic algorithm.

Function Tolerance CPU time Solution Objective

10�3 1.3907e+04 (-1.1527 -1.1527 -1.1528) -11.6273
10�4 1.3968e+04 (-1.1529 -1.1527 1.6745) -11.2403
10�5 1.3990e+04 (-1.1527 1.6745 -1.1527) -11.2403
10�6 1.4013e+04 (-1.1527 -1.1527 1.6745) -11.2403
10�7 1.4029e+04 (-1.1527 -1.9868 3.4872) -9.4272
10�8 1.4097e+04 (-1.1527 1.6745 -1.1527) -11.2403
10�9 1.4111e+04 (-1.1527 -1.1527 -1.1527) -11.6273

Table 7: The CPU time, solution and objectives corresponding to function tolerance.

options for tuning the parameters include (1) Function Tolerance; (2) Population Size; (3) Crossover

Fraction; (4) Max Generations; and (5) Constraint Tolerance. According to multiple attempts, we

observe that usually the optimization stops at about 100 iterations, which is evidently smaller than

the original max ierations, 2000. And due to we don’t have a highly nonlinear constraint in this

problem, taking the constraint tolerance at a low value (10�6) and fix it is reasonable.

Now, by tuning the above four parameters, we provide the solutions, the objective values and

CPU time as shown in the following tables (Tables 7, 8, 9).

We here took similar strategies as in Q2: we first fix the rest parameters and only adjust one to

check how it influence the solutions and check all the adjustable parameters manually. For function

tolerance, we first fix population size = 50, crossover fraction = 0.7, max generations = 2000, and
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Population Size CPU time Solution Objective

50 1.4170e+04 (1.6745 1.6745 -1.1527) -10.8534
60 1.4193e+04 (-1.1527 -1.1527 -1.1527) -11.6273
70 1.4207e+04 (-1.9868 -1.1527 -1.1527) -11.0193
80 1.4225e+04 (-1.1527 -1.9868 1.6745) -10.6323
90 1.4249e+04 (-1.1527 -1.1527 -1.1527) -11.6273
100 1.4260e+04 (-1.1528 -1.1527 -1.1527) -11.6273

Table 8: The CPU time, solution and objectives corresponding to population size.

Crossover Fraction CPU time Solution Objective

0.5 1.4921e+04 (-1.1527 -1.1527 -1.1527) -11.6273
0.6 1.4935e+04 (-2.7330 -1.1527 1.6745) -10.1293
0.7 1.4946e+04 (-1.1527 1.6745 -1.1527) -11.2403
0.8 1.4958e+04 (-1.1527 -1.1527 -1.1527) -11.6273
0.9 1.4968e+04 (-1.1527 -1.1527 -1.1527) -11.6273
1 1.4978e+04 (-1.1527 -1.1527 1.6745) -11.2403

Table 9: The CPU time, solution and objectives corresponding to crossover fraction.

constraint tolerance = 1e-6, and change the function tolerance to generate Table 7. From Table 7

we can observe that for each change of function tolerance of 10�1 there is a change of approximately

0.05⇥104 for CPU time, and there are some evident solution change for x3 when function tolerance

is about 10�8.

We then fix the function tolerance to 10�9 and fix others to the same and change the population

size, we then generate Table 8.

Similar as before, we fix the population size to 100 and fix others to the same and change the

population size, we then generate Table 9.

(c) Based on your findings from (b), discuss which GA tuning parameters most a↵ect the solution

quality and computation time.

Solution: Based on our test data from Tables 7, 8, 9, we can conclude that the function tolerance

influence both the CPU time and solution quality most evidently (Table 7: evident solution change

from 10�8 to 10�10.)
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Appendix. Supplementary Code & Data

Main function of SA (SA.m):

1 Initial configuration:

2 function [xbest ,Ebest ,xhist ]=SA(x0,file_eval ,file_perturb);

3 % [xbest ,Ebest ,xhist]=SA(x0 ,file_eval ,file_perturb ,options);

4 %

5 % Single Objective Simulated Annealing (SA) Algorithm

6 %

7 % This function is a generic implementation of the single objective

8 % Simulated Annealing (SA) algorithm first proposed by Kirkpatrick ,

9 % Gelatt and Vecchi. The algorithm tries to improve upon an initial

10 % configuration , x0 , by evaluating perturbed configurations. When the

11 % system reaches the "frozen" state , the algorithm stops and the best

12 % configuration and search history are returned. The user can choose

13 % from one of two cooling schedules: linear or exponential.

14 %

15 % Input:

16 % x0 initial configuration of the system (a row vector)

17 % file_eval file name (character string) of configuration evaluator;

18 % assumes that E=’file_eval ’(x) is a legitimate function

19 % call; set up function such that (scalar) output E will be

20 % minimized.

21 % file_perturb file name (character string) of configuration perturbator;

22 % assumes that xp=’fname_perturb ’(x) is a legitimate function

23 % call. This function creates a "neighboring" configuration.

24 % options algorithm option flags. Uses defaults , [ ], if left blank

25 % (1) To - initial system temperature - automatically determined if

26 % left blank ([]). To should be set such that the expression

27 % exp(-E(x0)/To) >0.99 is true , i.e. the initial system is "melted"

28 % (2) Cooling Schedule: linear=1, exponential =[2]

29 % (3) dT Temp. increment , e.g. [dT =0.9] for exp. cooling Tk=dT^k*To ,

30 % abs. temperature increment for linear cooling (Tk+1=Tk -dT);

31 % (4) neq = equilibrium condition , e.g. number of rearrangements

32 % attempted to reach equilibrium at a given temperature , neq =[5]

33 % (5) frozen condition - sets up SA exit criterion

34 % nfrozen = non -integer , e.g. 0.1 SA interprets this numbers as Tmin ,

35 % the minimum temperature below which the system is frozen.

36 % nfrozen = integer ,e.g. 1,2.. SA interprets this as # of successive

37 % temperatures for which the number of desired acceptances defined

38 % under options (4) is not achieved , default: nfrozen =[3]

39 % (6) set to 1 to display diagnostic messages (=[1])

40 % (7) set to 1 to plot progress during annealing (=[0])

41 %

42 % Output:

43 % xbest Best configuration(s) found during execution - row vector(s)

44 % Ebest Energy of best configuration(s) (lowest energy state(s) found)
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45 % xhist structure containing the convergence history

46 % .iter Iteration number (number of times file_eval was called)

47 % .x current configuration at that iteration

48 % .E current system energy at that iteration

49 % .T current system temperature at that iteration

50 % .k temperature step index k

51 % .C specific heat at the k-th temperature

52 % .S entropy at the the k-th temperature

53 % .Tnow temperature at the k-th temperature step

54 %

55 % User Manual (article): SA.pdf

56 %

57 % Demos: SAdemo0 - four atom placement problem

58 % SAdemo1 - demo of SA on MATLAB peaks function

59 % SAdemo2 - demo of SA for Travelling Salesman Problem (TSP)

60 % SAdemo3 - demo of SA for structural topology optimization

61 % SAdemo4 - demo of SA for telescope array placement problem

62 %

63 % dWo ,(c) MIT 2004

64 %

65 % Ref: Kirkpatrick , S., Gelatt Jr., C.D. and Vecchi , M.P., "Optimization

66 % by Simulated Annealing", Science , Vol. 220, Number 4598, pp. 671-680, May

67 % 1983

68

69

70 %

71 dT=0.9;

72 neq =5;

73 nmax=neq*round(sqrt(max(size(x0)))); % nmax - maximum number of steps at one temperature , while

74 % trying to establish thermal equilibrium

75 %

76 nfrozen =3;

77 diagnostics =1;

78 eval([’Eo=’ file_eval ’(x0);’]);

79 To=abs(-Eo/log (0.99));

80

81 if nfrozen == round(nfrozen)

82 % nfrozen is integer - look for nfrozen successive temperatures without

83 % neq acceptances

84 Tmin =0;

85 else

86 Tmin=nfrozen; nfrozen =3;

87 end

88

89

90

91 % Step 1 - Show initial configuration

92 if diagnostics ==1
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93 disp(’Initial configuration: ’)

94 x0

95 end

96

97 % Step 2 - Evaluate initial configuration

98 eval([’Eo=’ file_eval ’(x0);’]);

99 counter =1;

100 xnow=x0; Enow=Eo; nnow =1;

101 xhist(nnow).iter=counter;

102

103 xhist(nnow).x=x0;

104 xhist(nnow).E=Enow;

105 xhist(nnow).T=To;

106 % still need to add .S current entropy at that iteration

107 xbest=xnow;

108 Ebest=Enow;

109 Tnow=To;

110 if diagnostics ==1

111 disp([’Energy of initial configuration Eo: ’ num2str(Eo)])

112 end

113

114 frozen =0; % exit flag for SA

115 naccept =1; % number of accepted configurations since last temperature change

116 Tlast =1; % counter index of last temperature change

117 k=1; % first temperature step

118 ET=[]; % vector of energies at constant system temperature

119

120 % start annealing

121 while (frozen <nfrozen)&(Tnow >Tmin)

122

123 %Step 3 - Perturb xnow to obtain a neighboring solution

124

125 if diagnostics

126 disp([’Counter: ’ num2str(counter) ’ Temp: ’ num2str(Tnow) ’ Perturbing configuration ’])

127 end

128

129 eval([’xp=’ file_perturb ’(xnow);’]);

130 xp

131 %Step 4 - Evaluate perturbed solution

132 eval([’Ep=’ file_eval ’(xp);’])

133 counter=counter +1;

134

135 %Step 5 - Metropolis Step

136

137 dE=Ep-Enow; % difference in system energy

138 PdE=exp(-dE/Tnow);

139 if diagnostics

140 disp([’Counter: ’ num2str(counter) ’ Temp: ’ num2str(Tnow) ’ P(dE)= ’ num2str(PdE)])
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141 end

142

143 %Step 6 - Acceptance of new solution

144 if dE <=0 % energy of perturbed solution is lower , automatically accept

145 nnow=nnow +1;

146 xnow=xp; Enow=Ep;

147 xhist(nnow).iter=counter;

148 xhist(nnow).x=xp;

149 xhist(nnow).E=Ep;

150 xhist(nnow).T=Tnow;

151 naccept=naccept +1;

152 if diagnostics

153 disp([’Counter: ’ num2str(counter) ’ Temp: ’ num2str(Tnow) ’ Automatically accept better

configuration (downhill)’])

154 end

155

156 else

157 % energy of perturbed configuration is higher , but might still accept it

158 randomnumber01=rand;

159 if PdE >randomnumber01

160 nnow=nnow +1;

161 xnow=xp; Enow=Ep;

162 xhist(nnow).iter=counter;

163 xhist(nnow).x=xp;

164 xhist(nnow).E=Ep;

165 xhist(nnow).T=Tnow;

166 if diagnostics

167 disp([’Counter: ’ num2str(counter) ’ Temp: ’ num2str(Tnow) ’ Accepted inferior

configuration (uphill)’])

168 end

169

170 else

171 % keep current configuration

172 xnow=xnow;

173 Enow=Enow;

174 if diagnostics

175 disp([’Counter: ’ num2str(counter) ’ Temp: ’ num2str(Tnow) ’ Kept the current

configuration ’])

176 end

177 end

178 end

179 ET=[ET; Enow];

180

181

182 if Enow <Ebest

183 % found a new ’best ’ configuration

184 Ebestlast=Ebest;

185 Ebest=Enow;
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186 xbest=xnow;

187 if diagnostics

188 disp([’Counter: ’ num2str(counter) ’ Temp: ’ num2str(Tnow) ’ This is a new best

configuration ’])

189 end

190

191 elseif Enow== Ebest

192 same =0;

193 for ib=1: size(xbest ,1)

194 if xbest(ib ,:)==xnow

195 if diagnostics

196 disp([’Counter: ’ num2str(counter) ’ Temp: ’ num2str(Tnow) ’ Found same best

configuration ’])

197 end

198 same =1;

199 end

200 end

201

202 if same ==0

203 Ebestlast=Ebest;

204 Ebest=Enow;

205 xbest=[xbest ; xnow];

206 if diagnostics

207 disp([’Counter: ’ num2str(counter) ’ Temp: ’ num2str(Tnow) ’ Found another best

configuration ’])

208 end

209 end

210 end

211

212 %Step 7 - Adjust system temperature

213 Told=Tnow;

214 if (naccept <neq)&(counter -Tlast)<nmax

215 if diagnostics

216 disp([’Counter: ’ num2str(counter) ’ Temp: ’ num2str(Tnow) ’ Need to reach equilibrium at

this temperature ’])

217 end

218 % continue at the same system temperature

219 elseif (naccept <neq)&(counter -Tlast) >=nmax

220 if diagnostics

221 disp([’Counter: ’ num2str(counter) ’ Temp: ’ num2str(Tnow) ’ System nearly frozen ’])

222 end

223

224 Eavg=mean(ET);

225 Evar=mean(ET.^2);

226 C=(Evar -Eavg ^2)/Tnow ^2; % specific heat

227 S=log(nmax*length(unique(ET))/length(ET));

228 xhist(k).k=k;

229 xhist(k).C=C;
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230 xhist(k).S=S;

231 xhist(k).Tnow=Tnow;

232

233

234 frozen=frozen +1;

235 Tlast=counter;

236 naccept =0;

237

238

239 % switch schedule

240 % case 1

241 % % linear cooling

242 % Tnow=Tnow -dT;

243 % if Tnow <0

244 % frozen=nfrozen; %system temperature cannot go negative , exit

245 % end

246 % case 2

247 % exponential cooling

248 Tnow=dT*Tnow;

249 % case 3

250 % Tindex=Tindex +1;

251 % if Tindex >size(Tuser ,1)

252 % frozen=nfrozen; % have run through entire user supplied cooling schedule

253 % else

254 % Tnow=Tuser(Tindex ,1);

255 % neq=Tuser(Tindex ,2);

256 % end

257 % otherwise

258 % disp(’Erroneous cooling schedule choice - option (2) - illegal ’)

259 % end

260

261

262 k=k+1;

263

264 ET=[];

265

266 elseif (naccept ==neq)

267 if diagnostics

268 disp([’Counter: ’ num2str(counter) ’ Temp: ’ num2str(Tnow) ’ System reached equilibrium ’])

269 end

270

271 Eavg=mean(ET);

272 Evar=mean(ET.^2);

273 C=(Evar -Eavg ^2)/Tnow ^2; % specific heat

274 S=log(nmax*length(unique(ET))/length(ET));

275 xhist(k).k=k;

276 xhist(k).C=C;

277 xhist(k).S=S;
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278 xhist(k).Tnow=Tnow;

279

280

281 Tlast=counter;

282 naccept =0;

283

284 % switch schedule

285 % case 1

286 % % linear cooling

287 % Tnow=Tnow -dT;

288 % if Tnow <0

289 % frozen=nfrozen; %system temperature cannot go negative , exit

290 % end

291 % case 2

292 % exponential cooling

293 Tnow=dT*Tnow;

294 % case 3

295 % % user supplied cooling

296 % Tindex=Tindex +1;

297 % if Tindex >size(Tuser ,1)

298 % frozen=nfrozen; %have run through entire user supplied cooling schedule

299 % else

300 % Tnow=Tuser(Tindex ,1);

301 % neq=Tuser(Tindex ,2);

302 % end

303 %

304 % otherwise

305 % disp(’Erroneous cooling schedule choice - option (2) - illegal ’)

306 % end

307

308

309 k=k+1;

310

311 ET=[];

312 % xbest ];

313

314 end

315

316 end %while (frozen <nfrozen)&(Tnow >tmin)

317

318

319 if diagnostics

320 disp([’Counter: ’ num2str(counter) ’ Temp: ’ num2str(Tnow) ’ System frozen , SA ended ’])

321 disp([’Best configuration: ’])

322 xbest

323 disp([’Lowest System Energy: ’ num2str(Ebest) ])

324 end
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Q1. Scaling

Consider the following optimization problem:

minimize x
2
1 � 0.001x2

2 + 1000x2
3

subject to x
2
1 + x

2
2 + x

2
3 = 1

(1)

(a) Find the optimal solution to the problem.

Solution: As the semester is approaching to an end, and as I’m learning a lot from this course by

coding with Matlab®, I decided to try to solve problem with python this time for the homework

to apply what we’ve learnt to a broader applications.

In this problem, we pick the ’SLSQP’ optimization method (Sequential Least Squares Program-

ming), which can handle nonlinear constraints pretty well with set tolerance [Ref.]. The corresponding

tolerance was given at a value of 10�6. A randomly guess initial point x0 = (0.1, 0.3, 0.5) was given

to initiate the optimization. We thence generate the following code for optimize the given problem:

Step 1. Define the objective function, constraints, and initial point:

[1]: import scipy.optimize

fun = lambda x: x[0] ** 2 - 0.001 * x[1] ** 2 + 1000 * x[2] ** 2

cons = ({’type’: ’eq’, ’fun’: lambda x: x[0] ** 2 + x[1] ** 2 + x[2] ** 2 - 1})

x0 = [0.1, 0.3, 0.5]

∗Email: hz253@cornell.edu

1
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Step 2. Optimize the problem by recall the minimize function:

[2]: res = scipy.optimize.minimize(objective_function, x0, method=’SLSQP’, tol=1e-6,

,!constraints=cons)

Step 3. Print out the solution:

[3]: print(res)

fun: -0.0010000000002877533

jac: array([ 3.47680325e-05, -2.00000317e-03, 1.08021792e-04])

message: 'Optimization terminated successfully'

nfev: 44

nit: 9

njev: 9

status: 0

success: True

x: array([-1.11711296e-07, 1.00000000e+00, -2.87906700e-09])

Therefore the optimized point is (�8.45463244 ⇥ 10�6
, 1, 3.42745663 ⇥ 10�7) - which can be ap-

proximately considered as the point (0, 1, 0).

(b) Find a non-singular transformation x = Ly such that the condition number of the Hessian matrix

of f is close to unity.

Solution: We first need to rescale the objective; assuming the new form of the objective agrees:

J(x) = x
2
1 � x̃

2
2 + x̃

2
3

where x1 = L1x̃1, x2 = L2x̃2, x3 = L3x̃3

(2)

Therefore we can solve:

L2 =
p
1000 = 31.6228 ⇡ 10, L3 =

p
0.001 = 0.0316 ⇡ 0.01

In this way we can deduce L1 = 10.

With the new x̃1 and x̃2, the optimization problem can be written in the new form:

minimize 1001x2
1 � 0.1x̃2

2 + 0.1x̃2
3

subject to 100x2
1 + 100x̃2

2 + 0.0001x̃2
3 = 1

(3)
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Now we can compute the new Hessian of the objective, written as

H̃ =

2

6664

2 0 0

0 �0.2 0

0 0 0.2

3

7775

which agrees with the condition O(H̃) = �0.0800 ⇡ �0.1, �! the problem is rescaled.

(c) Quantify the e↵ect of rescaling the problem, either on the number of iterations or function eval-

uations required to find the solution (convergence), or the quality of the optimal solution itself, or a

combination of the two.

Solution: Based on the rescaled problem in subquestion (b), we can re-optimize the problem with

the following python code:

[4]: import scipy.optimize

fun = lambda x: 100 * x[0] ** 2 - 0.1 * x[1] ** 2 + 0.1 * x[2] ** 2

cons = ({’type’: ’eq’, ’fun’: lambda x: 100 * x[0] ** 2 + 100 * x[1] ** 2 + 1e-4

,!* x[2] ** 2 - 1})

x0 = [0.1, 0.3, 0.5]

print(fun)

<function <lambda> at 0x7f8f08b444c0>

[5]: res = scipy.optimize.minimize(fun, x0, method=’SLSQP’, tol=1e-6, constraints=cons)

[6]: print(res)

fun: -0.0009999951013620627

jac: array([ 1.31615215e-03, -2.00000045e-02, 1.87065307e-05])

message: 'Optimization terminated successfully'

nfev: 31

nit: 7

njev: 7

status: 0

success: True

3



x: array([6.57331016e-06, 1.00000015e-01, 9.35251772e-05])

From the output we know that the optimized point is (x1, x̃2, x̃3) = (6.57331016 ⇥

10�6
, 1.00000015 ⇥ 10�1

, 9.35251772 ⇥ 10�5). We already know that x2 = x̃2L2, x3 = x̃3L3; the

scaled back optimal solution is (6.57331016 ⇥ 10�51
, 1.00000013, 9.35251772 ⇥ 10�7) - the x1 and x3

values truns out to be verry small, which can be considered as 0: to verify this point, we use fmincon

of Matlab of ’sqp’ to recompute the optimization problem to verify, and generate the following

code:

The main program for running the optimization:

1 % Set nondefault solver options

2 options2 = optimoptions('fmincon ','PlotFcn ',{'optimplotx ','optimplotfval '},'Display ','iter','

Algorithm ','sqp');

3

4 % Solve

5 [solution ,objectiveValue] = fmincon(@obj ,x0 ,[],[],[],[],[],[], @MDOcons ,...

6 options2);

7

8 % Clear variables

9 clearvars options2

The objective function:

1 function f = obj(x)

2 f = 100*x(1)^2 - 0.1*x(2)^2 + 0.1*x(3) ^2;

3 end

The constraints:

1 function [c,ceq] = MDOcons(x0)

2 x = x0;

3 c = [];

4 ceq = 100*x(1)^2 + 100*x(2)^2 + 1e-4*x(3)^2 - 1;

5 end

And generate the following output and figure:

1 Iter Func -count Fval Feasibility Step Length Norm of First -order

2 step optimality

3 0 4 1.016000e+00 9.000e+00 1.000e+00 0.000e+00 2.000e+01

4 1 23 3.449389e-02 9.770e+00 4.748e-03 9.017e-02 2.848e+00

5 2 27 1.276882e-02 2.222e+00 1.000e+00 1.793e-01 7.996e-02

6 3 31 7.254477e-03 3.834e-01 1.000e+00 1.274e-01 3.544e-01

7 4 35 6.652805e-04 2.658e-02 1.000e+00 1.641e-01 2.220e-01

8 5 39 -9.984504e-04 2.785e-04 1.000e+00 1.216e-01 1.423e-02

9 6 43 -9.999895e-04 3.941e-07 1.000e+00 3.726e-03 2.007e-03

10 7 47 -9.999993e-04 5.815e-09 1.000e+00 5.035e-05 4.821e-04

11 8 51 -1.000000e-03 5.854e-10 1.000e+00 3.955e-05 3.599e-06

4



12 9 55 -1.000000e-03 2.220e-16 1.000e+00 2.927e-11 3.599e-06

13

14 Local minimum possible. Constraints satisfied.

15

16 fmincon stopped because the size of the current step is less than

17 the value of the step size tolerance and constraints are

18 satisfied to within the value of the constraint tolerance.

19

20 <stopping criteria details >

We can deduce that the optimization point for the rescaled optimization is (0, 0.1, 0); Therefore it

is safe to say that the optimization point is (0, 1, 0), agrees with our previous results before rescale

the optimization problem - and verify our hypothesis from the python code.

Based on the output, we can deduce that the iterations of the optimization reduces from 9 to 7,

which means that rescaling problem makes it easier to solve (converge).

Q2. Isoperformance

The Jacobian matrix at a point x0 is given as:
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rJ(x0) =

2

666666666664

@J1
@x1

@J2
@x1

@J3
@x1

@J4
@x1

@J1
@x2

@J2
@x2

...
@J4
@x2

...

...

@J1
@x6

... ...
@J4
@x6

3

777777777775

x0

=

2

666666666664

1 4 5 6

0.2 0.7 0.9 0.1

4 6 1 0

7 8 8 7

2.4 1.7 2.9 �1.1

12 8 7 1

3

777777777775

(a) What are the performance invariant directions that we can step to from x0?

Solution: First, we apply a singular value decomposition (SVD) to the Jacobian matrix (based

on the lecture slides):

�J
T = U⌃V

T

We use Matlab to conduct such a process:

1 >> A = [1 4 5 6; .2 .7 .9 .1; 4 6 1 0; 7 8 8 7; 2.4 1.7 2.9 -1.1; 12 8 7 1];

2 >> [U,S,V] = svd(A')

3

4 U =

5

6 -0.5922 -0.5492 0.2306 0.5428

7 -0.5645 -0.0401 -0.7525 -0.3367

8 -0.5010 0.2446 0.6132 -0.5596

9 -0.2823 0.7981 -0.0671 0.5281

10

11

12 S =

13

14 23.5418 0 0 0 0 0

15 0 8.1328 0 0 0 0

16 0 0 3.3332 0 0 0

17 0 0 0 1.7753 0 0

18

19

20 V =

21

22 -0.2994 0.6519 -0.0348 -0.2444 -0.6031 -0.2463

23 -0.0422 0.0199 0.0194 -0.3256 -0.2033 0.9220

24 -0.2658 -0.2696 -0.8939 -0.2304 0.0125 -0.0662

25 -0.6221 0.4154 0.0090 0.1830 0.6167 0.1630

26 -0.1497 -0.1912 0.3379 -0.8301 0.2828 -0.2406

27 -0.6546 -0.5411 0.2918 0.2421 -0.3668 -0.0197

6



Therefore we know matrix V is written in the form:

V =

2

666666666664

�0.2994 0.6519 �0.0348 �0.2444 �0.6031 �0.2463

�0.0422 0.0199 0.0194 �0.3256 �0.2033 0.9220

�0.2658 �0.2696 �0.8939 �0.2304 0.0125 �0.0662

�0.6221 0.4154 0.0090 0.1830 0.6167 0.1630

�0.1497 �0.1912 0.3379 �0.8301 0.2828 �0.2406

�0.6546 �0.5411 0.2918 0.2421 �0.3668 �0.0197

3

777777777775

where the red part indicate the null space.

Therefore we can compute the performance invariant direction:

�x = ↵ · (�1vz+1 + ...+ �n�zvn)

= ↵ ·

0

BBBBBBBBBBB@

�1

2

666666666664

�0.6031

�0.2033

0.0125

0.6167

0.2828

�0.3668

3

777777777775

+ �2

2

666666666664

�0.2463

0.9220

�0.0662

0.1630

�0.2406

�0.0197

3

777777777775

1

CCCCCCCCCCCA

(4)

(b) Show an example of a step direction (vector), �x, such that J(x0+�x)�J(x0) ⇡ 10�4
. Solution:

Assuming the Hessian at the point x0 for every objective function Ji is the identity matrix. We also

assume the Taylor approximation of Ji writes:

Ji(x0 +�x) = Ji(x0) +�J
T
i (x0)�x+

1

2
�x

T
H(x0)�x+ ...

which further reduces to

Ji(x0 +�x) = Ji(x0) +�J
T
i (x0)�x+

1

2
�x

T�x

Based on the instructions, we can establish:

�J
T
i (x0)�x+

1

2
�x

T�x ⇡ 10�4 (5)

By definition, we know that �J
T
i x = 0; therefore we need to solve

1

2
�x

T�x ⇡ 10�4 (6)

7
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To solve this equation, substitute Equation (4) back into Equation (6); we generate the following

Matlab® code:

1 A = [1 4 5 6; .2 .7 .9 .1; 4 6 1 0; 7 8 8 7; 2.4 1.7 2.9 -1.1; 12 8 7 1];

2 [U,S,V] = svd(A);

3 vec1 = U(:,5);vec2 = U(:,6);

4 syms Alpha B1 B2; deltaXdirections = vpa(Alpha *(B1*vec1 + B2*vec2) ,4);

5 deltaX = @(consts) consts (1)*( consts (2)*vec1 + consts (3)*vec2);

6 eqn = @(consts) A'* deltaX(consts) + 1/2* deltaX(consts) '*H*deltaX(consts) - 1e-4;

7 H = eye (6);

8 guess = [1;1;1];

9 [consts , fval , exitflag] = fsolve(eqn ,guess);

We therefore generate the output variable consts of the function:

1 consts =

2

3 0.0153

4 0.6551

5 0.6551

We therefore know the constants: ↵ = 0.0481, �1 = 0.6569, �2 = 0.6569, as the example of the

step direction �x:

�x =

2

666666666664

�0.0085

0.0072

�0.0005

0.0078

0.0004

�0.0039

3

777777777775

(7)

Verify it we can compute
1

2
�x

T�x = 1.0046⇥ 10�4 (8)
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Q1. Project selection

Pick a multidisciplinary system to analyze. Form a team of students who are interested in the

same system. For the multidisciplinary design problem that your team has chosen, write a short (⇡ 2

pages) project proposal. You should address the following:

Formal problem statement

On the existing trend of global warming and the catastrophes caused by the increas-

ing temperature, there is no doubt that shifting and revolutionizing our energy form

is becoming one of the most important goals for scientists, engineers, and the whole

human race [IPCC Report]. Thus, with the e↵ort and collaborations between govern-

ments, corporations, institutions, we are making great progress in advancing wind power

[U.S. Energy Information (a)], electrochemical energies [Region, and Segment Forecasts],

nuclear powers [World Nuclear Energy Assoc.], and many related clean energies for

substitutes of traditional fossil fuels. However, a new form of clean energy, thermo-

magnetic power, was often neglected by the general public. In fact, adopting magnetic
∗a
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Multidisciplinary Design Optimization Assignment #1: Part (b)

power as a new form of green energy is not a novel thing, and emerging and growing

drastically in recent years, since it can also be employed as part of many renewable

energies and functional equipment [MMTA, 2016]. For example, magnetic materials

play a pivotal role in the e�cient performance of devices in a wide range of applica-

tions such as electric power generation, transportation, air-conditioning, and telecom-

munications [Matizamhuka, 2018]. In general, the drive towards improving electricity

transmission e�ciency and the replacement of oil-based fuels by electric motors in

transportation technologies has motivated researchers to focus on magnetic material

technologies [Gutfleisch et al., 2011]. Physics tells us that a change in a magnetic field

generates electricity that can support our daily energy needs as a form of clean energy

[U.S. Energy Information (b)]. In addition, a change of temperature field can cause

the magnetic variation for specific materials under set conditions in solid-state physics

[Kittel, 1986]. Hence, it is straightforward that a temperature change can generate mag-

netic change thus generate electric energy that meets our needs, which we may term as

thermo-magnetic energy. To employ such kind of energy, a particular machine, named

thermo-magnetic generator (TMG) is designed. Currently, the research and real-world

applications are not widely touched by both academia and industry, compared with

other forms of clean energy. Notwithstanding, the potential of TMG is huge since its

magnetic are ubiquitous and the world demands clean energy strong.

The genius idea of the thermo-magnetic generator can be traced back to Nicola Tesla

[Tesla, 1889]: Originally named Pyromagneto-Electric Generator, whose idea

employs two well-known laws: First, that electricity or electrical energy is developed in

any conducting-body by subjecting such body to a varying magnetic influence. Second,

the magnetic properties of iron or other magnetic substance may partially or entirely be

destroyed or caused to disappear by raising it to a certain temperature, but it restored

and caused to reappear by again lowering its temperature to a certain degree. The

Tesla and Edison [Edison, 1892] patents originated more than 100 years ago formulated

our basics to design such a machine.

In our design works, the TMG model was mainly adopted from Waske et al.’s work

[2019], whose model was very similar to Tesla’s original design yet more practical for to-

2



Multidisciplinary Design Optimization Assignment #1: Part (b)

S NS N

Cooling down

c d

Figure 1: The schematic illustration of thermo-magnetic generator. Note that subfigures a and b are
reproduced from Waske et al. [2019]. Subfigures c to d represents how the cooling down of the active
magnetic materials generates electric power.

day’s industrial applications, as illustrated in Figure 1 a and b. Our model is illustrated

in Figure 1 c and d: a hollow squared-shape generator connects two pieces ferromag-

netic materials - so-called yoke - without permanent magnetization on the two sides,

rendered as di↵erent colors. The green material represents the permanent magnetic

material, generating the magnetic field. The blue and red parts represent the active

material when ”hot” and ”cold”, respectively, where we study whose behavior through

changing the temperature thus causing its magnetic properties changing, according to

Tesla [Tesla, 1889]. Heating up thus stops connection of magnetic field, while the mag-

netic field is trapped in the permanent materials, as in Figure 1 a. Cooling down causes

”activation” of active materials, thus making the magnetic field go through the whole

generator, as in Figure 1 b. The variation process generates electricity.

In our project, we extend the system and also consider the mechanism by which the

active material is heated up and cooled down. We propose a simple design scheme1

where a flow channel is connected on top of the active material and is continuously

supplying a flow of fluid through it. This fluid serves to enhance the heat-up and cool-

down processes. These two processes, in conjunction, represent a thermal cycle, and

we assume that the power output2 of the device should simply scale with how long
1
which is definitely not the optimal one

2
energy produced per time

3



Multidisciplinary Design Optimization Assignment #1: Part (b)

this takes.3 Note that the work of the pump as it pushes the fluid through has to be

considered in the overall power output and e�ciency of the system too. The work of

the pump can be computed from the specified pressure di↵erence and the fluid flow. We

will divide this by an e�ciency factor of the pump and subtract that from the power

output, hence obtaining an e↵ective power output. This of course, goes back into the

e�ciency of the system too.

As the active material is cooled down and heated up, the so-called magnetic perme-

ability changes. This parameter defines the ability of a material to be magnetized in

response to an external magnetic field. Through a complicated mechanism, this can

cause the active material to either be ”guiding” the magnetic field of the permanent

magnet through it or not. As the magnetic field in the active material thus changes,

a current can be induced in a coil wrapped around it. This current will, according to

Faraday’s law of electromagnetic induction, be proportional to the total magnetic flux

going through the material, and we can thus try to optimize that.

We already have a lot of physical simplifications in mind. Not all of them are

implemented in Q2. and Q3. of this assignment, but probably will be later. At this

point, we are in principle still open to keeping some of them

Here, a simplified heating/cooling process will be considered, where we separately

simulate the cooling/heating and the magnetic field/magnetization field. From the

heating/cooling process, one can extract how long that takes; from the magnetic fields,

we extract the di↵erence between the total flux at maximum and minimum temper-

ature of the active material. This temperature will be determined by looking at the

so-called Curie temperature of the active material. Thus we define the duration of a

heating/cooling cycle as the time it takes to get su�ciently above/below the Curie

temperature in order for the permeability of the material to change a given amount4.

The relation between the two can be found experimentally.Additionally, the tempera-

ture distribution will not be homogeneous, that is, the time it takes to heat up and

cool down every infinitesimal point of the active material will not be the same. In this

project we decide that every single point should be above or below a certain tempera-
3
We might, later on, decide that these two processes are roughly equal and only look at one of them.

4
yet to be decided upon
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Multidisciplinary Design Optimization Assignment #1: Part (b)

ture in order for the material to be considered hot or cold 5. The permeabilities of the

active material at the hottest and coldest temperature are plugged into the magnetic

module which will spit out the total magnetic flux at these extremes. The di↵erence

will be taken as proportional to total power output. We thus have to model outputs

that will be proportional to the total power output, and we will make their product

an objective of the optimization. In order to find the constant of proportionality, one

would have to run an actual experiment, but for optimization in itself, it turns out not

to be necessary. The temperatures around the Curie temperature to heat up and cool

down around could definitely be made an object of optimization too, but we refrain

from doing that since it would include a lot of physics that would take time away from

the optimization itself.6 A schematic diagram for our TMG systems are shown as in

Figure 2. Note that essential definitions are made in this figure.

Here, we are curious how we can design the best TMG in this model considering as

many modules involved with multidisciplinary optimization.

It is obvious that the TMG system involves complex disciplines, requires certain

standards to optimize for a engineering solution, which can be tackled multidisciplinary

optimization (MDO). In MDO, a problem involves multiple disciplines targeting specific

objectives can be written in the following forms [Agte et al., 2009]:

min f(x,p)

x = [x1, ..., xn]
T , p = [p1, ..., pm]

T

xi,LB  xi  xi,UB, i = 1, 2, ..., n

s.t. g(x,p) < 0, h(x,p) = 0

where f is the objective function that we aims to maximize or minimize. x is a n-

dimensional vector of design variables with lower and upper bounds, p is a vector of

fixed parameters that influence the behavior of the system but cannot be freely chosen

(material properties, operating conditions, ...), and g and h are inequality and equality

constraints, respectively. These variables for our TMG will be presented in the following
5
This procedure is likely not optimal, but we can not optimize everything

6
As of now, we are still listing choice of the active material as an input variable, but we are inclined to scratch that

too and settle on Gadolinium, which is the conventional choice for a TMG.
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Multidisciplinary Design Optimization Assignment #1: Part (b)

���
h�

Yoke

����

h��

h��

����

h��  
� = 0�

 
� =

Thot

Permanent magnets

Active material

+ 2 ����� ���

Flow channel

Figure 2: Our proposed design scheme. Notice in particular the flow channel in blue through which
a fluid is pushed by a pump. This picture is to also serve as a reference to some of the vari-
ables/parameters mentioned later. In this picture, the green block is the active material; the dark
blue is the permanent magnet; the grey ones are the yoke. The red bar on top signifies a boundary
condition on the temperature field. During heating, it is ”turned on”, and is given by Thot . During
cooling it is ”turned o↵” and is given by Tcold. The latter temperature also defines the boundary
condition at all other outer boundaries of the configuration. Not that p = 0 is set as the reference
pressure. We might as well have chosen p = 1atm, but in our simulation it makes no di↵erence.
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Multidisciplinary Design Optimization Assignment #1: Part (b)

sections.

Technical estimation

For parameters, design variables and objective functions, we refer to table 1. Note

that the geometric variables refer to all those shown in figure 2. We include also

the dependent variables used as intermediate outputs of the model, which constitute

inputs to other modules of it. If we were to explain everything, we would have to

write twice as many pages, and have therefore described certain physical processes and

variables/parameters a bit vaguely. We hope to make some of this more clear in the

following assignments

Inequality constraints

(1) Total volume taken up by the device must fall below a certain threshold (it has

to fit in a car. Maybe this can eventually be relaxed, so that the device only applies

for large cars, or maybe for non-automobile applications, such as energy recouping at

power plants) (hyk + hfc) · (2 · wyk + wgap )  Vmax

(2) We mention that the total weight of the device should perhaps not exceed a

certain threshold either - one could imagine that the car would then get too heavy. This

is closely coupled to the total volume however, since the densities of the raw material

probably do not vary too much. Furthermore, in modern cars, the total volume will

probably become a limiting factor long before total weight. In addition to the inequality

constraint on volume, singular dimensions of the device should not exceed certain limits.

For instance, even if the volume remains the same, could you imagine a device that is

10m long fit into a regular car? Probably not. Hence come the following inequality

constraints,

(3) (hyk + hfc)  Lmax

(4) (2 · wyk + wgap)  Lmax

We also say that we can not have material that overlaps. This creates the following

constraint,

7
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(5) hyk � hac+hpm This says that the total height of the yoke has to be large enough

to fit the combined heights of the active material and the permanent magnet. If this

were not true, either the latter two would have to overlap, or we would need to change

the fundamental design scheme.

Equality constraints

As of yet, we have not set any equality constraints. We do however ”prophe-

size”, that at some later stage we decide to turn the equality constaint, (hyk + hfc) ·

(2 · wyk + wgap )  Vmax into an equality constraint, (hyk + hfc) · (2 · wyk + wgap ) =

Vmax, the reason being that more ”room to work with” will probably be better. This

assumption might turn out to be wrong though7.

Bounds

We are formulating this problem in such a way that we do not have a lot of bounds.

We have some constraints which could sort of be considered as bounds though, simply

because they are very simple. These are the geometric constraints that the total ”width”

and ”height” of the system can not exceed certain thresholds. If the width or height

of all components except one becomes very small though, then we e↵ectively have an

upper bound on the remaining width or or heights.

We also have the bounds on every single continuous design variable - whether that

be pump pressure or the width of the active material - that it can not be negative,

which does not make physical sense.

For the discrete variables, choice of active material and choice of intermediate fluid,

we have bounds in the sense that we only have a given selection to take from 8. We

have not yet settled on which fluids and solids to try out, but are very much aware that

a long array of properties a�liated with the given substance will be relevant 9

7
Perhaps because more pump would be required, for instance

8
One might even say, ”there are only that many elements in the periodic system”

9
For the intermediate fluid for example, both the magnetic permeability and the mechanical properties will be

important. More on that later.

8
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Symbol Nomenclature Unit Type
Geo Geometric parameters [m] Design var.
�P Forced Pressure Di↵erence [Pa] Design var.
MF Choice of Intermediate Fluid ⇥ Design var.
MA Choice of Active Material ⇥ Design var.
PO Power Output W] Objective
⌘ E�ciency [1] Objective
C Cost [$] Objective
V System Volume [m3] Constraint
C Various geometric figures [m] Constraint
C Materials Cost [$] Parameter
⌘P Pump E�ciency [1] Parameter
µ Active Material Permeability [H/s] Parameter

Tcold Temp. of the environment (300 K) [K] Parameter
Thot Temp. Maintained by Heat Source [K] Parameter
vfluid Velocity of Fluid [m/s] Dependent var.
Bfield The Magnetic Field [T ] Dependent var.
Bind Mag. Field Induced by Coil Current [T ] Dependent var.
Mfield Magnetization field [A/m] Dependent var.
Toutlet Temp. at Flow Channel Outlet [K] Dependent var.
Ppump Pump Power Consumption [W ] Dependent var.
Pelec System Electrical Power Output [W ] Dependent var.

Table 1: The design table for the thermal-magnetic generator applied to MDO. Note that di↵erent
types of variables are marked with di↵erent colors. Variables are abbreviated as var.; Temperatures
are abbreviated as temp. to save spaces.

Goal

Designing a thermo-magnetic generator used in automobiles. For a given volume10,

we want to minimize the total cost of the material used11, maximize the total e↵ective12

power output13, and maximize the e�ciency14. It is emphasized that a competition

between the latter two runs very deep and that they could never both reach their

respective optima jointly.
10
this volume being an estimate of what could fit in a car

11
It turns out that the material used in this kind of system is very expensive and the main factor limiting the commercial

potential
12
as it was defined previously

13
to be understood as the amount of power that is extracted from the system per time

14
We will define to be the power output divided by the rate of energy loss as heat is ejected from a control volume

around the whole system

9
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Current status and outlook

We have clearly defined the problem and the design and variables and parameters.

We are still debating how complicated a physical model we want to create. We have

defined the system boundary and already realized that we can only hope to optimize

the e�ciency and power output times some constant, and will not produce the actual

numbers, which would have to be calculated experimentally.

We have also come very far in terms of simulation of the magnetic field and the

magnetization of the di↵erent materials. A numerical model has been created, which

can calculate the total flux through the coil at a given magnetic permeability of the

active material. Much thought has also been given to the subject of fluid dynamics,

although the convection of heat is still a matter to be researched. Another major

di�culty will probably be the extraction of di↵erent simulation results from di↵erent

COMSOL15 models so that they can be analyzed in conjunction. Especially when it

comes to evaluating that the temperature at no place in the model exceeds or falls

below a certain threshold, there might be trouble ahead.

By the end of the semester, we hope to have spent most of our time on the actual

optimization, and not the physics. We hope that we will have created a model that

is closely enough related to reality so as to be a meaningful subject of optimization.

Conducting a successful optimization of whatever design/function space we end up

with, is however our main aim.

15
or maybe some other simulation tool

10
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Figure 3: The N2 diagram for the TMG system.

Q2. Coupling and N2 Diagram

For the problem that you have chosen, identify the modules (see guidelines from Lecture 3), and

identify the inputs and outputs for each module. For simplicity, limit the number of modules to about

seven, plus or minus two (7+/-2) at this point.

For the original and rearranged N2 diagram please refer to Figure 3 and Figure 4.

As is clearly indicated by the two diagrams, huge progress was made as we went from

the initial random order to the rearranged diagram.

Q3. Block diagram

Sketch a block diagram that shows how the modules from your previous answer to (part b, Q2)

work together and how you would wrap a trade space exploration tool or optimizer around your

simulation model. You don’t actually have to implement this (yet). That will happen in assignment

A2.

11
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Figure 4: Rearranged N2 diagram for the TMG system. You will notice the green box drawn around
the ”magnetic part”, that will be done in one simulation, and the blue box around the ”convective
heat transfer part, that will be done in another.

For the block diagram please refer to Figure 5. Here, parameters are in yellow, design

variables in red, objective functions in blue, and computational modules in green. Note

that the Number of turns is very much in parenthesis. In this block diagram we have

included nearly all the of the relevant physical processes. We show this and emphasize

that cuts will be made and the whole analysis simplified. As this is done, Number

of turns will overwhelmingly likely become irrelevant. In purple we have constraints,

which are all geometric and included in system volume, although some of them are in

fact one-dimensional and not two-dimensional.

As for the trade exploration, we have not settled on any method yet, but we think

it might be useful try out certain fixed combinations of design variables in the ”blue”

and ”green” modules16, only after having optimized design variables of these modules

internally.

16
as indicated on the N2

diagram
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Figure 5: The block diagram for the TMG system.
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1 Model Implementation

1.1 Module decomposition and analysis

The problem formulation is simplified as it was last described considerably. The fluid

dynamics module is eliminated since it does not strongly variate the energy generation of

TMG, and the heat transfer is facilitated purely by conduction, as the active material is in

direct contact with an infinite heat source with a fixed temperature (the engine) (as shown

in figure 4). Inspired by a bit of sporadic research, we decide that our particular engine is

running at 400K. It is running in an environment of 293.15K.

We have created 2 numerical models which have to be run separately and then analyzed

in conjunction in order to spit out the expression for predicted power output, and e�ciency.

We have also created a computer program which returns the total cost of the whole thermo-

magnetic system, given a design vector.

The first numerical model we created was the magnetic one. It is implemented in COMSOL

Multiphysics and will be able to spit out the total magnetic flux passing though our coil for
∗bEmail: mpb99@cornell.edu
†aEmail: wth42@cornell.edu
‡aEmail: hz253@cornell.edu
§aEmail: jc2732@cornell.edu
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Figure 1: The magnetic distribution for changed geometry for hot active material (Gd).

any set of geometric parameters, or materials. We programmed an adaptive geometry, so

that any input design vector can immediately translate into a fully functional model. This

has been tested and has turned out to work. Let us demonstrate this for the same design

vector as our initial guess in Q2. In figure 1 and figure 2, we show a graphical representation

of the output. The red arrows represent the direction of the magnetic field, and the blue

density plot shows the magnetic flux density. In figure 1 the active material is above the Curie

temperature, and in figure 2 it is below the Curie temperature. The magnetic distinction

between the two are realized by changing the magnetic permeability from 1 to 20, which

represents a transition from non-magnetic to ferromagnetic which turns out to be as good

as total, and certainly good enough for the purposes of this project. It very clear how the

active material changes from being non-guiding to guiding, when the temperatures drops.

These results are exactly what we expected. Since the field is still emerging, there is not

a whole lot of data that can be used for validation. I happen to have worked with the same

physics before though, and have validated it by means of mesh convergence testing, at least.

This, in conjunction with the fact that the same qualitative behaviour as we expected is

produced, leads us to consider the model validated enough for further studying.

The second numerical model computes the heat distribution as a function of time. We

here look at the time it takes to heat up the active material and take that as an expression

2
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Figure 2: The magnetic distribution for changed geometry for cold active material (Gd).

for the total time of a thermal cycle1, since it is basically the same process as the cooling,

only in reverse. We are thus implicitly assuming that there is a delay between the switching

of the heating and cooling processes, which is su�ciently long to ensure that a more or less

uniform temperature distribution has been created at the onset of the cooling process. This

may or may not be a good approximation, but we have had to restrict ourselves, and of

course, the problem is just being redefined to one where cycling of cold and hot matter in

contact with the device has not been optimized from the start itself. In conclusion, we are

assuming that the total heating/cooling time scales linearly with the time it takes to heat

up the active material from a uniform temperature distribution equal to that of the ambient

surroundings. For an optimized cycling mechanism, this would not be the case, but would

likely be close to it. In another project, the procedure for cooling/heating initialization might

be very interesting to optimize too. We have programmed a stop condition which evaluates

the geometric domain of the active material and finds the minimum temperature. When this

minimum temperature is above 310K, the whole active material is well above a complete

transition to being non-ferromagnetic, and the stop criterion is activated and gives us the

time it took to reach that point. As emphasized in the previous report, we have not set our

hearts at optimizing the temperature to which one would want to heat up, simply because

of the increased physical complexity which comes about from having to couple the exact
1both heating and cooling
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Figure 3: The temperature distribution for the changed shape, with an initial heat flux on the active material.

temperature distribution with a ”magnetic permeability field”, which we would then have to

introduce in the geometric domain of the active material, and define based on experimental

data on the temperature-dependence hereof2.

Figure 3 shows the distribution of temperature at the time of activation of the stop

condition. Validity of this model stands with the validity of the heat-di↵usion equation. As

was the case with the magnetic simulation, the physics itself3 is well tested, and the results

are backed up by intuition. This is just a heating process, and that it should take 243.8s to

heat up a material with the indicated dimensions from 293.15K to a temperature distribution

such as the one seen, is very reasonable considering that the material is in fact, metallic, and

should thus have a very high conductivity. On that note, let it also be said that all the

fundamental physical parameters4 have been found in COMSOL’s own library.

The power output of the system has been determined to be proportional to the total

magnetic flux going though the active material raised to the power of two. Actually, let us

just make the reasoning for this a little bit more clear. We can write the power output P :
2which is rare by the way
3the governing PDE’s
4such as the coe�cient of heat transfer

4



Multidisciplinary Design Optimization Assignment #2: Part (b)

P = IV (1)

Assuming the coil around the active material to be completely ohmic,

V = IR ! I =
V

R
(2)

Hence, substituting Eq. 2 in the Eq. 1 we have

P =
V 2

R
(3)

V is induced by the electromotive force of the changing magnetic field, and hence, Faraday’s

law gives us,

V = " = �N
��

�t
(4)

The induced current will however in turn, produce a magnetic field in the opposite direc-

tion5. This is proportional to I, which in turn is proportional to the change of magnetic flux.

We combine this e↵ect with that of the electrical resistance, R, and the number of turns, N ,

and throw it all into a constant, K. We do not calculate K explicitly, but simply note that

the power is proportional to ��2 · 1
�t . For optimization, we do not actually care what this

value is. Interestingly, we can optimize our system without ever knowing exactly what the

objective function is! We simply express it in ”units” of K.

P = K ·��2 ·�t�1 (5)

The e�ciency is taken as, Eout
Qin

. We just need to look at a single cycle. The total heat

put into the system (and ejected again), will be taken as Qin =
R
�V CV · (T � 293.15K)dV .

We simply take the added temperature and multiply with the energy associated with that.

This is done for every infinitesimal point in the structure and it is all added together. CV

is kept within the integral, as the di↵erent components of the structure have di↵erent heat

capacities.
5Lenz’s law
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⌘ =
Eout

Qin
=

1

Qin

��2

�t
·�t (6)

⌘ =
��2

R
�V CV · (T � 293.15K)dV

(7)

In this derivation, we have stuck with �t and �� for the total change in t and � over half a

cycle. Eout was thus found simply by multiplying P by t. This approach should generalize to

incremental changes in t and �. Either way, it is clear that the e�ciency too can be found

to be proportional to a (somewhat) simple expression. This time, we simply get,

⌘ = G · ��2

R
�V CV · (T � 293.15K)dV

(8)

So for computing the e�ciency, we do not need to worry about the time involved. We

simply look at the total di↵erence in magnetic flux of half a cycle and the temperature

di↵erence of half a cycle. We do (in principle) need to multiply the whole thing by 2 since

the heating of half a cycle corresponds to the heat spent on a full cycle. During that same

time the total magnetic flux will have changed two times. Anyway, this is of course just

collected in the constant K anyway. The expressions for P and ⌘ given in equation 5 and 8

are the ones that we optimize in this project. Henceforth, the factors K and G will implicitly

be multiplied on.

1.2 Cost module

The team gathered data on the cost of key materials used in our design and built a

MATLAB script ”costModule.m” to evaluate the objective Cost for an individual or array

of given design vectors. The cost data is summarized in Table 1 and ”costModule.m” is

included in Appendix 1.2. Cost is computed by multiplying the area of each component by

the cost of its material. Because the team is designing around a 2D model, we must note

the true meaning of the units in our objective Cost variable. The pricing data gives cost

in terms of cubic meters, but the combination of our geometric variables yields an area in

square meters. Therefore, in computing $/m2 from a rate given in $/m3, the team recognizes

that the objective Cost variable will have units of $/m ”into the page.” This is consistent

with our methods in other sections of our analysis.

6
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Material Cost

Iron [Ref.] 1.4804e3 $/m3

Neodymium [Ref.] 1.628e5 $/m3

Gadolinium [Ref.] 1.71553e5 $/m3

Table 1: The price of the materials applied in the simulations.

Feasibility

In preparation for creating a Design of Experiments as well as more rigorous simulation and

optimization later on, the team created a script ”geometricConstraints.m” in MATLAB

to evaluate the feasibility of any design vector based on geometric constraints. Currently, all

of the team’s design variables are geometric. The team defined a set of equations which must

all be true for a design vector to be physically valid. Equations 9-12 define the relationships

required between geometric design variables shown in Figure 4 for a given input to be valid.

The team established geometric constraints at this time. The maximum volume (area) of

our design is 0.125 m2. The maximum length of the design is 0.5 m. These constraints are

mostly arbitrary at this time. While they do yield a ”reasonably” sized design, the team may

adjust them later on as details of the design and optimization process begin to accumulate.

hyk(2wyk + wgap) > Vmax (9)

hyk > Lmax (10)

2wyk + wgap > Lmax (11)

hA + hpm > hyk (12)

The code to check the geometric feasibility of a design vector is included in Appendix

1.2. The code is written as a function so that it may be used by other scripts to assist

with our Design of Experiments and optimization algorithm later on. Using the function,

we verified an initial design vector shown in Table 2 for use with our model implementation.

The material used here is iron for the yoke and neodymium for the permanent magnet. The

active material is Gadolinium. For now, these material choices are more or less considered

parameters, but we could potentially change them to variables later on.
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Figure 4: The schematic view for our setup of the thermal-magnetic generator (TMG) as illustrated in the

last HW.

Variable Abbreviation Level

Yoke Width wyk 0.05 m

Yoke Height hyk 0.4 m

Permanent Magnet Height hpm 0.1 m

Active Material Height hA 0.1 m

Gap Width wgap 0.15 m

Table 2: Initial design vector for the TMG experiments.

Design of Experiments

The team carried out a Design of Experiments exercise to explore the design space and

evaluate how di↵erent objective variables are a↵ected by changes in specific design variables.

Although the team has not yet fully integrated their COMSOL models with MATLAB to

run autonomously, the team identified a method of running many simulations in series within

the COMSOL interface. This capability combined with the observation that each simulation

only took 30s-60s to run led the team to perform a ”full factorial” design of experiments. The

team wrote a function ”designVectorBuilder.m” taking inputs of lower bound, step size,

and upper bound to generate vectors based on every combination of design variables between

the range of the lower and upper bounds. The function is included in Appendix 1.2. Next,

the matrix of design vectors is fed into the geometric constraint function, which evaluates the

feasibility of each input. ”designVectorBuilder.m” then returns a full factorial matrix of

valid design vectors with help from ”geometricConstraints.m”. Since our design space is

continuous, the step size does limit the number of design vectors used in our ”full factorial”

experiment. For our DoE, we used a lower bound of .05 m, step size of .1 m, and upper bound

8
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of .05 m for each design variable. The design vector building function initially created 3125

combinations of input variables, but reduced them down to only 68 vectors which met the

design constraints. The team exported the matrix of valid design vectors into a reformatted

.txt file which could be directly imported into COMSOL.

After running the simulations, the team exported data from COMSOL and manipulated

it further in Excel to achieve the desired numeric outputs. Later, the team plans to fully

automate this manipulation in MATLAB as it was fairly time consuming and not intuitive to

look at. The team wrote the function ”initialDoE.m” to carry out the combined analysis of

the full factorial experiment. The script uses ”designVectorBuilder.m”, ”costModule.m”,

and two helper functions (for importing data) to build the DoE. The full ”initialDoE.m”

script is included in Appendix 1.2. Through a series of loops the script computes the e↵ect

of every design variable at every level on each objective outcome. The full lists of e↵ects are

stored as matrices in the MATLAB workspace, but the script has two outputs. First, the

script returns a table showing the variable, level, and e↵ect associated with the greatest e↵ect

for that variable on each objective outcome shown in Figure 5. Due to the methods used

to compute objective variables, the scale of e↵ects may not be intuitive for some objectives.

This is a result of scaling constants which are associated with our Power and E�ciency

calculations but not computed in our model at this time. In order to better show the relative

e↵ects of each design variable, the script returns a second table identical to the first but

with normalized e↵ects for each objective shown in Figure 5. The variable and level pairs in

Figure 5 represent initial X* design vectors which we can recommend for optimization in the

direction of each of our objectives based on our analysis. Notably, there is not a single instance

of any variable and level pair causing the greatest e↵ect for all of our objective outcomes at

once. This suggests that our objectives may be di�cult to achieve simultaneously and makes

our problem an especially strong candidate for multidisciplinary optimization later on in the

project.

9
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Variable Objective

wyk Cost

hyk Cost

hpm Cost

hA Cost

wgap Cost

wyk Power

hyk Power

hpm Power

wgap Power

hA Power

wyk E�ciency

hyk E�ciency

hpm E�ciency

hA E�ciency

wgap E�ciency

Table 3: The variable table for DoE considering di↵erent variables with regards to di↵erent objectives. The

actual computation results are shown in Figure 5.

.

Figure 5: Variables and levels of greatest e↵ect on objectives. Raw (left), normalized e↵ects (right).
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Appendix

costModule.m: The function to estimate the cost for materials during the optimization

process. Note that the price of the materials corresponds to Table 1.

1 function cost = costModule(inputs)

2

3 % function determines the cost of an input vector of geometric

4 % parameters. Returns a cost values corresponding to vector

5 % inputs.

6

7 % establish cost rates

8 Gadolinium = 1.71553 e5; % $/m^3

9 Iron = 1.4804 e3; % $/m^3

10 Neodymium = 1.628 e5; % $/m^3

11

12 % extract input geometry

13 %h_fc = inputs (1);

14 w_yk = inputs (1,:);

15 h_yk = inputs (2,:);

16 h_pm = inputs (3,:);

17 h_A = inputs (4,:);

18 w_gap = inputs (5,:);

19

20 % initialize cost output vector

21 cost = zeros(1,length(inputs));

22

23 for i = 1: length(inputs)

24

25 % compute areas

26 magnetArea = h_pm(i)*w_gap(i);

27 activeMaterialArea = h_A(i)*w_gap(i); % in reality , this would not be a solid mass

28 yokeArea = 2*w_yk(i)*h_yk(i);

29

30 % compute cost

31 cost(i) = Gadolinium*activeMaterialArea + Iron*yokeArea + Neodymium*magnetArea; % $/

m into the page

32

33 end

34

35 end

11
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geometricConstraints.m: The function to enforce and encode the geometric constraint

through the intermediate varaible valid.

1 function valid = geometricConstraints(inputs ,V_max ,L_max)

2

3 % function determines the spatial validity of an input vector of

4 % geometric parameters. Returns 1 if the input is valid. Returns 0 if

5 % the input is invalid.

6

7 w_yk = inputs (1);

8 h_yk = inputs (2);

9 h_pm = inputs (3);

10 h_A = inputs (4);

11 w_gap = inputs (5);

12

13 valid = 1;

14

15 if h_yk *(2* w_yk + w_gap) > V_max

16 valid = 0;

17 elseif h_yk > L_max

18 valid = 0;

19 elseif (2* w_yk + w_gap) > L_max

20 valid = 0;

21 elseif (h_A + h_pm) > h_yk

22 valid = 0;

23 end

24

25 end

designVectorBuilder.m: The function to build up the design vector for further analysis.

1 function designVectors = designVectorBuilder(lb ,step ,ub)

2

3 % Function returns a set of design vectors which satisfy geometric

4 % design constraints

5

6 % declare constraint constants

7 V_max = .125;

8 L_max = .5;

9

10 % initialize wide ranges for design variables

11 w_yk0 = lb:step:ub;

12 h_yk0 = lb:step:ub;

13 h_pm0 = lb:step:ub;

14 h_A0 = lb:step:ub;

12
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15 w_gap0 = lb:step:ub;

16

17 % note that this creates a stupidly large vector

18 sheet = combvec(w_yk0 , h_yk0 , h_pm0 , h_A0 , w_gap0);

19

20 % initialize vector of valid geometric inputs

21 validSheet = zeros(5,length(sheet));

22

23 for i = 1: length(sheet)

24

25 input = sheet(:,i);

26

27 % evaluate the geometric configuration based spatial validity

28 if geometricConstraints(input ,V_max ,L_max) == 1

29 % valid inputs will be copied to the new sheet

30 validSheet (:,i) = input (:);

31 end

32

33 end

34

35 % remove zero columns

36 designVectors = validSheet (:,any(validSheet ,1));

37

38 end

initialDoE.m: The function to initialize the whole design space for design of experiments.

1 %% Perform initial setup: import data , initialize variables

2

3 clear

4 clc

5 close all

6

7 % Generate design vectors

8 lb = .05;

9 step = .1;

10 ub = .45;

11 designVectors = designVectorBuilder(lb ,step ,ub);

12

13 % ’variables ’ corresponds to variables w_yk , h_yk , h_pm , h_A , w_gap

14 variables = 1:5;

15

16 % import power data

17 DoEpowerResults = importPowerfile("DoEpowerResults.xlsx", "Ark1", [7, 74]);

18

13
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19 % import efficiency data

20 DoEefficiencyResults = importEfficiencyfile("DoEefficiencyResults.xlsx", "Ark1", [85, 152]);

21

22 % to help later with checking variable effects

23 effectLevels = lb:step:ub;

24

25 % initialize array to hold cost , power , and efficiency outcomes for each design vector

26 experimentResults = zeros(3,length(designVectors));

27

28 %% Fill in experimental results and compute means

29

30 % compute cost outcomes with cost module and add to results

31 experimentResults (1,:) = costModule(designVectors);

32

33 % enter power outcomes computed from COMSOL (later will call for these

34 % computations through matlab)

35 experimentResults (2,:) = DoEpowerResults;

36

37 % enter efficiency outcomes computed from COMSOL (later will call for these

38 % computations through matlab)

39 experimentResults (3,:) = DoEefficiencyResults;

40

41 % compute overall mean cost , power , and efficiency outcomes

42 meanCost = mean(experimentResults (1,:));

43 meanPower = mean(experimentResults (2,:));

44 meanEfficiency = mean(experimentResults (3,:));

45

46 %% compute effect of design variables on cost

47

48 % initialize cost effects matrix [variable , level , effect]

49 costEffects = zeros(length(variables)*length(effectLevels) ,3);

50

51 % helper variable to ensure that each block of variables , levels , and effects are created in

the right locations

52 offset = 0;

53

54 for i = 1: length(variables)

55 for j = 1: length(effectLevels)

56

57 % set the variable being measured (represented by a number)

58 costEffects(j+offset ,1) = i;

59

60 % set the variable level of the variable being measured

61 costEffects(j+offset ,2) = effectLevels(j);

62

63 % compute the effect of the variable at the given level

14
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64

65 % find the column indices of all results where variable i is at the j level

66 indices = find(designVectors(i,:) == effectLevels(j));

67

68 jResultSum = 0;

69

70 for k = 1: length(indices)

71 % sum the results of cost when variable i is at j level

72 jResultSum = jResultSum + experimentResults (1,indices(k));

73 end

74

75 % compute average cost when variable i is at j level

76 jMean = jResultSum/length(indices);

77

78 % add effect to the effect matrix

79 costEffects(j+offset ,3) = jMean - meanCost;

80

81 end

82 offset = offset + length(effectLevels);

83

84 end

85

86 %% compute effect of design variables on power

87

88 % initialize power effects matrix [variable , level , effect]

89 powerEffects = zeros(length(variables)*length(effectLevels) ,3);

90

91 % helper variable to ensure that each block of variables , levels , and effects are created in

the right locations

92 offset = 0;

93

94 for i = 1: length(variables)

95 for j = 1: length(effectLevels)

96

97 % set the variable being measured (represented by a number)

98 powerEffects(j+offset ,1) = i;

99

100 % set the variable level of the variable being measured

101 powerEffects(j+offset ,2) = effectLevels(j);

102

103 % compute the effect of the variable at the given level

104

105 % find the column indices of all results where variable i is at the j level

106 indices = find(designVectors(i,:) == effectLevels(j));

107

108 jResultSum = 0;

15
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109

110 for k = 1: length(indices)

111 % sum the results of power when variable i is at j level

112 jResultSum = jResultSum + experimentResults (2,indices(k));

113 end

114

115 % compute average power when variable i is at j level

116 jMean = jResultSum/length(indices);

117

118 % add effect to the effect matrix

119 powerEffects(j+offset ,3) = jMean - meanPower;

120

121 end

122 offset = offset + length(effectLevels);

123

124 end

125

126 %% compute effect of design variables on efficiency

127

128 % initialize efficiency effects matrix [variable , level , effect]

129 efficiencyEffects = zeros(length(variables)*length(effectLevels) ,3);

130

131 % helper variable to ensure that each block of variables , levels , and effects are created in

the right locations

132 offset = 0;

133

134 for i = 1: length(variables)

135 for j = 1: length(effectLevels)

136

137 % set the variable being measured (represented by a number)

138 efficiencyEffects(j+offset ,1) = i;

139

140 % set the variable level of the variable being measured

141 efficiencyEffects(j+offset ,2) = effectLevels(j);

142

143 % compute the effect of the variable at the given level

144

145 % find the column indices of all results where variable i is at the j level

146 indices = find(designVectors(i,:) == effectLevels(j));

147

148 jResultSum = 0;

149

150 for k = 1: length(indices)

151 % sum the results of efficiency when variable i is at j level

152 jResultSum = jResultSum + experimentResults (3,indices(k));

153 end

16
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154

155 % compute average efficiency when variable i is at j level

156 jMean = jResultSum/length(indices);

157

158 % add effect to the effect matrix

159 efficiencyEffects(j+offset ,3) = jMean - meanEfficiency;

160

161 end

162 offset = offset + length(effectLevels);

163

164 end

165

166 %% Determine recommended start points X0 for numeric integration

167

168 % create copies of matrices with normalized effects

169 normalizedCostEffects = costEffects;

170 normalizedPowerEffects = powerEffects;

171 normalizedEfficiencyEffects = efficiencyEffects;

172

173 normalizedCostEffects (:,3) = normalize(costEffects (:,3));

174 normalizedPowerEffects (:,3) = normalize(powerEffects (:,3));

175 normalizedEfficiencyEffects (:,3) = normalize(efficiencyEffects (:,3));

176

177 % find variables and levels for greatest effect on each output

178

179 % best variable/level pairs to minimize cost:

180

181 % initialize array to hold the best variables/levels/effects for cost

182 bestCostVarsLevels = zeros (2,5); % row1 = level row2 = effect

183

184 % variable 1 (w_yk)

185 index = find(costEffects (1:5 ,3) == min(costEffects (1:5 ,3)));

186 bestCostVarsLevels (:,1) = [costEffects(index ,2); costEffects(index ,3)];

187 bestNormalCostVarsLevels (:,1) = [normalizedCostEffects(index ,2); normalizedCostEffects(index

,3)];

188

189 % variable 2 (h_yk)

190 index = 5 + find(costEffects (6:10 ,3) == min(costEffects (6:10 ,3)));

191 bestCostVarsLevels (:,2) = [costEffects(index ,2); costEffects(index ,3)];

192 bestNormalCostVarsLevels (:,2) = [normalizedCostEffects(index ,2); normalizedCostEffects(index

,3)];

193

194 % variable 3 (h_pm)

195 index = 10 + find(costEffects (11:15 ,3) == min(costEffects (11:15 ,3)));

196 bestCostVarsLevels (:,3) = [costEffects(index ,2); costEffects(index ,3)];

197 bestNormalCostVarsLevels (:,3) = [normalizedCostEffects(index ,2); normalizedCostEffects(index

17
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,3)];

198

199 % variable 4 (h_A)

200 index = 15 + find(costEffects (16:20 ,3) == min(costEffects (16:20 ,3)));

201 bestCostVarsLevels (:,4) = [costEffects(index ,2); costEffects(index ,3)];

202 bestNormalCostVarsLevels (:,4) = [normalizedCostEffects(index ,2); normalizedCostEffects(index

,3)];

203

204 % variable 5 (w_gap)

205 index = 20 + find(costEffects (21:25 ,3) == min(costEffects (21:25 ,3)));

206 bestCostVarsLevels (:,5) = [costEffects(index ,2); costEffects(index ,3)];

207 bestNormalCostVarsLevels (:,5) = [normalizedCostEffects(index ,2); normalizedCostEffects(index

,3)];

208

209 % best variable/level pairs to maximize power:

210

211 % initialize array to hold the best variables/levels/effects for power

212 bestPowerVarsLevels = zeros (2,5); % row1 = level row2 = effect

213

214 % variable 1 (w_yk)

215 index = find(powerEffects (1:5 ,3) == max(powerEffects (1:5 ,3)));

216 bestPowerVarsLevels (:,1) = [powerEffects(index ,2); powerEffects(index ,3)];

217 bestNormalPowerVarsLevels (:,1) = [normalizedPowerEffects(index ,2); normalizedPowerEffects(

index ,3)];

218

219 % variable 2 (h_yk)

220 index = 5 + find(powerEffects (6:10 ,3) == max(powerEffects (6:10 ,3)));

221 bestPowerVarsLevels (:,2) = [powerEffects(index ,2); powerEffects(index ,3)];

222 bestNormalPowerVarsLevels (:,2) = [normalizedPowerEffects(index ,2); normalizedPowerEffects(

index ,3)];

223

224 % variable 3 (h_pm)

225 index = 10 + find(powerEffects (11:15 ,3) == max(powerEffects (11:15 ,3)));

226 bestPowerVarsLevels (:,3) = [powerEffects(index ,2); powerEffects(index ,3)];

227 bestNormalPowerVarsLevels (:,3) = [normalizedPowerEffects(index ,2); normalizedPowerEffects(

index ,3)];

228

229 % variable 4 (h_A)

230 index = 15 + find(powerEffects (16:20 ,3) == max(powerEffects (16:20 ,3)));

231 bestPowerVarsLevels (:,4) = [powerEffects(index ,2); powerEffects(index ,3)];

232 bestNormalPowerVarsLevels (:,4) = [normalizedPowerEffects(index ,2); normalizedPowerEffects(

index ,3)];

233

234 % variable 5 (w_gap)

235 index = 20 + find(powerEffects (21:25 ,3) == max(powerEffects (21:25 ,3)));

236 bestPowerVarsLevels (:,5) = [powerEffects(index ,2); powerEffects(index ,3)];
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237 bestNormalPowerVarsLevels (:,5) = [normalizedPowerEffects(index ,2); normalizedPowerEffects(

index ,3)];

238

239 % best variable/level pairs to maximize efficiency:

240

241 % initialize array to hold the best variables/levels/effects for power

242 bestEfficiencyVarsLevels = zeros (2,5); % row1 = level row2 = effect

243

244 % variable 1 (w_yk)

245 index = find(efficiencyEffects (1:5 ,3) == max(efficiencyEffects (1:5 ,3)));

246 bestEfficiencyVarsLevels (:,1) = [efficiencyEffects(index ,2); efficiencyEffects(index ,3)];

247 bestNormalEfficiencyVarsLevels (:,1) = [normalizedEfficiencyEffects(index ,2);

normalizedEfficiencyEffects(index ,3)];

248

249 % variable 2 (h_yk)

250 index = 5 + find(efficiencyEffects (6:10 ,3) == max(efficiencyEffects (6:10 ,3)));

251 bestEfficiencyVarsLevels (:,2) = [efficiencyEffects(index ,2); efficiencyEffects(index ,3)];

252 bestNormalEfficiencyVarsLevels (:,2) = [normalizedEfficiencyEffects(index ,2);

normalizedEfficiencyEffects(index ,3)];

253

254 % variable 3 (h_pm)

255 index = 10 + find(efficiencyEffects (11:15 ,3) == max(efficiencyEffects (11:15 ,3)));

256 bestEfficiencyVarsLevels (:,3) = [efficiencyEffects(index ,2); efficiencyEffects(index ,3)];

257 bestNormalEfficiencyVarsLevels (:,3) = [normalizedEfficiencyEffects(index ,2);

normalizedEfficiencyEffects(index ,3)];

258

259 % variable 4 (h_A)

260 index = 15 + find(efficiencyEffects (16:20 ,3) == max(efficiencyEffects (16:20 ,3)));

261 bestEfficiencyVarsLevels (:,4) = [efficiencyEffects(index ,2); efficiencyEffects(index ,3)];

262 bestNormalEfficiencyVarsLevels (:,4) = [normalizedEfficiencyEffects(index ,2);

normalizedEfficiencyEffects(index ,3)];

263

264 % variable 5 (w_gap)

265 index = 20 + find(efficiencyEffects (21:25 ,3) == max(efficiencyEffects (21:25 ,3)));

266 bestEfficiencyVarsLevels (:,5) = [efficiencyEffects(index ,2); efficiencyEffects(index ,3)];

267 bestNormalEfficiencyVarsLevels (:,5) = [normalizedEfficiencyEffects(index ,2);

normalizedEfficiencyEffects(index ,3)];

268

269 % package the results in a pretty table

270

271 Level = [bestCostVarsLevels (1,:) ’;bestPowerVarsLevels (1,:) ’;bestEfficiencyVarsLevels (1,:) ’];

272 Effect = [bestCostVarsLevels (2,:) ’;bestPowerVarsLevels (2,:) ’;bestEfficiencyVarsLevels (2,:)

’];

273 Objective = ["cost";"cost";"cost";"cost";"cost";"power";"power";"power";"power";"power";"

efficiency";"efficiency";"efficiency";"efficiency";"efficiency";];

274 Variable = ["w_yk";"h_yk";"h_pm";"h_A";"w_gap";"w_yk";"h_yk";"h_pm";"h_A";"w_gap";"w_yk";"
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h_yk";"h_pm";"h_A";"w_gap";];

275 effectAnalysis = table(Variable ,Objective ,Level ,Effect)

276

277 Level = [bestNormalCostVarsLevels (1,:) ’;bestNormalPowerVarsLevels (1,:) ’;

bestNormalEfficiencyVarsLevels (1,:) ’];

278 Normalized_Effect = [bestNormalCostVarsLevels (2,:) ’;bestNormalPowerVarsLevels (2,:) ’;

bestNormalEfficiencyVarsLevels (2,:) ’];

279 Objective = ["cost";"cost";"cost";"cost";"cost";"power";"power";"power";"power";"power";"

efficiency";"efficiency";"efficiency";"efficiency";"efficiency";];

280 Variable = ["w_yk";"h_yk";"h_pm";"h_A";"w_gap";"w_yk";"h_yk";"h_pm";"h_A";"w_gap";"w_yk";"

h_yk";"h_pm";"h_A";"w_gap";];

281 normalizedEffectAnalysis = table(Variable ,Objective ,Level ,Normalized_Effect)

Coupled model: A simplified case study

The core of the Thermal-Magnetic Generator (TMG) is always about the energy trans-

formation between the magnetic to electric energy. But thermal convection, or heat transfer,

is of importance in the magnetic generation since the permeability of the active materials

is heavily influenced by the temperature. Therefore, the study of heat transfer here is still

of focus on the magnetic field yet investigating the variables related to the thermal field (or

block). Focusing on such a point and hope to provide a benchmark for our DoE we here

carried out simplified study with the coupled study of the two modules. As mentioned in

the previous homework, we designed a complex system involves interaction between fluid

dynamics, heat transfer, magnetic in a complex system. But at a current stage we only start

with a very generalized and simplified model as shown in Figure 6, specific outlining the

characteristics of the heat transfer module.

Within the model, there is initial heat flux set on the active material, corresponding to the

real-world applications that temperature change on active materials causes magnetic changes,

which leads to generation of electricity. Here, for soft iron, relative permeability Pr = 1; The

thermal conductivity k✏ = 240 [W/m ·K] [Ref.]; The density ⇢ = 7000 [kg/m3] [Ref.]; Heat

capacity at constant pressure CpMag = 450 [J/kg · J ] [Ref.]. Listed above are properties of

soft iron, which are considered as parameters based on our previous Assignment.

For the permanent magnets, considering choice of such a material will strongly influence

the performance of the system, we re-modify such as a variable. Here, relative permeability

Pr = 1; The thermal conductivity k✏ = 500 [W/m ·K] [Ref.]; The density ⇢ = 7000 [kg/m3]

20
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Figure 6: A schematic illustration of the simplied model for the thermal convection module.

[Ref.]; Heat capacity at constant pressure CpAM = 450 [J/kg · J ] [Ref.]. Since the choice of

permanent magnets are already a variable, listed above are all considered as variables.

For active materials, we choose Gd as the materials, since this is the most commonly

used and applied active magnetic material6. The Gd is applied with the COMSOL inner

material library, where the material properties is inner connected7. The initial conditions are

set corresponding to Figure 6, where an initial thermal flux are set on the active material,

with a linear heat source of Q0 = qs · T , of qs = 500[W/m3 ·K] We run the coupled thermal

and magnetic modules in a Time Dependent general coupling study. Since in the previous

section (Sec. 1) we found out that it will take ⇡ 240s for the system to heat up, thus

here we run the simulation for 250s to check how the numerical results look like. For the

general thermal-magnetic coupled model, the thermal contour are shown in Figure 7, where

the magnetic field

6Pyykkö, P. Nature Chem. 7, 680 (2015).
7Will be detailed further in future works
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A B

Figure 7: The thermal contour for the coupled model

Figure 8: The magnetic flux contour for the coupled model.
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1 Simulation Completion

We completed the simulation and have produced a grand MATLAB script which calls two

di↵erent COMSOL setups for one given set of design variables. We extract the total cost

of the system as described in the previous assignment, simply by multiplying the respective

parts the system by their current market prices. We extract the power output by dividing the

square of the total magnetic flux di↵erence by the period of a thermal heating/cooling cycle.

For a given vector of design variables, we thus run 3 simulations. The first two simulate the

magnetic field for di↵erent instances of the magnetic permeability, and the last simulates the

temperature distribution over time. For computing the e�ciency, we can reuse the simulation

results for the magnetic fields and this time extract the total exergy change of the system

over a thermal cycle. This result is extracted from the same simulation as the heating time,

and thus we only need to run 3 separate simulations per function(s) evaluation. We refer to

assignment 2 for further details on the physical reasoning. At this point, there are no further

issues. As for interesting design points that can be used to initialize optimization algorithms,
∗Email: wth42@cornell.edu
†Email: hz253@cornell.edu
‡Email: mpb99@cornell.edu
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we did in assignment 2 make a full factorial design vector exploration and identified the

design vectors that yielded the best results with respect to each objective function.

For optimizing the cost:

(ywk, hyk, hpm, hA, wgap) = (0.15, 0.15, 0.05, 0.05, 0.05)

For optimizing the power output:

(ywk, hyk, hpm, hA, wgap) = (0.05, 0.45, 0.25, 0.15, 0.15)

For optimizing the e�ciency:

(ywk, hyk, hpm, hA, wgap) = (0.05, 0.45, 0.25, 0.15, 0.05)

- where everything is in units of meters.

2 Heuristic Optimization

2.1 Heuristic Algorithm Selection

At the current stage, we mainly focus on one thing that of key interest by the industry:

money. For every company, especially startups, core technology is important yet only within

the budget limit and provide good profit. Notably, for our problem, the Thermal-Magnetic

Generator (TMG) is not widely adopted by the industry in the last few decades largely due

to the high cost of Gadolinium, which is the ”active material” in our settings.

Here, we chose genetic algorithm (GA) for optimizing the TMG geometry to achieve as

low cost as possible. GA mimics the Darwinian theory of survival of fittest in nature [1].

The main reason of choosing GA are: (1) GA is simple and easy to understand since it don’t

require a complex problem formulation for specific problems, which make us easy to grab

and use [Ref.]. (2) It is usually faster to solve [Ref.]. (3) GA works well on discrete problems,

and deals well with stochastic data [Ref.], which is very important for our implementation.

Admittedly, as a heuristic method, GA does not promise a global optimum. However, in our

problem, since we are estimating the cost of a product, therefore an generally ”good” cost

shall be acceptable for the final design [Ref.]. To emphasize, we don’t want to sacrifice the

product quality or power output of TMG just to reduce cost. Hence, GA can be adopted to

achieve such ”acceptable result” with simple implementation with a fast solving process.

2
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Figure 1: Schematic diagram for genetic algorithm optimization.

2.2 Single Objective Heuristic Optimization

The team focused on our cost module for single objective heuristic optimization. This

was a logical choice because our cost module is independent of power and e�ciency and is

fully contained within MATLAB. This will drastically reduce computation time and minimize

complexity when setting up the genetic algorithm. The algorithm is reliant on a new objective

function adapted from the team’s previous work to output cost. The cost objective function is

included in Appendix 4. A new geometric constraint function was also adapted from previous

work and included in Appendix 4. The main script containing options and the function call

to run the genetic algorithm is included in Appendix 4.

After performing an initial setup of the genetic algorithm, the team began to tune the

algorithm’s parameters to reduce compute time while improving results. First, function

and constraint tolerances were adjusted to 1 ⇥ 10�6. We found that using a smaller value

increased compute time and number of generations for each algorithm execution, but did not

improve results. The team also experimented with di↵erent population sizes, but ultimately

settled on the default value of 50 recommended by Mathworks for optimizations using five

or fewer design variables. Due to our problem’s geometric constraints we were unable to

3
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adjust mutation rate and relied on Matlab’s mutationadaptfeasible function. Adjusting

maxgenerations had no e↵ect on our results as the algorithm generally completed each run

in 3-5 generations.

The two settings which have greatest e↵ect on the quality of our results are the crossover

ratio and crossover fraction. Crossover ratio adjusts the distance away from the better of

two parents at which a child is placed between generations. We found that a value of 1.6

consistently improved the quality of the results and tended to slightly increase the number

of generations before convergence. Crossover fraction represents the portion of the next

generation created by the crossover of two parents. For our optimization, we found a value

of 0.7 yields slightly better and more consistent results.

2.3 Results Analysis

The team set up a script to run the genetic algorithm using our tuned settings 500 times

to analyze the results. The script returned the following output:

1 The lowest cost from 500 algorithm runs is 0.3403 , corresponding to a design vector of:

2

3 0.0010 0.0020 0.0010 0.0010 0.0010

4

5

6 The algorithm found this to be the optimal result 77 times out of 500. The average optimal

value is 0.4148

Our computationally cheap cost function a↵ords us the luxury of running the genetic

algorithm many times to help analyze the results. Because the algorithm found the same

optimal result 77 times out of 500, we conclude that we have found the global optimum for

cost. The minimized cost function yields a value of $0.3403.

3 Gradient-based or local derivative-free optimization

3.1 Gradient-based Algorithm Selection

Here, to optimize the cost objective with gradient-based method, we employ the fmincon

in Matlab®. fmincon is a gradient-based method that is designed to work on problems

where the objective and constraint functions are both continuous and have continuous first

derivatives [3]. The reason we chose fmincon as the optimization methods include: (1) this

4
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method is a gradient-based method, agrees with the requirement for Q3; (3) this method is

easy to implement, and handy to analyse the results. (3) the method serves a wide range of

applications. Here, we employ the SQP method and give the analytical form of our problem

to the toolbox for optimization evaluation.

The basic of gradient-based optimization is to formulate a Hessian as an optional input.

This Hessian is the matrix of second derivatives of the Lagrangian, namely [3]:

r2L(x,�) = r2J(x) +
X

�ir2Ci(x) +
X

�ir2Ei(x) (1)

where �i are the parameters imposed on constraints to formulate the Lagrangian, and Ci are

the inequality constraints, Ei are the equality constraints. Due to the analytical nature of

the cost objective, the fmincon can be successfully implemented to TherMaG system.

3.2 Single Objective Gradient-based Optimization

3.2.1 Problem formulation

As stated in our last homework, the cost is a function to the geometric parameters of the

TMG. The optimization of the cost can be written in standard form:

min
geometry

J = cost

where cost = GAactive + IAyoke + NAmag,

s.t. hyk(2wyk + wgap)� Vmax  0 (C1)

hyk � Lmax  0 (C2)

2wyk + wgap � Lmax  0 (C3)

hA + hpm � hyk  0 (C4)

where G = 1.71553 ⇥ 105[$/m3], I = 1.4804 ⇥ 103[$/m3], N = 1.628 ⇥ 105[$/m3], standing

for the price in [$/m3] for Gadolinium, Iron, and Neodymium, respectively; and Aactive =

hAwgap, Ayoke = 2wykhyk, Amag = hpmwgap, stands for the area for active materials, yoke,

and magnetic materials, respectively. The upper and lower bounds (ub & lb) of the variables

X = [hA, wgap, wyk, hyk, hpm] is [0.05, 0.45].

5
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Figure 2: A schematic diagram representing the gradient-based optimization. Note that the optimization
process can be accessed through our supplementary video showing the results of di↵erent runs of the opti-
mization algorithm. Due to its stochastic nature, each run will not necessarily produce the same result. This
particular video is for the optimization of the e�ciency where the initial point was the ”good” one.

3.2.2 Algorithm formulation

We therefore formulate the function of objective with fmincon on our cost module. A

schematic representing our gradient-based optimization is shown in Figure 2. The optimiza-

tion process can be simplified to:

• Step 1. System setup: =) Setting up the running steps, initial design variables (initial

guess), specify the optimization methods and related parameters involved (i.e., objective

functions, constraints, lower & upper bounds, etc.).

• Step 2. Optimization in loop: =) Setting up a for loop for running fmincon coupled

with Livelink®. Ouput the optimized design with saving the iterations diagram.

• Step 3. Parameters computation: =) Save the final optimized design and printed it

out.

1 clear

2 clc

3 close all

4

5 tic

6

7 numRuns = 1;

8

9 % starting point for optimization

10 x0 = [.05;.1;.05;.05;.05];

11

6

https://hanfengzhai.net/data/gradoptimTherMaG.mp4
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12 % Set nondefault solver options

13 options = optimoptions(’fmincon ’,’Algorithm ’,’sqp’,’PlotFcn ’,{@optimplotfval ,

@optimplotfunccount });

14

15 % set upper and lower bounds

16 lb = [.001, .001, .001, .001, .001];

17 ub = [.5, .5, .5, .5, .5];

18

19 % make anonymous functions

20 powerFcn = @(power) efficiency_power_modules(power);

21 efficiencyFcn = @(efficiency) efficiency_power_modules(efficiency);

22

23 %outputs = zeros(numRuns ,1);

24 objVals = zeros(numRuns ,1);

25 vectors = zeros(numRuns ,5);

26

27 % run the optimization many times to see what happens

28 for i = 1: numRuns

29

30 % Solve

31 [solution ,objectiveValue ,exitflag ,output ,lambda ,grad ,hessian] = fmincon(powerFcn ,x0

,[],[],[],[],lb ,ub,@geocon ,options;

32

33 outputs(i) = output;

34 objVals(i) = objectiveValue;

35 vectors(i,:) = solution;

36

37 string = "optim" + num2str(i);

38 saveas(gcf ,string ,’png’);

39

40 end

41

42 [min , index] = min(objVals);

43

44 fprintf(’The best solution from %d optimization runs is power = %.8f, corresponding to a

design vector of: \n’,numRuns ,min);

45 fprintf(’\n’);

46 disp(vectors(index ,:));

47 fprintf(’\n’);

48 fprintf(’This solution had the following simulation output info: \n’);

49 fprintf(’\n’);

50 disp(outputs(index));

51

52 toc

7
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3.3 Single-objective optimization

Using the script shown above, we move on to do a gradient based optimization of the cost.

This is a simple objective function to optimize, and it will be easy to validate that our algo-

rithm is doing a good job. Using an initial design vector given by, [ywk, hyk, hpm, hA, wgap] =

[0.05; 0.1; 0.05; 0.05; 0.05], our results are summarized by the following output in MATLAB:

1 The best solution from 30 optimization runs is cost = 0.34027460 , corresponding to a design

vector of:

2

3 0.0010 0.0020 0.0010 0.0010 0.0010

4

5

6 This solution had the following simulation output info:

7

8 iterations: 2

9 funcCount: 18

10 algorithm: ’sqp’

11 constrviolation: 0

12 stepsize: 1.4867e-17

13 lssteplength: 1

14 firstorderopt: 3.7253e-09

15

16 Elapsed time is 15.709778 seconds.

The initial design vector here was arbitrary, but the optimal result is exactly the same as

the one found by our genetic algorithm in the previous section. If we instead use the ”good”

guess, given by the vector, [ywk, hyk, hpm, hA, wgap] = [0.15; 0.15; 0.05; 0.05; 0.05] pulled from

the e↵ects table in our Design of Experiments from Assignment 2, the results are as follows:

1 The best solution from 30 optimization runs is cost = 0.34027460 , corresponding to a design

vector of:

2

3 0.0010 0.0020 0.0010 0.0010 0.0010

4

5

6 This solution had the following simulation output info:

7

8 iterations: 2

9 funcCount: 18

10 algorithm: ’sqp’

11 constrviolation: 0

12 stepsize: 1.8527e-18

13 lssteplength: 1

8
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14 firstorderopt: 7.4506e-09

15

16 Elapsed time is 13.554918 seconds.

These results make a lot of sense. The total cost is a simple function to compute and

a gradient based optimization algorithm should quickly be able to figure out that having

smaller dimensions will generally decrease the overall cost. There are also constraints on the

dimensions, so it is not trivial to figure out which configuration exactly, is the best. As seen

however, it did turn out that with both initial guesses, the gradient based method moved our

design vector into and along a constraint boundary such that the final point was the same,

namely the design vector, [0.0010; 0.0020; 0.0010; 0.0010; 0.0010]. Additionally, we see that

the elapsed time for the optimization with a ”good” starting point is approximately 14% less

than with an arbitrary initial guess, which also makes sense. The team is pleased that both

the heuristic and gradient based optimization methods yielded identical results in minimizing

cost.

If we try doing the same for the e�ciency or the power, the situation is di↵erent. Dif-

ferent initial guesses will lead to di↵erent optima. It was not required for the project, but

we here demonstrate doing the same procedure with the e�ciency as the objective func-

tion. To achieve this result, the team wrote a function evaluation script which couples

Matlab with COMSOL to automatically run simulations with design variables dictated by

the optimization algorithm. Let us start with an arbitrary design vector again given by,

[ywk, hyk, hpm, hA, wgap] = [0.05; 0.1; 0.05; 0.05; 0.05]. The following output is then generated1:

1 The best solution from 30 optimization runs is efficiency = -0.00002090 , corresponding to a

design vector of:

2

3 0.0438 0.1274 0.0969 0.0276 0.0124

4

5

6 This solution had the following simulation output info:

7

8 iterations: 9

9 funcCount: 136

10 algorithm: ’sqp’

11 constrviolation: 0

12 stepsize: 9.6833e-07

13 lssteplength: 3.2199e-05

1Note here that the e�ciency should be multiplied by �1, as the problem is formulated as one of minimization of the negative
e�ciency

9
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14 firstorderopt: 0.2493

15 bestfeasible: [1x1 struct]

16

17 Elapsed time is 29333.725125 seconds.

The computed optimal design vector is given by, [0.0438; 0.1274; 0.0969; 0.0276; 0.0124].

Note that e�ciency is negative. This is because the optimization minimizes the objec-

tive function, so we multiplied the result of our e�ciency calculation by -1 before pass-

ing the value into the optimization function. In this way, the most negative value rep-

resents the highest e�ciency. Trying again with the ”good” guess, this time given by,

[ywk, hyk, hpm, hA, wgap]=[0.05; 0.45; 0.25; 0.15; 0.05], the output becomes:

1 The best solution from 30 optimization runs is efficiency = -0.00008848 , corresponding to a

design vector of:

2

3 0.0759 0.5000 0.4300 0.0662 0.0976

4

5

6 This solution had the following simulation output info:

7

8 iterations: 7

9 funcCount: 147

10 algorithm: ’sqp’

11 constrviolation: 0

12 stepsize: 8.7723e-07

13 lssteplength: 1.8562e-06

14 firstorderopt: 2.3595

15 bestfeasible: [1x1 struct]

16

17 Elapsed time is 28687.589087 seconds.

As seen, the optimal design is here supposed to be given by, [0.0759; 0.5000; 0.4300; 0.0662; 0.0976].

There clearly is a significant di↵erence. The two di↵erent design vectors do have considerable

di↵erences in the ratios between individual design variables, and going as as to say that dif-

ferent ”design niches” have been found, might not be completely unjustifiable. It is however

clear that the design based on the ”good” guess outperforms the one based on the arbitrary

one substantially, which seems like a valuable experience to have. For the particular case of

the optimization of the e�ciency, let us show how the algorithm performed across iterations

graphically. For the arbitrary guess, we refer to figure 3. For the ”good” guess, we refer to

figure 4.
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Figure 3: Plot showing the function evaluation at each iteration (top) and the number of function evaluations
for the given iteration (bottom) in the case where we do gradient based optimization of the e�ciency based
on the aforementioned arbitrary design vector as the initial guess. The design space seems ”flat” in the
beginning, but eventually, some ”hyper-geometric” edge is being reached and the value of the function drops
rapidly

We also tried doing this for the total power output. Note that again, maximum power is

represented by the most negative result. Using as the initial guess the same arbitrary one as

in the previous two cases, we get the output,

1 The best solution from 30 optimization runs is power = -0.00003466 , corresponding to a

design vector of:

2

3 0.1503 0.1788 0.1375 0.0413 0.1994

4

5

6 This solution had the following simulation output info:

7

8 iterations: 6

9 funcCount: 91

10 algorithm: ’sqp’

11 constrviolation: 2.7756e-17

12 stepsize: 1.3562e-06

13 lssteplength: 7.7310e-06

14 firstorderopt: 0.0427

15

16 Elapsed time is 46578.355250 seconds.

11



Multidisciplinary Design Optimization Assignment #3: Part (b)

Figure 4: Plot showing the function evaluation at each iteration (top) and the number of function evaluations
for the given iteration (bottom) in the case where we do gradient based optimization of the e�ciency based
on the aforementioned ”good” design vector as the initial guess. The descent towards a better function
evaluation seems to begin ”right away” here, whereas there was a ”flatter” region to first be traversed in the
case of the arbitrary guess (figure 3).

Using instead the ”good” guess, which for power optimization is given by2, [ywk, hyk, hpm, hA, wgap] =

[0.05; 0.45; 0.25; 0.15; 0.15];, the following output is generated

1 The best solution from 30 optimization runs is power = -0.00002438 , corresponding to a

design vector of:

2

3 0.0500 0.4500 0.2500 0.1500 0.1500

4

5

6 This solution had the following simulation output info:

7

8 iterations: 1

9 funcCount: 34

10 algorithm: ’sqp’

11 constrviolation: 0

12 stepsize: 1.1156e-06

13 lssteplength: 4.5999e-05

14 firstorderopt: 0.0187

15

16 Elapsed time is 21144.058804 seconds.

2Again, the minus sign can be ignored
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Interestingly, the arbitrary guess outperforms the qualified one! This would appear

strange, but is not at all unbelievable. Our physical model is extremely complicated at

an initial guess being stuck at a sub optimal solution is to be expected. In this case, it

simply turned out that one initial guess - although in itself a better one - was more prone to

getting caught in this sub-optimal ”trap”3. This is of course the big danger and shortcom-

ing of gradient based methods and would possibly not have become an issue for a heuristic

method. This seems like an even more valuable lesson to have learned.

3.4 Sensitivity Analysis

To apply sensitivity analysis, thanks to the analytical nature of the cost module, we employ

the MATLAB symbolic toolbox to derive the e↵ects of each variables, i.e., rhAJ , rwgapJ ,

rwyk
J , rhyk

J , rhpmJ ; and the e↵ects of each constraints (derivatives of the multiplier �i),

i.e., r�iJ on the cost objective.

1 clc; clear; close all

2

3 syms Gadolinium Iron Neodymium

4 syms h_A w_gap w_yk h_yk h_pm

5

6 magnetArea = h_pm*w_gap;

7 activeMaterialArea = h_A*w_gap; % in reality , this would not be a solid mass

8 yokeArea = 2*w_yk*h_yk;

9

10 J = Gadolinium*activeMaterialArea + Iron*yokeArea + Neodymium*magnetArea;

11

12 J_hA = diff(J,h_A);

13 J_wgap = diff(J,w_gap);

14 J_wyk = diff(J,w_yk);

15 J_hyk = diff(J,h_yk);

16 J_hpm = diff(J,h_pm);

17

18 [J_hA; J_wgap; J_wyk; J_hyk; J_hpm]

Running the previous code we generate:

1 Gadolinium*w_gap

2 Gadolinium*h_A + Neodymium*h_pm

3 2*Iron*h_yk

4 2*Iron*w_yk

3Actually, the initial guess was pretty much ”inside the trap from the beginning”, which see from it conveging right away
(only one iteration)! Perhaps the tolerance could have been tuned to avoid this, but it is likely that the results would have been
pretty close to the same
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5 Neodymium*w_gap

Therefore we can write out all the e↵ects in analytic forms:

rwyk
J = 2Ihyk (E1)

rhyk
J = 2Iwyk (E2)

rhpmJ = Nwgap (E3)

rhAJ = Gwgap (E4)

rwgapJ = GhA + Nhpm (E5)

(2)

To estimate the e↵ect of changing constraints, we can compute the Lagrangian multipliers

�1 =
@J

@C1
=

@(GAactive + IAyoke + NAmag)

@(hyk(2wyk + wgap)� Vmax)
(E6)

�2 =
@J

@C2
=

@(GAactive + IAyoke + NAmag)

@(hyk � Lmax)
(E7)

�3 =
@J

@C3
=

@(GAactive + IAyoke + NAmag)

@(2wyk + wgap � Lmax)
(E8)

�4 =
@J

@C4
=

@(GAactive + IAyoke + NAmag)

@(hA + hpm � hyk)
(E9)

We can also do a estimate on the e↵ects on the changing parameters:

@J

@G = hAwgap (E10)

@J

@I = 2wykhyk (E11)

@J

@N = hpmwgap (E12)

(3)

Theoretically, to calculate from E6 to E9 we need to apply the chain rule, i.e.,

�1 =
@J

@C1
=

@J

@wyk

@wyk

@C1
+

@J

@hyk

@hyk

@C1
+

@J

@wgap

@wgap

@C1

�2 =
@J

@C2
=

@J

@hyk

@hyk

@C2

�3 =
@J

@C3
=

@J

@wyk

@wyk

@C3
+

@J

@wgap

@wgap

@C3

�4 =
@J

@C4
=

@J

@hpm

@hpm

@C4
+

@J

@hyk

@hyk

@C4
+

@J

@hA

@hA

@C4

(4)

14



Multidisciplinary Design Optimization Assignment #3: Part (b)

As shown in Equation (4), calculating the main e↵ects of the four constraints requires

complicated mathematical derivations, which are not what we desired. Thence we figured

out another way to estimate which constraint is the active one and which are not: the original

gradient-based optimization was ran by many times through cancelling each constraints and

thence we can deduce the active constraint.

By cancelling C1, C2, C4, the optimization output are

1 The best solution from 3 optimization runs is cost = 0.34027460 , corresponding to a design

vector of:

2

3 0.0010 0.0020 0.0010 0.0010 0.0010

4

5

6 This solution had the following simulation output info:

7

8 iterations: 2

9 funcCount: 18

10 algorithm: ’sqp’

11 constrviolation: 0

12 stepsize: 1.4867e-17

13 lssteplength: 1

14 firstorderopt: 3.7253e-09

15 bestfeasible: [1x1 struct]

16

17 Elapsed time is 1.025314 seconds.

The optimization results are same as our previous results, indicating that both C1, C2, C4,

are inactive constraints.

By cancelling C3, the generated optimization output are

1 The best solution from 3 optimization runs is cost = 0.33731380 , corresponding to a design

vector of:

2

3 1.0e-03 *

4

5 1.0000 1.0000 1.0000 1.0000 1.0000

6

7

8 This solution had the following simulation output info:

9

10 iterations: 2

11 funcCount: 18

12 algorithm: ’sqp’

13 constrviolation: 0
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14 stepsize: 7.9967e-18

15 lssteplength: 1

16 firstorderopt: 7.4506e-09

17 bestfeasible: [1x1 struct]

18

19 Elapsed time is 1.062669 seconds.

This indicate that C3 is the active constraint, and the action of cancelling C3 is to relax the

active constraint. And we already know the new optimized design and original constraint op-

timized design are [0.0010, 0.0020, 0.0010, 0.0010, 0.0010], [0.0010, 0.0010, 0.0010, 0.0010, 0.0010],

respectively. With the constraint problem figured out, we can continue with the e↵ect (sen-

sitivity analysis) computation for each design variables and parameters.

Based on the theoretical equations {Equation (2) & Equation (3)}, we can therefore code

all the previous e↵ects (Ei) (numerical) inMatlab, formulating a new function sensitivity:

1 function [Ematrix] = sensitivity(Input)

2

3 close all

4 clc

5

6

7 x = Input;

8 w_yk = x(1); h_yk = x(2); h_pm = x(3); h_A = x(4); w_gap = x(5);

9

10 %% Define the constants

11

12 Gadolinium = 1.71553 e5; %$/m^3

13 Iron = 1.4804 e3; %$/m^3

14 Neodymium = 1.628 e5; %$/m^3

15 V_max = .125; L_max = .5;

16

17 %% Effects of the design variables

18

19 J_hA = Gadolinium*w_gap; %E1

20 J_wgap = Gadolinium*h_A + Neodymium*h_pm; %E2

21 J_wyk = 2*Iron*h_yk; %E3

22 J_hyk = 2*Iron*w_yk; %E4

23 J_hpm = Neodymium*w_gap; %E5

24

25 magnetArea = h_pm*w_gap;

26 activeMaterialArea = h_A*w_gap; % in reality , this would not be a solid mass8

27 yokeArea = 2*w_yk*h_yk;

28

29 J = Gadolinium*activeMaterialArea + Iron*yokeArea + Neodymium*magnetArea;
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30 %% Constraints

31

32 c1 = h_yk *(2* w_yk + w_gap) - V_max;

33 c2 = h_yk - L_max;

34 c3 = 2*w_yk + w_gap - L_max;

35 c4 = h_A + h_pm - h_yk;

36

37 %% Effects of parameters

38

39 J_G = h_A*w_gap;

40 J_I = 2*w_yk*h_yk;

41 J_N = h_pm*w_gap;

42

43 % We cancel this part due to the complex nature of the problem

44 % E6 = diff(J,c1);

45 % E7 = diff(J,c2);

46 % E8 = diff(J,c3);

47 % E9 = diff(J,c4);

48

49

50 %% Main sensitivity analysis: calculate E_i (Effects)

51

52 E1 = J_wyk;

53 E2 = J_hyk;

54 E3 = J_hpm;

55 E4 = J_hA;

56 E5 = J_wgap;

57 E10 = J_G;

58 E11 = J_I;

59 E12 = J_N;

60

61 %% Obtain the eventual values

62 Ematrix = [E1; E2; E3; E4; E5; E10; E11; E12];

63 categories = categorical ({’Yoke Width’,’Yoke Height ’,’Permanent Magnet Height ’,’Active

Material Height ’,’Gap Width ’,’c1 = h_yk .*(2.* w_yk + w_gap) - V_max’,’c2 = h_yk - L_max’,

’c3 = 2.* w_yk + w_gap - L_max’,’c4 = h_A + h_pm - h_yk’,’Gadolinium ’,’Iron’,’Neodymium ’

});

64 figure

65 hold on

66 bar(categories ,Ematrix) %visualize the value

67 title(’Main Effect of Design Variables ’);

68 figure

69 hold on

70 labels = {’Yoke Width ’,’Yoke Height ’,’Permanent Magnet Height ’,’Active Material Height ’,’Gap

Width’,’c1 = h_yk .*(2.* w_yk + w_gap) - V_max ’,’c2 = h_yk - L_max’,’c3 = 2.* w_yk + w_gap

- L_max ’,’c4 = h_A + h_pm - h_yk’,’Gadolinium ’,’Iron’,’Neodymium ’};
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71 pie(Ematrix ,labels) %visualize the weight (or effects) of each design vars. --> this one

makes more sense

72 title(’Main Effect of Design Variables ’);

73 end

By giving a random initial guess (input design variables vector), and running the command

test = sensitivity([.001; .002; .001; .001; .001]); we can therefore generate the

8 main e↵ects for 5 design variables4 {ywk, hyk, hpm, hA, wgap} and 3 parameters {G, I,N}:
E1 =

5.9216

E2 =

2.9608

E3 =

162.8000

E4 =

171.5530

E5 =

334.3530

E10 =

1.0000e-06

E11 =

4.0000e-06

E12 =

1.0000e-06

By visualizing the results we could generate Figure 5, from which we could conclude that

for this specific initial design variable the Gap Width (wgap) seem to be the driver in this

problem. And this results can be said partly satisfy our expectations, since here we only

optimize the geometry to minimize cost, hence any main height or width of the TMG body

may be contribute largely to the cost optimization.
4- at this particular point, it should be noted
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Figure 5: The graph representing each e↵ects for design variables and parameters. Subfigure A is the bar
plot for e↵ects and B is the ⇡ plot.

4 Appendix

objee.m: Function returning cost for an input design vector.

1 function f = objee(x)

2 % x = [h_A; w_gap; w_yk; h_yk; h_pm];

3

4 Gadolinium = 1.71553 e5; % $/m^3

5 Iron = 1.4804 e3; % $/m^3

6 Neodymium = 1.628 e5; % $/m^3

7

8 w_yk = x(1);

9 h_yk = x(2);

10 h_pm = x(3);

11 h_A = x(4);

12 w_gap = x(5);

13

14 magnetArea = h_pm*w_gap;

15 activeMaterialArea = h_A*w_gap; % in reality , this would not be a solid mass

16 yokeArea = 2*w_yk*h_yk;

17 f = Gadolinium*activeMaterialArea + Iron*yokeArea + Neodymium*magnetArea;

18 end

geocon.m: Function handling geometric constraints for the genetic algorithm optimization.
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1 function [c,ceq] = geocon(x)

2

3 V_max = .125;

4 L_max = .5;

5

6 w_yk = x(1);

7 h_yk = x(2);

8 h_pm = x(3);

9 h_A = x(4);

10 w_gap = x(5);

11

12 c(1) = h_yk *(2* w_yk + w_gap) - V_max;

13 c(2) = h_yk - L_max;

14 c(3) = (2* w_yk + w_gap) - L_max;

15 c(4) = (h_A + h_pm) - h_yk;

16

17 ceq = [];

18 end

TherMaG GA.m: Script setting up and calling the genetic algorithm to optimize cost and

return results.

1 clear

2 clc

3

4 % number of times to run the algorithm

5 numRuns = 500;

6

7 % set upper and lower bounds

8 lb = [.001, .001, .001, .001, .001];

9 ub = [.5, .5, .5, .5, .5];

10

11 % set optimization options

12 options = optimoptions(’ga’, ...

13 ’CrossoverFcn ’,{@crossoverheuristic ,1.6},’Display ’ ,...

14 ’iter’, ...

15 ’FunctionTolerance ’, 1e-6, ...

16 ’PopulationSize ’, 50, ...

17 ’CrossoverFraction ’, 0.7 ,...

18 ’MaxGenerations ’, 2000 ,...

19 ’ConstraintTolerance ’, 1e-6 ,...

20 ’MutationFcn ’,{@mutationadaptfeasible });

21

22 % initialize vars for storing results

23 objectives = zeros(numRuns ,1);

20



Multidisciplinary Design Optimization Assignment #3: Part (b)

24 dVectors = zeros(numRuns ,5);

25

26 % run the GA a few times to find the best result

27 for i = 1: numRuns

28

29 [solution ,objectiveValue] = ga(@objee ,5,[],[],[],[],lb,ub ,@geocon ,[], options);

30

31 objectives(i) = objectiveValue;

32 dVectors(i,:) = solution;

33

34 end

35

36 % round the final objectives to aid judgement of the algorithm consistency

37 objectives = round(objectives ,4);

38 [min , index] = min(objectives);

39 count = sum(objectives == min);

40 avgObjective = mean(objectives);

41

42 fprintf(’\n’);

43 fprintf(’The lowest cost from %d algorithm runs is %.4f, corresponding to a design vector of

: \n’, numRuns , min);

44 fprintf(’\n’);

45 disp(dVectors(index ,:));

46 fprintf(’\n’);

47 fprintf(’The algorithm found this to be the optimal result %d times out of %d. The average

optimal value is %.4f\n’, count , numRuns , avgObjective);
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1 Scaling

1.1 Cost

As referred back to the original optimization problem, we still focus on the cost module

as for the scaling problem with gradient based method fmincon.

We adopt the sqp algorithm on the cost module with the five input design variables

(0.05; 0.1; 0.05; 0.05; 0.05) for running the optimization; the objective of cost module, the

geometric constraint and the main optimization program are same as our previous work (as

attached in the Appendix). Note that the upper and lower bounds are (.45, .45, .45, .45, .45)

and (.05, .05, .05, .05, .05). By running the optimization we generate the following output:

1

2 Local minimum found that satisfies the constraints.

3

4 Optimization completed because the objective function is non -decreasing in

5 feasible directions , to within the value of the optimality tolerance ,

6 and constraints are satisfied to within the value of the constraint tolerance.

7
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8 <stopping criteria details >

9 No scaling: The best solution is efficiency = 0.34027460 , corresponding to a design vector

of:

10

11 0.0010

12 0.0020

13 0.0010

14 0.0010

15 0.0010

16

17

18 This solution had the following simulation output info:

19

20 iterations: 2

21 funcCount: 18

22 algorithm: ’sqp’

23 message: ’ Local minimum found that satisfies the constraints. Optimization

completed because the objective function is non -decreasing in feasible directions , to

within the value of the optimality tolerance , and constraints are satisfied to within

the value of the constraint tolerance. <stopping criteria details > Optimization

completed: The relative first -order optimality measure , 2.228358e-11, is less than

options.OptimalityTolerance = 1.000000e-06, and the relative maximum constraint

violation , 0.000000e+00, is less than options.ConstraintTolerance = 1.000000e-06. ’

24 constrviolation: 0

25 stepsize: 1.4867e-17

26 lssteplength: 1

27 firstorderopt: 7.4506e-09

28 bestfeasible: [1x1 struct]

29

30 The unscaled hessian is:

31

32 1.0e+05 *

33

34 0.0005 0.0003 0.0142 0.0149 0.0291

35 0.0003 0.0001 0.0071 0.0075 0.0145

36 0.0142 0.0071 0.3895 0.4104 0.7998

37 0.0149 0.0075 0.4104 0.4325 0.8428

38 0.0291 0.0145 0.7998 0.8428 1.6427

39

40 The unscaled condition number is 7.144017e+05

41 Local minimum found that satisfies the constraints.

42

43 Optimization completed because the objective function is non -decreasing in

44 feasible directions , to within the value of the optimality tolerance ,

45 and constraints are satisfied to within the value of the constraint tolerance.

46

2
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47 <stopping criteria details >

48 Cost scaling: The best solution is cost = 0.00192677 , corresponding to a design vector of:

49

50 0.0010

51 0.0020

52 0.0010

53 0.0010

54 0.0010

55

56

57 This solution had the following simulation output info:

58

59 iterations: 2

60 funcCount: 18

61 algorithm: ’sqp’

62 message: ’ Local minimum found that satisfies the constraints. Optimization

completed because the objective function is non -decreasing in feasible directions , to

within the value of the optimality tolerance , and constraints are satisfied to within

the value of the constraint tolerance. <stopping criteria details > Optimization

completed: The relative first -order optimality measure , 1.332268e-15, is less than

options.OptimalityTolerance = 1.000000e-06, and the relative maximum constraint

violation , 0.000000e+00, is less than options.ConstraintTolerance = 1.000000e-06. ’

63 constrviolation: 0

64 stepsize: 9.8027e-17

65 lssteplength: 1

66 firstorderopt: 1.3323e-15

67 bestfeasible: [1x1 struct]

68

69 The scaled hessian is:

70

71 25.9973 12.3112 2.0591 2.1765 4.3607

72 12.3112 6.7806 0.8421 0.9008 1.9928

73 2.0591 0.8421 1.0649 0.0751 0.2650

74 2.1765 0.9008 0.0751 1.0859 0.2859

75 4.3607 1.9928 0.2650 0.2859 1.6759

76

77 The scaled condition number is 6.270862e+01

78 The scaled optimization found a 0 percent smaller optimal value in the same number of

iterations and -0 percent fewer function evaluations

79

80 The scaled optimization found a solution 87.90 percent faster than the unscaled optimization

>>
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Therefore we can write out the unscaled Hessian:

H =

2

666666664

52.4001 25.5125 1416.4316 1492.5933 2909.1499

25.5125 13.3813 708.0283 746.1091 1454.3874

1416.4316 708.0283 38945.6567 41038.5367 79983.3184

1492.5933 746.1091 41038.5367 43245.9949 84283.6567

2909.1499 1454.3874 79983.3184 84283.6567 164268.1001

3

777777775

(1)

With simple observation we can deduce that the problem is obviously ill conditioned; A

scaling of the problem is hence required.

The five input design variables are [wyk, hyk, hpm, hA, wgap], to approximate the final form

of O(H) ⇡ 1; we hope to make each terms of H ⇠ 1. Therefore, the scaling factor should be

[10�1.5; 10�.5; 10�2; 10�2; 10�2.5]. Same as our previous settings, the lower and upper bounds

of the optimization system are (0.05, 0.05, 0.05, 0.05, 0.05) and (0.45, 0.45, 0.45, 0.45, 0.45), re-

spectively. Applying the factors and scale the new design variables as [w̃yk, h̃yk, h̃pm, h̃A, w̃gap] =

[10�1.5
wyk, 10�.5

hyk, 110�2
hpm, 10�2

hA, 10�2.5
wgap] and reoptimize the problem (the new code

for the reoptimization are also attached in the Appendix).

From the output we can deduce that the new Hessian H̃ is

H̃ =

2

666666664

25.9973 12.3112 2.0591 2.1765 4.3607

12.3112 6.7806 0.8421 0.9007 1.9928

2.0591 0.8421 1.0649 0.07509 0.2650

2.1765 0.9007 0.0751 1.0859 0.2859

4.3607 1.9928 0.2649 0.2859 1.6759

3

777777775

(2)

It can be deduced that the problem is no longer ill-conditioned. Also, surprisingly, the

scaled and original optimization both land on the same solution for the design variables:

(0.05, 0.05, 0.05, 0.1, 0.05).

To estimate the how scaling works for the cost module, we mainly investigate compute

time, condition number, number of function evaluations, and quality of the optimized solution

before and after the scaling.

Considering computation time, we observe that using scaling on the cost function allows

the optimization to run 87% faster while performing the same number of function evaluations.

4
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Considering the condition number, we can apply the Matlab® built-in function cond()

to compute the condition number of our Hessian, given by

(H) = ||H||||H
�1
|| (3)

Before the scaling the condition number is (H) = 7.144⇥ 105; and after the scaling the

condition is (H̃) = 6.271⇥10. It is obvious that the condition number dropped significantly

after scaling, indicating an e↵ective scaling.

Eventually, when looking at the quality of the optimization, the First-order optimality

could help us deduce. First-order optimality is a measure of how close a point x is to optimal

[4]. Here, in our approach, the objective takes the form

min cost(wyk, hyk, ...) (4)

the first-order optimality measure is the infinity norm (meaning maximum absolute value) of

max
i

|(�cost(geomtric vars.))i| = ||�cost(geomtric vars.)||1 (5)

The first order optimality drops from 7.45⇥ 10�9 to 1.33⇥ 10�15 after scaling, indicating

an extremely e↵ective scaling.

1.2 E�ciency and General Optimization Considerations

When it comes to e�ciency and power output, things become complicated. If the optimum

solution is taken as the one that optimizes e�ciency, then the situation is very di↵erent.

The optimization algorithm is run anew without scaling, and the resultant Hessian1 at the

optimum, is given by,

Hxopt =

2

666666664

4.891 �4.1653 1.150 0.0 �2.3737

�4.1653 9.9191 �1.1196 �0.0 6.2427

1.1501 �1.1196 0.8515 0 �0.5468

0.0 0.0 0.0 1 0.0

�2.373 6.2427 �0.5468 0.0 3.972

3

777777775

(6)

1that is, the numerical approximation for it using MATLAB’s built-in function (FD)
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- computed using finite di↵erencing. This looks fairly innocent, but it turns out that the

condition number is extremely large. That is,  = 5041. Also, since large and small numbers

are so sporadically distributed in the matrix, there is no easy way of finding a good scaling.

Rather, a systematic approach is undertaken. First, let us write up the new matrix in terms

of the scaling parameters, L. This is computed by taking first taking the outer product of

L with itself; then taking the Hadamard product between the resulting matrix and Hxopt

before the scaling. This yields

Ĥxopt =

2

666666664

4.891L2
1 �4.1653L1L2 1.150L1L3 0. �2.3737L5L1

�4.1653L1L2 9.9191L2
2 �1.1196L3L2 �0. 6.2427L5L2

1.1501L1L3 �1.1196L3L2 0.8515L2
3 0 �0.5468L5L3

0 0 0 L
2
4 0

�2.373L5L1 6.2427L5L2 �0.5468L5L3 0 3.972L2
5

3

777777775

(7)

It should be noted that this approach is just a suggestion of our own, whose sole purpose is to

bring down the computed condition number, at the given optimum. It builds on the Taylor

approximation to second order, where the function is assumed to behave quadratically along

the diagonal, and linear in both variables in the cross terms. Of course, there is no way of

guaranteeing that the scaling actually translates into something that is well approximated

by a Taylor series like that very far from the optimum2. Maybe, the actual objective func-

tion3 could even have a sort of delta-function like behavior up until right before the optimum.

Anyway, for optimizing the condition number, a numerical approach is used where we loop

through each component of L and optimize individually. The optimum is then fixed and

used for computing the optimum of the next component, and so forth. There will no doubt

be more intelligent ways to undertake a joint optimization of all the components and once4,

but this approach turns out to be extremely e↵ective too. As every other component is held

fixed, the condition number is plotted as the one in question varies. The optimum is then

determined graphically. As nice as the graphs look, let us skip ahead to the results though.
2should of course always be possible right at it
3this is recognized as a sort of abstract idea, since no objective function is actually defined analytically
4somewhat ironically, we could have used an advanced optimizing algorithm to optimize this
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The final scaling vector looks like this, L = [0.25; 0.6; 1; 0.15; 0.9]. The condition number

has thus been reduced from 5041 to 310. This is more impressive than it looks. Randomly

varying components of the scaling vector was attempted too. This was never able to yield

a condition number below 4000, so the systematic approach definitely proved itself useful.

Looking at the diagonal elements, Ĥi,i(xopt), there was not a lot to be gained. Ĥ2,2(xopt)

and Ĥ3,3(xopt) did vary by an order of magnitude, but all are already ⇠ O(1). Furthermore,

it turned out that trying to re-scale without considering the condition number almost always

increased it. Computation time only increased. All this may have seemed like overkill, as we

are not being asked for it anyway. However, it turned out we were in dire need of good scaling

as our problem is of a complexity which makes the computation time take hours otherwise.

When rerunning with the scaling, the condition number of the new optimum had come all

the way down to just 11.5. It converged with a time reduction of only 14% though, and the

quality of the optimum deteriorated considerably, going from an e�ciency of 3.15 · 10�5 to

8.8·10�6, in units of the scaling factor mentioned in report 3. This emphasizes an important

point, to which we will return in Multiobjective Optimization; the robustness of the gradient-

based method is extremely poor for our particular problem, unless settings are chosen which

make it run much too slow.

Due to the extreme degree of non-linearity in our problem, local minima will likely be plen-

tiful and deep. This owes partly to the fact that the modelling of the heat transfer is from

the two-dimensional heat di↵usion equation, where the heating time in worst case goes up

exponentially to the power of 2, as the solution of the time and position dependent temper-

ature is on a form similar to, K(t, x, y) = 1
(4⇡t)d/2

e
�|x�y|2/4t 5.

First of all though, the magnetic aspect of the problem makes it extremely non-linear. The

model has been programmed with adaptive evaluation boundaries, and when the width of

the active material decreases, the magnetic flux6 can become extremely small if the bounds

on the variables allows for a more complete exploration. In our project, we were ambitious

and allowed for the dimensions of the active material to change by two orders of magnitude
5The two-dimensional behavior will come into play when the width of the active material becomes small compared to the

width of the yoke. Combined with a large thickness of active material, the power output becomes as good as 0
6to the square of which power is proportional

7
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for most of the optimization we have done. As a first order approximation, that causes a

change in the power output of a 104 on a linear scale. Furthermore, this is just the obvi-

ous consequence of only wrapping our coil around a smaller rod; much more impactful, and

unpredictable, is how the magnetic vector potential reacts to these changes. The curl will

stay the same but how much flux ends up being guided around in the ”magnetic circuit”

is highly susceptible to change in any geometric parameter and extremely complicated from

the perspective of the governing equations. The magnetic field is by nature divergence-less

and rotational. It is also highly adaptive to changing geometry under the right permeability

conditions, as it may condense many orders of magnitude.

Both power and e�ciency depend on the magnetic simulation, and power furthermore de-

pends on the heating time.

The actual scaling to be used in multi objective optimization took this as a starting point at

was afterwards experimented with several times to get the best results for the multiobjective

optimization. In the end, the fastest computed Pareto front and the best results came from

running a multi-objective optimization based on a genetic algorithm, not a gradient-based

one. This was implemented with no scaling at all. With such a high degree of non-linearity

and unpredictable behavior, the genetic algorithm proved superior. As noted in report 3, it

was slower, but the results were also less prone to producing spurious conclusions.

2 Multiobjective Optimization

Select two objective functions for your project

Multiobjective optimization turned out to be extremely troublesome. At first, the AWS

and NBI methods were employed with SQP used for optimizing the weighted sum. This was

done in the two-dimensional spaces of e�ciency and power output, e�ciency and cost, and

power output and cost. We believe that both the AWS and NBI algorithms were successfully

implemented. However, despite our best e↵orts to tune these algorithms, we were unable to

get them to produce reasonable results within a reasonable time-frame and the algorithms

8
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took extraordinarily long times to run. We largely attribute this di�culty to the complicated

nature of our COMSOL-coupled objectives. The team concluded that MATLAB’s fmmincon

function and all of its algorithmic settings are poorly suited for our problem.

Multiobjective optimization of power output and cost turned out to be especially prob-

lematic. This could perhaps have been predicted from the start, although we must admit

that we were very optimistic at first. There are two main reasons for this, as we see it:

• Both objectives are extremely non-linear and the combination of them, even more so.

• Both objectives are largely co-directional up until a level of hard-to-resolve finesse, and

co-dependent by a myriad of mechanisms

The latter requires a bit of explanation. There are a few common features that will both

enhance the power output and the e�ciency. As has been explained in report 2, both of them

scale with the total magnetic flux squared and will thus benefit from increased height of the

active material. They will also both benefit from having a larger permanent magnet. As

long as we can change variables and improve both objectives however, we are simply not at

Pareto optimum. Getting to the point where one of them will have to hurt the other turns

out to be a matter of finesse which was too much for simple optimization tools to be able to

resolve to a level of7.

Consider on the other hand yoke widths that are large. Then the heating time and the

heat input will be increased, as the heat di↵usion becomes increasingly two-dimensional in

nature and more ”waste material” has to be heated up alongside the active material. At the

same time, this will mean that there is less fringing field, so that more magnetic flux can

be guided through the coil. Less fringing leads to more power output, which leads to more

e�ciency. At the same time, increased heating time leads to less power output and increased

heat input leads to less e�ciency. This is just taking the variation of one variable into con-

sideration and considering only the obvious e↵ects, and some of the feedback mechanisms.

The optimum where the sign of the e↵ect on one of the objectives di↵ers from that one the

other will come down to the exact nature of the non-linearities and will be highly sensitive
7this is mainly a critique of fmincon
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to the state of all the other variables.

Neither NBI or AWS could produce reliable results for multiobjective optimization of power

and e�ciency. We know that both of these methods do have their limitations and can pro-

duce erroneous results. Combined with the tendency of fmincon to produce spurious results

for these particular objective functions, it is not a huge surprise. AWS was implemented with

some success for optimizing e�ciency and cost jointly. It was painfully slow though, and a

full and evenly space Pareto front will only be available the morning after the deadline of

this report.

The team turned back to revisit the use of a genetic algorithm, which had previously been

discarded due to its unreasonably large compute time. The number of function evaluations

needed to be reduced for a genetic algorithm to suit our needs. So, the team turned to MAT-

LAB’s documentation to understand why the GA performed more function evaluations than

there were population members in each generation. We found that while the GA handles

linear constraints without trouble, nonlinear constraints rapidly increase the computational

cost of the algorithm. Where one function evaluation takes place per population member in

each generation with linear constraints, nonlinear constraints ”confuse” the algorithm and

require many more function evaluations per individual. The constraints related to length and

width of our thermomagnetic generator are in fact already linear, but had been represented

as nonlinear in MATLAB previously. The volume constraint is nonlinear. For the sake of

experimentation, we relaxed the volume constraint entirely to explore the GA’s performance.

We may linearize the volume constraint later on, or remove it as we feel it may be unimpor-

tant in the scheme of our problem. Although we were able to make fmincon work for single

objective optimizations, the success largely came from our ability to run the sqp algorithm

many times and cherry pick the best results. To further reduce computing cost, we reduced

the resolution of the mesh for both the thermal and the magnetic COMSOL model. During

this process we were careful to not make the mesh so coarse that our objective functions

returned inaccurate results.

The genetic algorithm applied with only linear constraints quickly showed promising re-

sults in a timely manner. Where previously we had observed poor results with runs lasting

10
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Figure 1: The Pareto front for optimizing both the cost and power output module. This is exactly what
we would expect. As cost is being minimized with an eye for power too, there will be a common interest in
removing active material from the structure, which is both the most expensive and results in exponentially
larger heating times (exponentially smaller power outputs), but as power output becomes dominantly weighed,
it will be more advantageous to morph active material into a horizontally elongated structure, rather than
removing it, which hurts the magnetic flux and thus the power.

24 hours or more, we now could achieve reasonable results in less than 30 minutes. We first

confirmed with single objective optimizations that the genetic algorithm o↵ered comparable

performance to fmincon with greater consistency. Then, we applied MATLAB’s gamultiobj()

function to our cost and power objectives and plot the resulting Pareto front in Figure 1.

We see that while cost is mostly linear with power, the optimal design does lie on a convex

point and corresponds to a final selected design vector of:

Yoke Width 0.0709

Yoke Height 0.3625

Permanent Magnet Height 0.1464

Active Material Height 0.1499

Gap Width 0.1313

And gives the results:

Cost = $1,694.4

Power = 33.8145

11
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The optimal point marked in Figure 1 This convex point could potentially be a result

of a high performing outlier from the optimization. However, we believe that the Pareto

front is likely accurate because the algorithm performed more than 5000 function evaluations

on a constant population of 35 individuals to gather the data. Had we realized that the

algorithm would run for so long, we would have reduced the function tolerance and increased

the population size to create a higher resolution curve. We plan to do this for the final

presentation and report. Note that while the cost axis represents accurate dollar amounts,

the power axis is on an arbitrary scale because per the setup of our problem, power is

multiplied by an unknown constant K. Note also that power is negative. This is because the

algorithm tries to minimize the objective, but we want to maximize power. Thus, we can

multiply power by -1 and represent maximum power by optimizing for the most negative

objective value. This approach is also taken with the e�ciency objective. The following

settings were used to create Figure 1:

1 funcTol = 1e-4;

2 conTol = 1e-5;

3 popSize = 35;

4 crossoverRatio = 1.2;

5 crossoverFraction = .8;

6 maxStallGenerations = 50;

For gamultiobj(), the algorithm is set to stop when the geometric average change in

Pareto spread across all generations is less than the function tolerance divided by maximum

stall generations. The above settings resulted in an impractically long computation time, and

the algorithm was halted after approximately eight hours and the data was used to create

the Pareto front in Figure 1.

It is an easy matter to take a point and show that it is non-dominated, and luckily, this

can be shown for every single point on our Pareto front8. The chosen point is marked in

figure 2. This figure contains the explanation as to why the point is no-dominated in its

caption.

Using what we learned from the dual-objective optimization of cost and power, the team

revised the MATLAB scripts to create a Pareto front for all three objectives: power, cost,

and e�ciency. The script and all helper functions used to create the three-objective Pareto

front are included in the Appendix. The same script was used with a modified objective
8- meaning that is actually a Pareto front
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Figure 2: Consider the green point on the Pareto front. This is clearly non-dominated, as can be shown
by drawing the blue arrows in the direction of decreasing cost and increasing power output. If we go along
that line, then we will only be able to go to points that have also increased in cost, or decreased in power,
respectively. The green point will thus always be optimal, as long as the particular weighing used to produce
it, is considered. For a particular niche in terms of weighing, no other point can beat it.

function to produce the two-objective optimization. The 3D Pareto front produced is shown

in Figure 3 and appears to be consistent with the 2D power-cost Pareto front when viewed

from its side. We attempted to rush the completion of this optimization and thus the result

does not show enough points along the Pareto front to draw a clear optimal line. The team is

excited to run the algorithm again with a higher population and lower tolerances to produce

a more complete graph for the final report and presentation.

Contributions

HW3:

• Q1: Mads: Writing & COMSOL/MATLAB integration, Problem formulation; Will:

COMSOL/MATLAB integration

• Q2: Hanfeng: Writing & graph, Heuristic algorithm, GA programming; Will: program-

ming that worked (Single objective GA), results generation, analysis and writing.

• Q3: Will: Main programming (cost, power output, and e�ciency), figures generation

(running from main program) results generation, & revision. Mads: Results analysis,
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Figure 3: 3D Pareto front of power, e�ciency, and cost. This was created with a rushed algorithm and did
not produce enough data points to be meaningful enough to draw conclusions from.

and writing. Hanfeng: Writing, programming & analysis for sensitivity analysis & single

objective optimization for cost, & graphic representation (schematics).

• General: Hanfeng: Beautiful figures (added by Will) & latex formatting. Putting up

website with results and project description

HW4:

• Q1: Hanfeng: Scaling for cost module & writing. Will: Programming for both modules,

editing & revising. Mads: scaling for the e�ciency module & writing.

• Q2: Will: Programming NBI, programming MOO GA, optimization running, results

analysis, writing. Mads: Programming, results analysis, writing. Hanfeng: Schematic

& Graphic representation, revision.

• General: Mads: Discussion on optimization considerations, SQP AWS programming.

Will: Extremely labour intensive and productive programming (added by Mads). Han-

feng: Latex formatting & schematics and the figures
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Appendix

TherMaG gradoptim L single scaling.m: Script for exploring design variable scaling

of di↵erent objective functions.

1 clear

2 clc

3 close all

4

5 % starting point for optimization

6 x0 = [.05;.1;.05;.05;.05]; % default

7 x0cost = [.15;.15;.05;.05;.05]; % cost

8 x0power = [.05;.45;.25;.15;.15]; % power

9 x0efficiency = [.05;.45;.25;.15;.05]; % efficiency

10

11 TolF = 1e-6;

12 TolX = 1e-6;

13 TolCon = 1e-6;

14

15 % Set nondefault solver options

16 options = optimoptions(’fmincon ’,’Algorithm ’,’sqp’,’FunctionTolerance ’,TolF ,’StepTolerance ’,

TolX ,’ConstraintTolerance ’,TolCon ,’PlotFcn ’,{@optimplotfval , @optimplotfunccount });

17

18 % set upper and lower bounds

19 lb = [.001, .001, .001, .001, .001];

20 ub = [.5, .5, .5, .5, .5];

21

22 % make L scaling vectors

23 L = [1; 1; 1; 1; 1];

24

25 % make anonymous functions

26 powerFcn = @(input) powerFcnSingleL(input , L);

27 efficiencyFcn = @(input) efficiencyFcnSingleL(input , L);

28 costFcn = @(cost) objee_scaling(cost , L);

29

30 % constants

31 V_max = .125;

32 L_max = .5;

33

34 % set linear constraints

35 A = [0, 1, 0, 0, 0; 2, 0, 0, 0, 1; 0, -1, 1, 1, 0];

36 b = [L_max; L_max; 0];

37

38 tic;

39
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40 % run the optimization

41 % CHANGE THIS TO THE CORRECT VARIABLE

42 [solution ,objectiveValue ,exitflag ,output ,lambda ,grad ,hessian] = fmincon(costFcn ,x0,A,b

,[],[],lb ,ub ,[], options);

43

44 unscaledTime = toc;

45

46 %% Run the above section once , then only run this section to check new scaling vectors

47

48 L_efficiency = [1; 10^( -3.5); 10^( -4); 1; 10^( -3.5)];

49 L_power = [1; 1; 10^( -.5); 1; 1];

50 L_cost = [10^( -1.5); 10^( -1); 1; 1; 1];

51

52 fprintf(’No scaling: The best solution is efficiency = %.8f, corresponding to a design

vector of: \n’,objectiveValue);

53 fprintf(’\n’);

54 disp(solution);

55 fprintf(’\n’);

56 fprintf(’This solution had the following simulation output info: \n’);

57 fprintf(’\n’);

58 disp(output);

59

60 eigs = eig(hessian);

61 maxeig = max(eigs);

62 mineig = min(eigs);

63 conditionNumber = abs(maxeig/mineig);

64

65 fprintf(’The unscaled hessian is:\n’);

66 fprintf(’\n’);

67 disp(hessian);

68 fprintf(’The unscaled condition number is %d’,conditionNumber);

69

70 powerFcn = @(input) powerFcnSingleL(input , L_power);

71 efficiencyFcn = @(input) efficiencyFcnSingleL(input , L_efficiency);

72 costFcn = @(cost) objee_scaling(cost , L_cost);

73

74 tic;

75

76 % run the optimization again with the new scaling

77 % CHANGE THE FUNCTION TO THE CORRECT VARIABLE

78 [scaledSolution ,scaledObjectiveValue ,scaledExitflag ,scaledOutput ,scaledLambda ,scaledGrad ,

scaledHessian] = fmincon(costFcn ,x0 ,A,b,[],[],lb ,ub ,[], options);

79

80 scaledTime = toc;

81

82 [realScaledPower , realScaledEfficiency] = efficiency_power_modules(scaledSolution);
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83 realScaledCost = objee(scaledSolution);

84

85 % CHANGE THIS TO THE RIGHT VARIABLE

86 realObjectiveValue = realScaledCost;

87

88 % CHANGE THIS TEXT TO THE RIGHT VARIABLE

89 fprintf(’Efficiency scaling: The best solution is efficiency = %.8f, corresponding to a

design vector of: \n’,realObjectiveValue);

90 fprintf(’\n’);

91 disp(scaledSolution);

92 fprintf(’\n’);

93 fprintf(’This solution had the following simulation output info: \n’);

94 fprintf(’\n’);

95 disp(scaledOutput);

96

97 eigs = eig(scaledHessian);

98 maxeig = max(eigs);

99 mineig = min(eigs);

100 scaledConditionNumber = abs(maxeig/mineig);

101

102 funcCountDiff = -(scaledOutput.funcCount - output.funcCount)/output.funcCount *100;

103 fvalDiff = -(realObjectiveValue - objectiveValue)/objectiveValue *100;

104 timeDiff = -(scaledTime - unscaledTime)/unscaledTime *100;

105

106 fprintf(’The scaled hessian is:\n’);

107 fprintf(’\n’);

108 disp(scaledHessian);

109 fprintf(’The scaled condition number is %d’,scaledConditionNumber);

110 fprintf(’\n’);

111 fprintf(’The scaled optimization found a %.2f percent smaller optimal value in the same

number of iterations and %.0f percent fewer function evaluations\n’,fvalDiff ,

funcCountDiff);

112 fprintf(’\n’);

113 fprintf(’The scaled optimization found a solution %.2f percent faster than the unscaled

optimization ’,timeDiff);

powerFcnSingleL.m: Helper function to return power.

1 function [power] = powerFcnSingleL(x,L)

2 [power ,~] = efficiency_power_modules_L_single_scaling(x,L);

3 end

e�ciencyFcnScaling.m: Helper function to return e�ciency.

1 function [efficiency] = efficiencyFcnSingleL(x,L)

2 [~, efficiency] = efficiency_power_modules_L_single_scaling(x,L);

3 end
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objee.m: The scaled objective function for running minimizing the cost of the TMG.

1 function f = objee(x)

2 % x = [h_A; w_gap; w_yk; h_yk; h_pm];

3 Gadolinium = 1.71553 e5; % $/m^3

4 Iron = 1.4804 e3; % $/m^3

5 Neodymium = 1.628 e5; % $/m^3

6 w_yk = 10^( -7)*x(1);%10^( -7)*

7 h_yk = 10^(1)*x(2);%10^(1)*

8 h_pm = x(3);%1*

9 h_A = 10^(1)*x(4);%10^(1)*

10 w_gap = 10^( -10)*x(5);%10^( -10)*

11 magnetArea = h_pm*w_gap;

12 activeMaterialArea = h_A*w_gap; % in reality , this would not be a solid mass

13 yokeArea = 2*w_yk*h_yk;

14 f = Gadolinium*activeMaterialArea + Iron*yokeArea + Neodymium*magnetArea;

15 end

geocon.m: The geometric constraint for running minimizing the cost of the TMG.

1 function [c,ceq] = geocon(x0)

2 x = x0;

3 inputmatrx = x;

4 h_A = inputmatrx (1);w_gap = inputmatrx (2);

5 w_yk = inputmatrx (3);h_yk=inputmatrx (4);h_pm=inputmatrx (5);

6

7 c(1) = h_yk *(2* w_yk + w_gap) - .125;

8 c(2) = h_yk - .5;

9 c(3) = (2* w_yk + w_gap) - .5;

10 c(4) = (h_A + h_pm) - h_yk;

11 ceq = [];

12 end

objee.m:

The unscaled objective function for running minimizing the cost of the TMG.

1 function f = objee(x)

2

3 Gadolinium = 1.71553 e5; % $/m^3

4 Iron = 1.4804 e3; % $/m^3

5 Neodymium = 1.628 e5; % $/m^3

6

7 w_yk = x(1);

8 h_yk = x(2);

9 h_pm = x(3);

10 h_A = x(4);

11 w_gap = x(5);

12
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13 magnetArea = h_pm*w_gap;

14 activeMaterialArea = h_A*w_gap; % in reality , this would not be a solid mass

15 yokeArea = 2*w_yk*h_yk;

16 f = Gadolinium*activeMaterialArea + Iron*yokeArea + Neodymium*magnetArea;

17 end

TherMaG GA Multi.m: The script used to run multiobjective genetic algorithm opti-

mizations.

1 clear

2 clc

3 close all

4

5 % set upper and lower bounds

6 lb = [.001, .001, .001, .001, .001];

7 ub = [.5, .5, .5, .5, .5];

8

9 % set optimization options

10 funcTol = 10^( -2.5);

11 conTol = 1e-5;

12 popSize = 30;

13 crossoverRatio = 1.2;

14 crossoverFraction = .8;

15 maxStallGenerations = 5;

16

17 options = optimoptions(’gamultiobj ’, ...

18 ’CrossoverFcn ’,{@crossoverheuristic ,crossoverRatio },...

19 ’FunctionTolerance ’, funcTol , ...

20 ’PopulationSize ’, popSize , ...

21 ’CrossoverFraction ’, crossoverFraction ,...

22 ’ConstraintTolerance ’, conTol ,...

23 ’MutationFcn ’,{@mutationadaptfeasible },...

24 ’MaxStallGenerations ’, maxStallGenerations ,...

25 "PlotFcn", {@gaplotPareto , @gaplotgenealogy , @gaplotscorediversity , @gaplotrankhist ,

@gaplotstopping },...

26 ’Display ’,’diagnose ’);

27

28 % constants

29 V_max = .125;

30 L_max = .5;

31

32 % set linear constraints

33 A = [0, 1, 0, 0, 0; 2, 0, 0, 0, 1; 0, -1, 1, 1, 0];

34 b = [L_max; L_max; 0];

35

36 % run the GA
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37 [solution , fval , exitflag , output , population , scores] = gamultiobj(

@powerCostEfficiencyMulti ,5,A,b,[],[],lb ,ub ,options);

powerCostE�ciencyMulti.m: A helper function returning all three objective values

for optimization.

1 function [evaluation] = powerCostEfficiencyMulti(input)

2

3 [power , efficiency] = efficiency_power_modules(input);

4

5 evaluation = zeros (3,1);

6 evaluation (1) = power;

7 evaluation (2) = efficiency;

8 evaluation (2) = objee(input);

9

10 end

e�ciency power modules.m: The objective function coupled with COMSOL to return

power and e�ciency.

1

2 function [power , efficiency] = efficiency_power_modules(vector)

3

4 % define constants

5 Cp_A = 450;

6 Cp_everythingElse = 3.5433 e6;

7

8 % extract design parameters

9 w_yk = vector (1);

10 h_yk = vector (2);

11 h_pm = vector (3);

12 h_A = vector (4);

13 w_gap = vector (5);

14

15 % run models to get outputs for result calculations

16

17 % open the thermal comsol model and run the study

18 thermalModel = mphopen(’therm_assign_3.mph’);

19

20 % set basic thermal model parameters

21 thermalModel.param.set(’yoke_width ’,w_yk);

22 thermalModel.param.set(’permmag_height ’,h_pm);

23 thermalModel.param.set(’activemat_height ’,h_A);

24 thermalModel.param.set(’yoke_height ’,h_yk);

25 thermalModel.param.set(’actperm_width ’,w_gap);

26
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27 % run the thermal model

28 thermalModel.study(’std2’).run;

29

30 % extract the solution (end of the time array)

31 time = thermalModel.result.numerical(’pev1’).getReal ();

32 heatTime = time(end);

33

34 % run the thermal model to find integrated temperatures

35 integratedTemperaturesActive = thermalModel.result.numerical(’int1’).getReal ();

36 T_int_active = integratedTemperaturesActive(end);

37

38 integratedTemperaturesEverythingElse = thermalModel.result.numerical(’int2’).getReal ();

39 T_int_everythingElse = integratedTemperaturesEverythingElse(end);

40

41 % open the magnetic comsol model

42 magneticModel = mphopen(’simple_for_assign_3.mph’);

43

44 % set basic magnetic model parameters

45 magneticModel.param.set(’yoke_width ’,w_yk);

46 magneticModel.param.set(’permmag_height ’,h_pm);

47 magneticModel.param.set(’activemat_height ’,h_A);

48 magneticModel.param.set(’yoke_height ’,h_yk);

49 magneticModel.param.set(’actperm_width ’,w_gap);

50

51 % compute flux before (mu = 1)

52 magneticModel.param.set(’mu_r’ ,1);

53 magneticModel.study(’std1’).run;

54 fluxBefore = magneticModel.result.numerical(’int1’).getReal ();

55

56 % compute flux after (mu = 20)

57 magneticModel.param.set(’mu_r’ ,20);

58 magneticModel.study(’std1’).run;

59 fluxAfter = magneticModel.result.numerical(’int1’).getReal ();

60

61 % calculate results

62

63 % compute power result

64 deltaFlux = fluxBefore - fluxAfter;

65 power = -deltaFlux ^2/ heatTime *1e8;

66

67 % compute efficiency

68 efficiency = -deltaFlux ^2/( Cp_A*T_int_active + Cp_everythingElse*T_int_everythingElse)*1

e11;

69

70 end
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