PERSONAL NOTES

Linear Algebra

Hanfeng Zhai

Disclaimer: These notes are intended solely for personal reference and study purposes. They represent my own understanding of the course material and may contain errors or inaccuracies. The content presented here should not be considered as an authoritative source, and reliance solely on these materials is not recommended. If you notice any materials that potentially infringe upon the copyright of others, please contact me at hz253@cornell.edu so that appropriate action can be taken. Your feedback is greatly appreciated.

Week
Concepts
Basic Concepts
$\left.\begin{array}{cc}\vec{a} & \vec{v}=\left[\begin{array}{c}v_{1} \\ \vec{v} \\ \vec{v} \\ \sim\end{array}\right] \\ \vdots & \text { chum vel. } \\ \overrightarrow{v_{m}}\end{array}\right]$

$$
a_{\bar{a}}=\left[\begin{array}{c}
a_{15} \\
a_{3 j} \\
i \\
a_{n j}
\end{array}\right]=\vec{a}_{j} \quad \vec{r}_{i}=\left[\begin{array}{c}
r_{i 1} \\
r_{i 2} \\
i \\
r_{i n}
\end{array}\right]
$$

it's a row, but looks like a on!".
think of all vectors as columns.

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & & \vdots \\
\vdots & \ddots & \vdots \\
a_{2 m} & \cdots & a_{m m}
\end{array}\right] \\
& A^{\top}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & & \vdots \\
\vdots & & a_{m m} \\
a_{1 m} & \cdots
\end{array}\right]
\end{aligned}
$$

Simple linear system.

$$
\left\{\begin{array}{ll}
2 x_{1}+3 x_{2}-x_{3}=4 . \\
x_{1}+2 x_{3}=3 \\
2 x_{2}+3 x_{3}=5
\end{array}, ~ \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right.
$$

$$
\begin{aligned}
& \vec{b}=\left[\begin{array}{l}
4 \\
3 \\
5
\end{array}\right] \Rightarrow A \cdot \vec{x}=\vec{b} \\
& \vec{B}_{i}=\overrightarrow{r_{i}} \vec{x} \\
& \hat{r} \vec{\imath}^{0} \\
& \Leftrightarrow b_{1}=2 x_{1}+3 x_{2}-x_{3}=4
\end{aligned}
$$

BLDG 120-59

Week 2-1
F- operations.
\rightarrow Sealers $\stackrel{0}{\circ} \stackrel{p .}{\mapsto}$ scalars
∇ Vectors. $\cdot \vec{x}+\vec{y} \Longleftarrow$ same wt orgaral.
*
\rightarrow product. $\vec{x} \vec{y}$

dot product.
∇ matrices.
thenar equation systems

$$
\left.\begin{array}{l}
A \underset{\sim}{x}=\underline{b} \\
A x=[
\end{array}\right]=\left[\begin{array}{ll}
\lambda_{1} & x \\
I_{1} & \underline{x} \\
\underline{I} & \underline{x}
\end{array}\right] \quad .
$$

\rightarrow organized by raids \rightarrow ito. Tours -organized by columns \Rightarrow in tams of unknowns

Example $\quad A \vec{x}=\vec{b}$ eq. rotational matrix.

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$$
\partial \vec{e}_{1}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] ; D \vec{e}_{2}=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]
$$

\rightarrow matrix multifteation by, column.

$$
\begin{aligned}
& Q \vec{a}_{1}=1 \vec{q}_{1}+0 \vec{q}_{2}=\vec{q}_{1}=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right] \\
& Q \vec{e}_{2}=0 \vec{q}_{1}+1 \vec{q}_{2}=\vec{q}_{2}=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]
\end{aligned}
$$

We have hence determined D:

$$
D=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

$<$ projection
Px

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

$$
p_{\vec{x}}=\vec{p}_{1} x_{1}+\vec{p}_{2} x_{2}=\left[\begin{array}{l}
p_{11} \\
p_{12}
\end{array}\right] x_{1}+\left[\begin{array}{l}
p_{21} \\
p_{22}
\end{array}\right] x_{2}
$$

$$
=\stackrel{\rightharpoonup}{e_{1}} x_{1}
$$

\rightarrow poojation matron $P=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
$\vec{x} \& P \vec{x}$ different direction \& length!

Vector-vector \& matix-vector product.
D linear combination.

$$
\begin{aligned}
a_{1} \vec{a}_{1}+c_{2} \vec{a}_{2}+\cdots c_{a_{n}} \vec{a}_{n} & =\sum_{j=1}^{n} a_{j} \vec{a}_{j} \\
& =\left[\begin{array}{l}
c_{j} a_{i j} \\
c_{j} a_{j} \\
i \\
g_{n j}
\end{array}\right]
\end{aligned}
$$

\rightarrow Matrix-Matrix. Multiplication.

$$
\begin{aligned}
& A B=[\text { mommy }]=[\text { 国 }] \\
& =\left[\begin{array}{ccc}
\vec{r}_{T}^{T} \vec{b}_{1} & \vec{r}_{1} \vec{b}_{2} & \cdots \\
\vec{r}_{\vec{r}}^{r_{1}} \vec{r}_{5} \\
\vec{r}_{1} & \cdots & \vdots \\
\vdots & \ddots & \vdots \\
\vec{r}_{4}^{T} \vec{b}_{5} & \cdots & \vec{r}_{4}^{T} \vec{b}_{5}
\end{array}\right]
\end{aligned}
$$

Definition
For scalars: $\quad a b=b a$
"order matters!"
for matrices. A, B. (assume square)
$A B \neq B A \quad($ does not cornute
not quaranteed in general).
Prone Post-Multiplication.
premultiply: operating on rows As * post multiply: operating on columAs $B A$

$A B$	$B A$
N	b
$P o s+$	$P r e$.

$\{* T A L\}$

- Identity Matrix; - Permutation Matrix.

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \Longleftrightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

D Matrix inverse.

$$
\begin{aligned}
& a x=b \quad \longrightarrow \quad x=b / a \\
& A \vec{x}=\vec{b} \longrightarrow \vec{x}=A^{-1} \vec{b}
\end{aligned}
$$

Definition:

$$
A A^{-1}=1 \quad \text { e } \quad A^{-1} A=I
$$

Find inverse:
using definition: $A A^{-1}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right]$

$$
A^{-1}=\left[\begin{array}{ll}
-2 & 1 \\
\frac{3}{2} & -1 / 4
\end{array}\right] \begin{aligned}
& \text { save it } \Leftarrow
\end{aligned}\left[\begin{array}{l}
9+c c=1 \\
3 a+4 c=0 \\
b+2 d=1 \\
3 b+1 d=0
\end{array}\right.
$$

\downarrow test it.

$$
A^{-1} A=I
$$

* both statements have to be true.

Rotation Matrix.

$$
\begin{gathered}
\theta=\left[\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \rightarrow Q Q Q^{-1}=I \\
\left(Q^{-1}=\left[\begin{array}{cc}
\cos (-\theta) . & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right]\right.
\end{gathered}
$$

Projection - does not exist. Cannot find
A^{-1} not exist $\rightarrow A$ non'-sinqular
Proof: A^{-1} exists If $A \vec{x}=\vec{b}$ has \int a unique $\sin t \operatorname{tin}^{2}$
two proofs
5 both are valid
$\geq A^{-1}$ exists, $\rightarrow A^{-1} A=1$.

$$
\begin{aligned}
& A \vec{x}=\vec{b} \\
& A^{-1}(A \vec{x})=A^{-1} \vec{b} \\
& \vec{x}=A^{-1} \vec{b}
\end{aligned}
$$

if \vec{y} is also a solution:

$$
\vec{y}=A^{-1} \vec{b}
$$

$\vec{y}=\vec{x}$ the sold is unique.
If \vec{b} has a unique \vec{x}. then A^{-1} exist.

Assume $\vec{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \quad \vec{l}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

$$
\begin{aligned}
& \rightarrow A^{-1}=\left[\begin{array}{ll}
\overrightarrow{c_{1}} & \overrightarrow{C_{2}}
\end{array}\right] \\
& A A^{-1}=A\left[\begin{array}{ll}
\overrightarrow{c_{1}} & \overrightarrow{C_{2}}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \Rightarrow\left\{\begin{array}{l}
A \vec{C}_{1}=\vec{a}_{1} \\
A \vec{c}_{1}=\vec{e}_{2}
\end{array}\right.
\end{aligned}
$$

Week $2-2$.

$$
\text { Definitions }\left\{\begin{array}{l}
\text { notations, } \\
\text { simar, wee, matres. } \\
\text { oil \& now }
\end{array}\right.
$$

Norm:

$$
\vec{z} \in \mathbb{R}^{m}
$$

tampore-a objects
Nor to $H \vec{x} \|_{0}$
Maximum Norm $l_{\text {oo }}=\|\vec{x}\|_{o \infty}$
Taxi-Cal

Matrix Norms

$$
A \bar{x}^{\prime} \in \mathbb{R}^{m \times n}
$$

Froberius Norm: $L_{F}=\|A\|_{F}=\sqrt{\sum_{j} \sum_{i=1} \theta_{i}^{2}}$

Inanced Norms
\qquad
$\|A\|_{0}=\max \sum_{j=1}^{n}\left|a_{i j}\right| \rightarrow$ maximum $a b s$

$\|A\|_{1}=\max \sum_{i=1}^{m}\left|a_{i j}\right| \rightarrow A \operatorname{sotman} \sin +A$
properties of norms $\|\cdot\|$
$-\|A\| \geq 0, \quad\|\geq\|_{2}$

- $\|A\|=0$ IF $A=0 \cdot \&\|\vec{x}\|=0$. IF \vec{x}
$-\|\alpha A\|=|\alpha|\|A\|$ and $\|\alpha \vec{x}\|=\mid \alpha\|\vec{x}\|$
$-\|A+B\| \leq\|A\|+\|B\| v \quad\|\vec{x}+\vec{y}\| \leq\|\overrightarrow{\vec{x}}\|+\|\overrightarrow{\vec{y}}\|$
$-\|A B\| \leq\|A\|\|B\| \sim-\left\|x^{2} y\right\| \leq\|\vec{x}\|\|y\|$
$-\|A \vec{x}\| \leqslant\|A\| \vec{x} \|$

Temperature distribution

$$
\vec{F}=\left[\begin{array}{c}
T_{1} \\
T_{2} \\
\vdots \\
T_{n}
\end{array}\right]
$$

bribe linear system: $A \vec{T}=\vec{C}$

* permutation for lax marcie

Whats the operation?
Which rows \& columns to fly Computational complexity
theserfeal analysis of costs vector-vector product

$$
\vec{x}^{\top} \vec{y}=\sum_{i}^{\frac{\nu_{n}}{1}} x_{i}, \longrightarrow(2 n-1) f_{l o p}
$$

Gauss Elimination

$$
\left\{\begin{array}{l}
x_{1}-3 x_{2}+x_{3}=4 \\
2 x_{1}-8 x_{2}-8 x_{3}=-2 \\
-6 x_{1}+3 x_{2}-15 x_{3}=9
\end{array} \Rightarrow A \vec{x}=\vec{b}\right.
$$

$A \rightarrow A^{\prime} \rightarrow A^{\prime \prime}$

$$
A \vec{x} \equiv \vec{b}
$$

$$
\tau \vec{x}=\vec{d} \longrightarrow \vec{x}
$$

\rightarrow, wipter-riaungular morefix
\$ Interpreter Gaussian Elimination in a more general sense.
Thane formation: $A \rightarrow A^{\prime} \rightarrow A^{\prime \prime} \rightarrow \cdots \rightarrow A^{n-1}=U$

$$
A \rightarrow A^{\prime}, \quad A^{\prime}=C_{1} A
$$

- pre-mustiphication.

$\Lambda^{\prime \prime} \rightarrow A^{\prime \prime} \Rightarrow$ interpret this Step

$$
A^{\prime}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22}^{\prime} & a_{33}^{\prime} \\
0 & a_{32}^{\prime} & a_{33}^{\prime}
\end{array}\right] \rightarrow A^{\prime \prime}=\left[\begin{array}{ccc}
a_{11} & a_{12}^{\prime} & a_{13}^{\prime} \\
0 & a_{22}^{\prime} & a_{32}^{\prime} \\
0 & 0 & a_{33}
\end{array}\right]
$$

$$
C_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -a_{32}^{\prime} / a_{32}^{\prime} & 0
\end{array}\right]
$$

$$
U=A^{\prime \prime}=C_{2}\left(C_{1} A\right)
$$

\downarrow
Upper triangular matrix.
-assume C_{2} invertible,

$$
C_{2}^{-1}=C_{2}^{-1} C_{2}\left(C_{1} A\right)
$$

$\rightarrow \sim \sim$

$$
C_{1}^{-1} C_{2}^{-1} V=A
$$

The result: $\left(C_{1}^{-1} C_{2}^{-1}\right) U=U U=A$.

What are C_{1}^{-1} \& C_{2}^{-1} ?

- what is $L=\left(C_{1}^{-1} C_{2}^{-1}\right)$?
check C_{1}, a_{1} inverses
* Gaussian Elimination in operation form is a factorization of $A=A=L U$

$$
A \vec{x}=\angle V \vec{x}=\vec{b}
$$

Solution of Linear system $A \vec{x}=\vec{b}$
\rightarrow factorization $A=L U$
\rightarrow Solve $L \vec{y}=\vec{b} \longrightarrow$ get \vec{y}
\Rightarrow solve $V \vec{x}=\vec{y}, \longrightarrow$ get \vec{x}
LU factorization is essentially Ganssion Etraninian. \#Why is LU useful? because we do hor need to change \vec{b} (different from Gaussian firm.) Compute inverse $A A^{-1}=1$

Date.
No.

$$
A[\|\|\|=[1]
$$

\rightarrow decoupled to many linear systems
II
prove LU factorization

$$
Z=D C^{\top}=[
$$

$$
\begin{aligned}
& \left.\therefore A=L V=\Delta D L^{\top}\right) \\
& \therefore A=\sqrt{D} \sqrt{D} \\
& \therefore A=L \sqrt{D} \sqrt{D L^{\top}}=(L \sqrt{D})(\sqrt{D L})^{\top}
\end{aligned}
$$

essentially: applying $L O$ decomposition to bath A and A^{\top}.

- Verve
- marne
-ma that
baok ubstitutiton. $\begin{aligned} & \text { V } \\ & \vec{x}=\vec{b} \\ & 2 \text { compressed }\end{aligned}$

$$
x_{i}=\frac{1}{u_{i i}}\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right)
$$

tatceaway. the compurationat complexioy for LU factorization is smallen the $G E$

$$
\theta\left(n^{2}\right) \quad \theta\left(n^{3}\right)
$$

matmat $\rightarrow O\left(n^{3}\right)$
Week 2-3
Gratus Simintion

$$
A N\left[\begin{array}{cccc}
2 & 1 & -1 & 8 \\
0 & 1 & -0.5 & 2.5 \\
0 & 0 & 3.5 & 5.5
\end{array}\right]
$$

Usique of the LU Decompolion for $A=U$

$$
\begin{aligned}
& A=L_{1} U_{1}=L_{2} L_{2} \\
& \text { on } U \\
& \text { row openations }
\end{aligned}
$$

$$
L_{2}^{-1} L_{1} U_{1}=U_{2} \cdot L_{2}^{-1} L_{1}=C_{2} L_{1}^{-1}
$$

Date.
No.

$$
\begin{aligned}
& L_{2}^{-1} L_{1}=I \\
& \text { ore the same }
\end{aligned}
$$

by the uniquenes of inverse
17 offforton equation.

$$
a \frac{\partial^{2} u}{\partial x^{2}}=0
$$

11 discreflee

$$
\frac{\partial^{2} u_{i}}{\partial x^{2}} \approx \frac{u_{i+1}-2 u_{i}+u_{i-1}}{\Delta x^{2}}
$$

G mesh size.

$$
A=\left[\begin{array}{cccc}
-2 & 1 & & \\
1 & -2 & 1 & \\
& 1 & -2 & \cdots \\
& & & \ddots
\end{array}\right]
$$

wen we hate
in MATLAB L poots $=0$

) comporte IU devomposition $[,,(, P]=\ln (A)$ sin (A)

L, prermarafon matr DD

Space matrix of A, L, U

$$
\mathbb{N}
$$

Sparsity \& LII Decomposition

- Spare Storage Format

There point representation

TA section
$Q:$ linear Algebra?
\downarrow
linear combinations.
Defoe Given $V_{1}, \ldots 1$, Um, $\left(n\right.$-vectors ir of $\left.\mathbb{R}^{n}\right)$.
and $\alpha_{1}, \ldots, \alpha_{m}$
a liner combination of ψ_{4}, \ldots, them is
a vector of twee form

$$
w=\alpha_{1} v_{1}+\alpha_{1} v_{2}+\cdots+\alpha_{m} v_{m}
$$

Example

$$
\begin{aligned}
& v_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad V_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& \begin{array}{l}
w=4 v_{1}-2 V_{2}
\end{array}=\left[\begin{array}{l}
4 \\
4 \\
4
\end{array}\right]-\left[\begin{array}{c}
2 \\
2 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
2 \\
-2 \\
4
\end{array}\right]
\end{aligned}
$$

Big pact of what weill do
explore cen of firemen comb
For example, we focus on solving linear Systems, But this is Just answering wether a vector, \vec{b}_{j} an be expressed as a linger combination of combs of A

Mat - veer prod intepretation

$$
=\left[\begin{array}{lll}
\vec{a}_{1} & \vec{a}_{2} & \cdots
\end{array} \vec{a}_{n}\right]
$$

Date.
No.

$$
A x=\left[\begin{array}{llll}
\overrightarrow{a_{1}} & \overrightarrow{a_{1}} & \cdots & \overrightarrow{a_{n}}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

$$
=x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\cdots+x_{n} \overrightarrow{a_{n}}
$$

Therefore, solving for $A x=b$ is equivalent to finding offs. $x_{1}, x_{2}, \ldots, x_{n}$ sit.

$$
x_{1} \overrightarrow{a_{1}}+x_{i} \overrightarrow{a_{2}}+\cdots+x_{n} \overrightarrow{a_{n}}=\vec{b}
$$

i.e., sit. \vec{b} is a lin comb. of colts of A I (I) as, a motiveing emmeple Sway compere $12=x+i y$.
with ar $\in \mathbb{R}$, and $i=\sqrt{-1}$,

1) Addition

$$
z_{1}+z_{2}=z_{2}+z_{1}
$$

(comunatativity)

$$
\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{0}\right)=\left(x_{1}+x\right)+i\left(y_{1}+y_{1}\right)
$$

$$
\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right)
$$

$($ associutionty)
$\begin{gathered}Z+0 \\ Z_{m}\end{gathered}=0+Z_{1}=Z_{1}$ (odlirive identity)
For every complex Z_{1}, we have
$-z_{1}$ and $z_{1}+\left(-z_{1}\right)=0$ (addirtue inv.)
\# multiplication

- Complex mil. real imanber

Date.
No.
2) Scalar muntippreapion

Gin any $\alpha \in \mathbb{R}$, ne cam multiply

$$
\begin{aligned}
\alpha_{z_{1}} & =\alpha(x+i y) \\
& =\alpha x+i(\alpha y)
\end{aligned}
$$

$$
\alpha\left(z_{11}+z_{n}\right)=\alpha^{Z} z_{11}+\alpha^{r} z_{2}
$$

(distribution poop. I)

$$
\left(\alpha_{1}+\alpha_{2}\right) z_{1}=\alpha_{1} z_{1}+\alpha_{2} z_{1}
$$

(distribution prop II)
defines er a vector spine

$$
4
$$

Goldithan scaler, add operarmen
fay tathoaray Abstract
nile and well-known properties so we can verognize common structure in a
myriad of difeerere scenarios
Ley Addition and scalar punt, are expertly what is needed to for linear comb. I Def'n (informal) a vector space is any sots of objects st the linear comb. of amy forte sens $V_{1}, V_{2}, \ldots, V_{n}$ is an element of V

Deft A set $V_{i s}$ a reit vector space (uss.) if there is a condition. operation + and a saber mull * sit

1) $v+w=w+v \quad$ (commuriviey)

$$
\text { 27. }(v+w)+u=v+(w+u)
$$

(associaetriey)
3) there is an elf labored o, sit
$v+0=0+v=v \quad$ (additive ias.)
4) there is v. sit

$$
v+(-v)=(v)+v \text { (blither inv) }
$$

5) for any $\alpha \cdot \beta \in \mathbb{R}$, ne hove $(\alpha+\beta) v=\alpha \cdot v+\beta \cdot \nu$ $\alpha *(v+w)=\alpha \cdot v+\alpha \cdot w^{2}$ Examples
6) \mathbb{R}, \mathbb{N} and \mathbb{R}^{n}
7) $\{0\}$.
Q. How many dint. can aus have? Ore ($\{0\}$) or infinitely many
8) The set of ail m an mativeres Zero matrix $\left[\begin{array}{lll}0 & \cdots & 0 \\ 1 & \ddots & 1 \\ 2 & \cdots & 0\end{array}\right]=z \operatorname{eror}(m, n)$

Date.
No.
4) The set of all pelynomids of degree up to n

$$
V=\left\{\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{n} x^{n} \mid \alpha_{j} \in \mathbb{R}\right\}
$$

Take

$$
\begin{aligned}
& P_{1}=\alpha_{0}+\alpha_{1} x+\cdots+\alpha_{n} x^{n} \\
& P_{2}=\beta_{0}+\beta_{1} x+\cdots+\beta_{n} x^{n} \\
& P_{1}+P_{n}=\left(\alpha_{0}+\beta_{0}\right)+\left(\alpha_{1}+\beta_{1}\right) x+\cdots \\
& \quad+\left(\alpha_{n}+\beta_{n}\right) x^{n}
\end{aligned}
$$

Zero demit

$$
\begin{aligned}
& 0=0=0+0 x+0 x^{2}+\cdots+0 x^{n} \\
& \frac{1}{\mathbb{R}}
\end{aligned}
$$

Scaler multi

$$
4 \Gamma_{1}=4 \alpha_{0}+\left(4 \alpha_{1}\right) x+\cdots+\left(4 \alpha_{n}\right) x^{n}
$$

V.S. related mationes.

Given an man marion A

1) Define the col'n space of: A $\operatorname{col}(A)$ is the set of all lin, $\operatorname{com} b$. of coins, of A. $l_{1} q_{1}$

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

$$
\cos (A)=\left\{\left.\alpha\left[\begin{array}{c}
1 \\
0 \\
1
\end{array}\right]+\beta\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \right\rvert\, \alpha, \beta \in \mathbb{R}\right\}
$$

$$
=\left\{\left.\left[\begin{array}{c}
\alpha+\beta \\
\beta \\
\alpha
\end{array}\right] \right\rvert\, \alpha, \beta \in \mathbb{R}\right\}
$$

2) Def'n The row space of A, row (A) is set of all bin. comb. of rows of A
eq. A as above

$$
\begin{array}{r}
\alpha,(A)=\left\{\alpha\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\rho\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\gamma\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\} \\
\alpha, \beta, \gamma\}
\end{array}
$$

$$
\equiv\left\{\left.\left[\begin{array}{c}
\alpha+\gamma \\
\alpha+\beta
\end{array}\right] \right\rvert\, \alpha, \beta, \gamma \in \mathbb{R}\right\}
$$

3) Def'n the milspane of A, null (A)
is

$$
V=\{x \mid A x=0\}
$$

Excise. Why this indeed is a vs.
2
F ow to show our set is a v.s?

A:- If you recoghima your sot is a subset of a known U.S.
then all you need is
1). Zero ell. belongs to your set!
2) for andy x, y, in you set, ष乐py

Wen k 4-1

$$
\begin{aligned}
A_{z} & =A(\alpha x+\beta-y) . \\
& =\alpha(A x)+\beta\left(A_{y}\right) \\
& =\alpha \cdot 0+\beta \cdot 0 \\
& =0
\end{aligned}
$$

Example
Given man A, check then

$$
\mathcal{N}(A)=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}
$$

Fire notice $N(A) \subseteq \mathbb{R}^{n}$; every x et. $A x=0$ of r n-vector in \mathbb{R}^{n} ! Now notice that

$$
\left.A 0=[]\left[\begin{array}{l}
0 \\
0 \\
j
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right] \begin{array}{l}
0 \\
0 \\
0 \\
j
\end{array}\right]
$$

Now welles chow the sang linear \Rightarrow continuation. of y y. at prongs to ate hand proc $N(A)$. So we alto than riA)

Date.
No.

\rightarrow nonempty $\rightarrow A_{x}=0$ alwoups loos at least one a durian, nomoly the zero vector $\overrightarrow{0}$.
Poor closure prop.)
\rightarrow the set is closed under smear combing, ion, if you find a non-zero sola, there has to be Tafinetery many (distinct stan)

Example:
Say, $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$ \qquad Notice that $A\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

So, $\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right] \in N(A)$ and therefore $\left[\begin{array}{c}2 \\ -2 \\ 0\end{array}\right],\left[\begin{array}{c}\pi \\ -\pi \\ 0\end{array}\right],\left[\begin{array}{c}1 / 3 \\ -1 / 3 \\ 0\end{array}\right]$, ate., do belong to $N(A)$

Definition Given a list, $v_{1}, \ldots, v_{\text {in }}$ of vectors in $\sqrt{ }$, the span of v_{1}, \cdots, v_{m}. is defined as

$$
\begin{aligned}
& \operatorname{Span}\left(v_{1}, \cdots, v_{m}\right)=\left\{\alpha_{1}\right)\left(1+\cdots+\alpha_{m} v_{m} \mid\right. \\
& \left.\alpha_{1}, \cdots, \alpha_{m} \in \mathbb{R}\right\}
\end{aligned}
$$

(set of all lin. comb. of v, \cdots, vm).
Example
From lase time, given an man A_{1}

$$
\operatorname{Col}(A)=\left\{\alpha_{a_{1}}+\cdots \cdot \alpha_{n} \vec{a}_{n} \mid \alpha_{1}, \cdots, \alpha_{n} \in \mathbb{R}\right\}
$$

col. space of A set of lin, comb of the cons of A)

Now,

$$
\operatorname{col}(A)=\operatorname{span}\left(\stackrel{\rightharpoonup}{a_{1}}, \overrightarrow{a_{2}}, \cdots, \overrightarrow{a_{n}}\right)
$$

Also,

$$
\operatorname{row}(A)=\operatorname{pan}\left(\vec{r}_{1}, \overrightarrow{r_{2}}, \cdots, \vec{r}_{n}^{\prime}\right)
$$

$$
A\left[\begin{array}{c}
-\vec{r}_{1}- \\
\vdots \\
-r_{m}-
\end{array}\right]
$$

tact:
For amy $V_{1, \ldots}, v_{m}$ in a vo. V_{1} $\operatorname{span}\left(r_{1}, \ldots, r_{m}\right)$ is always a u. s_{1}.
P.f. (Sketch).

1) Contains all possible lin, comb, so
in particular we can get $\alpha_{1}=\ldots=\alpha_{m}=0$. and rote:

$$
0 i v_{1}+\cdots+0 \cdot v_{m_{1}}=0 \quad \epsilon \operatorname{span}\left(v_{1}, \ldots, v_{m}\right) .
$$

2). lin. Comb. are tactuded by defiorion c_{0} in paricentar $\alpha x+\beta y \in \operatorname{span}\left(v_{1}, \cdots, r_{m}\right)$ for amy $x, y \in \operatorname{span}\left(v_{1}, \ldots, \sqrt{m}\right)$
Fact: In fact, span $\left(v_{1}, \ldots, v_{m}\right)$ is the smallest v.s. containing r_{1}, \ldots, r_{m}. Key: For amy vector space, V_{1} I caen alnamp. find a list v_{1}, \ldots, v_{m}, sit., $V=\operatorname{span}\left(V_{1}, \ldots, V_{m_{n}}\right)$ (spamming lin (set)

Example (Geometric interpetaifion of span)

$$
\operatorname{span}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)=\{[0]\}
$$

Date.
No.
\qquad

$$
\rightarrow \underset{\operatorname{span}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)}{\operatorname{sy})}=\left\{\left.\left[\begin{array}{l}
\alpha \\
\alpha
\end{array}\right] \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

Date. No.

- Example

$$
\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=x y-p \operatorname{pan}
$$

Linear Independence:
Souping that every v.S. has a spanning list means that for any I is a given USS. V, so som $V=\operatorname{span}\left(\sqrt{V_{1}}, \cdots, V_{m}\right)$ 7 car always find sabers $C_{1}, \ldots, C_{m}, Q_{1}$,

$$
V=C_{1} r_{1}+\cdots+C_{m} V_{m}
$$

Q: Is these orly one way to decrier V^{2} A: not always.
Croppose you find other coors, d.... , dim. 1 Sit.

$$
v=d_{1} v_{1}+\cdots+d_{m} v_{m} .
$$

So, we wave

$$
\begin{aligned}
& G_{1}+\cdots+C_{m} b_{m}=r \\
& =d_{1} b_{1}+\cdots-1 d_{m} r_{m} .
\end{aligned}
$$

This is squintest to saying, then

$$
\left(o_{1}-d_{1}\right) r_{1}+\ldots+\left(c_{M}-d_{m}\right) r_{M}=0
$$

$$
\mathbb{I I}
$$

Implied liar indepanderfé...?
Note: if $c_{1}=d_{1}=\cdots=c_{m=}=d_{m}=0$, then actually description is unique!
Deffin A list v_{1}, \ldots, V_{n} is
linearly independent (lin. int) if the only linear combination of r_{1}, \ldots, r_{m} :

$$
\alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m}
$$

resulting in zero. is $\alpha_{1}=\ldots=\alpha_{m}=0$
Reminder

$$
H \omega 2-10 / 20
$$

Exam. - $10 / 25$
Monday.
-Subspaces, span, lina. ind.
Today.

- Basis, dimaxion, rank.
- Determinants.

Refl

A line of vecs v_{1}, \ldots, v_{m} in a uss. V_{1} is lin. ind. if the only linear Combination of v_{1}, \cdots, v_{m} resulting in $\overrightarrow{0}$ is the trivial comb.
tevery coif. is zero. In other mounds, V_{1}, \ldots, V_{m} is livery independent.).

$$
\alpha_{1} v_{1}+\cdots+\alpha_{m} v_{m}=0 .
$$

implies $\quad \alpha_{1}=\cdots=\alpha_{m}=0$.
Example.
If $v_{1} \neq 0$, then v_{1} is lin. ind.
The vees v_{1}, v_{2} ane lin. ind, If they ave not scalar milt. of each other.

Week 3-1
Polynomid Interpolation

$$
\begin{aligned}
q & =\alpha_{1}+\alpha_{2} x+\cdots+\alpha_{n} x^{n-1} \\
& =\sum_{j=1}^{n} \alpha_{j} x^{j-1}
\end{aligned}
$$

Pobbem = find α_{j}
fram 4 observoitions

$$
\left\{\begin{array}{l}
y_{1}=\alpha_{1}+\alpha_{2} x_{1}+\alpha_{3} x_{1}^{2}+\alpha_{4} x_{1}^{3} \\
y_{2}= \\
y_{1}= \\
y_{4}=
\end{array}\right.
$$

build cubic interpolent: $y=\alpha_{1}+\alpha_{2} x+\alpha_{2} x^{2}+\alpha_{4} x^{3} \Longrightarrow$ problem, $\left[\begin{array}{cccc}1 & 1 & 1^{2} & 3 \\ 1 & 8 & 8^{2} & 3 \\ 1 & 10 & 10^{2} \\ 1 & 16 & 16^{2}\end{array}\right]\left[\begin{array}{l}\alpha_{1} \\ \alpha_{1} \\ \alpha_{3} \\ \alpha_{4}\end{array}\right]=\left[\begin{array}{c}1 \\ 8 \\ 8 \\ 16\end{array}\right] \rightarrow A \vec{\alpha}=\vec{y}$ we Geuts Stinination.

$$
\overrightarrow{2}=[]
$$

Date.
No.

$$
A=[] \Rightarrow \cdots \rightarrow\left[\begin{array}{lll}
\ddots & 1 & \\
0 & \vdots \\
0 & 0
\end{array}\right]
$$

consider stytent:

$$
A \vec{x}=[\quad \vec{x}=\vec{b}=[]
$$

When Gamsian Stimimietion dreos not worth

$$
\underline{I I}
$$

Swith the tow

* We can use permartation metrito to smap rous
for $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 5 \\ 4 & 6 & 8\end{array}\right] \quad P=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
Produac $P A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 5 \\ 4 & 6 & 8\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 1 \\ 4 & 68 \\ 2 & 2 & 5\end{array}\right]$

$$
P_{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
4 & 6 & 8 \\
2 & 2 & 5
\end{array}\right] \rightarrow A^{\prime}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 4 \\
0 & 0 & 3
\end{array}\right]
$$

* Pivoting is not unique

$$
\hat{p}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \text { swap } 151 \& \dot{3}^{01} \text { row }
$$

$$
\tilde{P A}=\left[\begin{array}{lll}
1 & 6 & 8 \\
2 & 2 & 5 \\
1 & 1 & 1
\end{array}\right]
$$

Swap th $1^{\text {st }}<3^{\text {rad }}$ rout He matrix A is $n-1$ invertible

Given system of equations

$$
A \vec{x}=\vec{b} ; A \in \mathbb{R}^{n \times n}
$$

GE transforms: $A \rightarrow A^{\prime} \rightarrow A^{\prime \prime} \rightarrow \prime \prime \rightarrow V$ "Withe piping" requires additional step:

$$
A \rightarrow P_{1} A \rightarrow A^{\prime} \rightarrow \Gamma_{2} A^{\prime} \rightarrow A^{\prime \prime} \rightarrow \cdots \rightarrow U
$$ fo step: P. $A \rightarrow A^{\prime} \equiv A^{\prime}=C_{1} P_{1} A$

$$
2^{\text {nd }} \text { step: } P_{2} A^{\prime} \Rightarrow A^{\prime \prime} \equiv A^{\prime \prime}=G B A^{\prime}
$$

$$
=C_{2} p_{2}\left(C_{1} R_{1} A\right)
$$

How do ne proceed to $A=L U$?
Assume $C_{1}^{-1}, C_{2}^{-1}, \cdots$

$$
\begin{aligned}
& A^{\prime}=C_{1} A \rightarrow C^{-1} A^{\prime}=A \\
& A^{\prime \prime}=C_{2} A^{\prime} \rightarrow C_{2}^{-1} A^{\prime \prime}=A^{\prime}
\end{aligned}
$$

$\xrightarrow{\text { equivalent }}$

$$
C_{1}^{-1} C_{2}^{-1} A^{\prime \prime}=C_{1}^{-1} A^{\prime}=A
$$

Assume $\left(C_{1} P_{1}\right)^{-1},\left(C_{2} P_{2}\right)^{-1} \cdot \cdots$

$$
\begin{aligned}
& A^{\prime}=C_{1} P_{1} A \rightarrow\left(C_{1} P_{1}\right)^{-1} A^{\prime}=A \\
& A^{\prime \prime}=C_{2} P_{2} A^{\prime} \rightarrow\left(C_{2} P_{2}\right)^{-1} A^{\prime \prime}=A^{\prime}
\end{aligned}
$$

What is the inverse of a permutation mat. What is Tiverso of $\left(C_{1} P_{1}\right)^{-1}<p^{-1}=p$ $C_{1}\left(C_{1} P_{1}\right)^{-1}=P_{1}^{-1} C_{1}^{-1}=P_{1} C_{1}^{-1} \quad$ How sop" \# operator perspective

Date
No.

$$
\begin{aligned}
A^{\prime}=a_{1} P_{1} A & \rightarrow\left(C_{1} P_{1}\right)^{-1} A^{\prime} \\
& =P_{1} C_{1}^{-1} A^{\prime}=A .
\end{aligned}
$$

Premurtpy $P_{1}^{-1}: P_{1}^{-1} P_{1} C_{1}^{-1} A^{\prime}=C_{1}^{-1} A^{\prime}$

$$
=P_{1}^{-1} A=P_{1} A
$$

Tire step of $G E$ priority)

$$
\left(\begin{array}{l}
D \quad C_{1}^{-1} A=P_{1}^{\prime} A \\
(2) C_{2}^{-1} A^{\prime \prime}=P_{2} A^{\prime}
\end{array}\right.
$$

if you follow all the stops.

$$
\left(C_{1}^{-1} C_{2}^{-1} \cdots C_{n-1}^{-1}\right) U=\left(P_{n} P_{n-1} \cdots P_{1}\right) A
$$

$$
L U=P_{A} \Psi_{\#}^{t}
$$

tow swaps
(permutation).
Zoo pivots can be resolved of pivoting $\tilde{p} A$

Dimother icsine limited precision

$$
\begin{array}{r}
\text { system } A=\left[\begin{array}{cc}
0.01 & 1 \\
1 & -1
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\text { exact solution }=\left[\begin{array}{l}
100 / 101 \\
100 / 101
\end{array}\right]
\end{array}
$$

numbers one stored under different. otigits precision.

$$
\Rightarrow\left\{\begin{array}{l}
\text { single precision } \\
\text { double precision } \\
\text { half precision }
\end{array}\right.
$$

sGt w/ high proason

$$
U I=\left[\begin{array}{cc}
0.0 & 1 \\
0 & -101
\end{array}\right] \vec{d}=\left[\begin{array}{c}
1 \\
-100
\end{array}\right] \rightarrow \vec{x} \simeq\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

㫙 wy low precision

$$
Z I_{s d}=\left[\begin{array}{ll}
1.0 E-2 & 1.0 E 0 \\
0.0 E D & -1.0 E 2
\end{array}\right]
$$

$$
\vec{x}_{01}=\left[\begin{array}{l}
0.0 E_{0} \\
1.0 E 0
\end{array}\right]
$$

pivoting with low precision

$$
\begin{array}{r}
I_{p s d}=[\square: \\
\\
{\overrightarrow{X_{p s d}}}^{\downarrow}=\left[\begin{array}{l}
d_{p p d}=[1.060 \\
1.000
\end{array}\right] \vee
\end{array}
$$

pivoting car reduce the propagation \& growth of the trumeotion amor.

E11-Condifioned System

$$
\begin{aligned}
&\left\{\begin{array}{l}
x_{1}+2 x_{2}=3 \\
3 x_{1}=-2 x_{2}=1
\end{array}\right.\left\{\begin{array}{l}
x_{1}+2 x_{2}=3 \\
3 x_{1}-2 x_{2}=1008
\end{array}\right. \\
& \vec{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \vec{x}=\left[7 \approx\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right.
\end{aligned}
$$

The system is very seasitative to partitions.

III-conditioned. small hares indue ferial lay response charger
Consed: $A \vec{x}=\vec{b}$

$$
\vec{A} \vec{y}-\vec{b}+\delta \vec{b}
$$

In the words: $\vec{y} \vec{x}, \vec{y}=\vec{x}+\delta \vec{x}$

Date.
No.
$\|\vec{b}\| /\|\vec{b}\| \Rightarrow\|\vec{\delta} x\| /\|\vec{x}\|$
Small
Not very useful to check solutions!

$$
A \vec{x}=\vec{b} \Longleftarrow \text { original }
$$

$A(\vec{x}+\overrightarrow{\delta x})=(\vec{b}+\vec{b}) \longleftarrow$ perturbed
Subsernuting $A \delta \vec{x}=\delta \vec{b}$
II

$$
\delta \vec{x}=A^{-1} \delta \vec{b}
$$

"norms:

$$
\begin{aligned}
& \|\vec{\delta} x\|=\left\|A^{-1} \vec{\delta} \vec{b}\right\| \leqslant\left\|A^{-1}\right\| n_{\vec{b}} \| \\
& \|\vec{b}\|=\|A \vec{x}\| \leqslant\|A\|\|\vec{x}\|
\end{aligned}
$$

equalent to:

$$
\frac{1}{|R x|}=\frac{\|A\|}{\left\|n_{2}\right\|}
$$

compute:

$$
\frac{\|\delta \vec{x}\|}{\|\vec{x}\|} \in\left\|A^{-1}\right\|\|s\| \frac{1}{\|\vec{x}\|}
$$

Lave conditic \rightarrow positicly convelared. with serstandy hogh coantifion. number
t
more serstive to the enirombed
large Co num \rightarrow matriv clois to singulare
\rightarrow wh ?
-Wa if now san?
NAATIB \rightarrow conaitenter lising funtia
exwifle. Change from 1008$) \Rightarrow(9,9)$
Wak 4-2.
$-\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$ is lin. ind. in \mathbb{R}^{n}.
Q: Why? How to show lin. ind?
$A:$ say theve are cooff. S.1.

$$
\begin{aligned}
& C_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+C_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+C_{3}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& G\left[\begin{array}{l}
a_{1} \\
c_{2} \\
c_{3} \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

The last eq. imphes $G_{1}=c_{2}=c_{3}=0$. So vers. कre lin. ind. by def'n

$$
\begin{gathered}
(a \times 3) \\
{\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{L} \\
c_{1}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

line carly dependent if they are not linn. ind.

Roughly, this means one vel is a lin. comb. of the others.
Example.

$$
\begin{gathered}
{\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right],} \\
11 \\
v_{1} \\
{\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right],}
\end{gathered},\left[\begin{array}{l}
7 \\
3 \\
8
\end{array}\right]
$$

Note: $2 v_{1}+3 v_{2}-v_{3}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]=\overrightarrow{0}$
-Here's a way $>$
to get the zero ven.
11
nor lined indeprectent. ie. Bimenty dependent

Ats wace Rearrange lase iq. th blain

$$
v_{3}=2 v_{1}+3 v_{2} .
$$

Q: How do 2 find these coefts.

$$
\text { eq. }(2,-3,1)\}
$$

A: Gave a liner system!
I want to find $c_{1}, c_{2}, c_{3}, c, 1$

$$
\begin{array}{r}
a_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=\overrightarrow{0} \\
a_{1}\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]+c_{3}\left[\begin{array}{l}
7 \\
3 \\
8
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{l}
2 a_{1}+c_{2}+7 c_{3} \\
3 c_{1}+(-1) c_{2}+3 c_{3} \\
1 c_{1}+2 c_{2}+8 c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{array}
$$

λ lotze, eeg.,

$$
2 c_{1}+1 \cdot c_{2}+7 c_{3}=\overbrace{\left[\begin{array}{ll}
2 & 1 \\
\hline
\end{array}\right]}^{\overbrace{1}^{\prime}}\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]
$$

Date.
No.
Similarity,

$$
3 c_{1}+(-1) c_{2}+3 c_{3}=\overbrace{\left[\begin{array}{lll}
3 & -1 & 3
\end{array}\right]}^{r_{2}^{\top}}\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]
$$

Therefore.

$$
\begin{aligned}
& C_{N}^{\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]}+C_{2}^{\left[\begin{array}{l}
1 \\
-1 \\
2
\end{array}\right]}+\underbrace{\left[\begin{array}{l}
7 \\
3 \\
8
\end{array}\right]}_{3}=\left[\begin{array}{l}
\vec{r}_{1}^{\prime} \vec{C} \\
\vec{r}_{1}^{\top} \vec{c} \\
\vec{r}_{3}^{\top} \vec{c}
\end{array}\right] \\
& =\left[\begin{array}{l}
-r_{1}^{\top}- \\
-r_{2}^{\top}- \\
-r_{3}^{\top}-
\end{array}\right] \stackrel{\rightharpoonup}{c} \\
& =\left[\begin{array}{ccc}
2 & 1 & 7 \\
3 & -1 & 3 \\
1 & 2 & 8
\end{array}\right] \stackrel{\rightharpoonup}{c}
\end{aligned}
$$

key Point See $A=\left[\begin{array}{lll}r_{1} & r_{2} & r_{3}\end{array}\right]$ Then.

$$
c_{1} \vec{v}_{1}+c_{2} \overrightarrow{v_{2}}+c_{3} \vec{v}_{3}=A\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=A \vec{c}
$$

Mat-vee prod: is just linear omb of mut collins

Back to independence
Given v_{1}, v_{2}, v_{3}, set up.

$$
A=\left[\sqrt{\sqrt{1}}, \sqrt{2}^{2}, \sqrt{3}\right]=\left[\begin{array}{ccc}
2 & 1 & 7 \\
3 & -1 & 3 \\
1 & 2 & 8
\end{array}\right]
$$

and solve $\quad \vec{c} \vec{c}=0 \quad$ to determine Whether v_{1}, v_{2}, v_{3} are in fart lin. ind. (solve using Gauss $\frac{L l i m}{L V}$.
$v . \operatorname{lin}$. depactert. $\rightarrow A$ is singer
Concision 2 Two cases.

1) only sots is $\vec{c}=0$. In this case, col'mas are lin. ind and. If A is square then it is nor-singular (or invertible): concepts IMPORTANT Singularity: only talk about in square under six
2) Infinitely many s.l'n colmar owe dependent.
$\stackrel{\rightharpoonup}{C}$ 1,
liner independeme of rows
Basis
Def on: A list v_{1}, \cdots, v_{m} of res. in V is a basis of V if
1). v_{1}, \cdots, v_{m} spans $\left.\forall \sqrt{\left(\operatorname{span}\left(v_{1}, \cdots v_{n}\right)\right.}\right)$
3) V_{1}, \ldots, v_{m} is lin. ind.

Znterpeetartion

1) v_{1}, \ldots, v_{m} reaches all points in V_{1} i.e., every etenoat of \forall is
a tia. comb. of v_{1}, \cdots, v_{m}
Altermaticly, if $v_{1}, \cdots, t_{n} \in \mathbb{R}^{n}$, then spanning \mathbb{R}^{n} wears the linear sym.

$$
A \vec{x}=\vec{b}
$$

has a solon for every b, with $A=\left[v_{1}, \ldots, v_{m}\right]$ has a sorn for every \vec{b}.
2) description in terms of lin. comb= of v_{1}, \ldots, v_{m} is minimal, ie., there is tho redundancy in list.
If v_{1}, \cdots, v_{m} are efts. of \mathbb{R}^{n}, then the elias.

$$
A \sqrt{x}=0 .
$$

has a unique sora.

a. "Standard basis" of \mathbb{R}^{n}.
lng.

$$
\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]=1\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+3\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+4\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

$$
=e_{1}+2 e_{2}+3 e_{3}+4 e_{4}
$$

cheek one e_{1}, e_{2}, \ldots, e_{n} lin. ind??
A: let $A=\left[\begin{array}{lll}e_{1} & \cdots & e_{k}\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
So, $A_{x}=0$ is just $\quad I_{x}=0$.
$\cdot\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 5\end{array}\right]$ is a basis of \mathbb{R}^{2}

Alternatively，get $\vec{b}=\left[\begin{array}{c}-4 \\ 5\end{array}\right]$ ． and solve：

$$
\left[\begin{array}{ll}
1 & 4 \\
2 & 5
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
-4 \\
5
\end{array}\right]
$$

T / F.
1）．$\left[\begin{array}{c}1 \\ 2 \\ -4\end{array}\right],\left[\begin{array}{c}4 \\ -5 \\ 6\end{array}\right]$ is a loss of \mathbb{R}^{3} ？
＂failed in the spanning condition
Does not span \mathbb{R}^{3}
equiv．The linear system，

$$
\left[\begin{array}{cc}
1 & 7 \\
-4 & -7
\end{array}\right] \vec{x}=b
$$

does not have sorn for every \vec{b}
example：

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
4 \\
5
\end{array}\right],\left[\begin{array}{l}
4 \\
3
\end{array}\right] \text { is a basis } \mathbb{R}^{3} ?
$$

No，em．dependence／redundancy． in description．

Alternatively，

$$
\left[\begin{array}{lll}
1 & 4 & 4 \\
2 & 5 & 13
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

多外务。
has a nontrivial solon
Properties
1）Every spanning list．com be reduced to a basis by removing
redundant elmits．
2). Every lin. ind. list can be extended to a basis.

Def'n The dimension of a V.S. V. is the number of vectors in any Basis of V.

Examples:

- $\operatorname{dim} \mathbb{R}^{n}=n$. (think of $s+d$. basis).
48
the rank of a basis
the rank of A is the dim. of the cold space of A.
The: the dim: of coth space of A agrees with the row space of A. $\operatorname{dim} \operatorname{col}(A)=\operatorname{din} \operatorname{ro\omega }(A)$

Near 4-3 (TA sessinnje.
Rark-Nullity Theorem

$$
\operatorname{rank}(A)=\operatorname{nank}(\operatorname{Nall}(A))=n .
$$

$$
\begin{gathered}
{\left[\begin{array}{llll}
2 & 4 & 1 & 0 \\
1 & 2 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
2 & 4 & 1 & 0 \\
0 & 6 & 1 / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
2 x_{1}+4 x_{2}+x_{3}=0 \\
\frac{1}{2} x_{3}=0 \\
x_{3}=0 \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{2} \\
x_{2} \\
0
\end{array}\right]=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right] .}
\end{gathered}
$$

"Zero-ver does pot court in the sal space."
Example:

$$
A=\left[\begin{array}{ccc}
-2 & -1 & 0 \\
-1 & -1 & -1 \\
0 & -1 & -2
\end{array}\right]
$$

Q: find a bases for the mull
space, now spare, column sp.
1). row spae

$$
\begin{aligned}
& A=\left\{\left[\begin{array}{c}
-2 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
-v
\end{array}\right]\right. \\
& \alpha_{1}\left[\begin{array}{c}
-2 \\
-1 \\
0
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
-1 \\
-1 \\
-1
\end{array}\right]+\alpha_{3}\left[\begin{array}{c}
0 \\
-1 \\
-v
\end{array}\right]=0
\end{aligned}
$$

$$
\left\{\begin{array}{l}
-2 \alpha_{1}-\alpha_{2}=0 \\
-\alpha_{1}-\alpha_{2}-\alpha_{3}=0 \\
-\alpha_{2}-2 \alpha_{3}=0
\end{array}\right.
$$

$$
\alpha_{1}\left[\begin{array}{c}
-2 \\
-1 \\
y
\end{array}\right]+\alpha_{1}\left[\begin{array}{c}
-1 \\
-1 \\
-1
\end{array}\right]+\alpha_{3}[1 ;
$$

Symmereic - same
null space $\|_{x=0} \rightarrow$ Now spare
ton name Clecoszan Elimination:

$$
\left[\begin{array}{ccc}
-2 & -1 & 0 \\
-1 & -1 & -1 \\
0 & -1 & -2
\end{array}\right]-\frac{1}{-1}\left[\begin{array}{ccc}
-2 & -1 & 0 \\
0 & -1 & 1 \\
0 & -1 & -2
\end{array}\right]_{-2}
$$

J

$$
\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & --\frac{1}{2} & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Answer by $7 A=$

$$
\left\{\begin{array}{lll|c}
2 x_{1}-x_{2}=0 & -2 x_{1}=x_{2} & -1 / 2 \\
-x_{1}-x_{1}-x_{3}=0 & \rightarrow & x_{1}=x_{2} & -1 \\
-x_{2}-2 x_{3}=0 & & x_{3}=-1 / 2 x_{2} & -1 / 2
\end{array}\right] x_{2}
$$

$$
\begin{aligned}
& S . D=\left\{\left[\begin{array}{c}
10 \\
-1 / k
\end{array}\right\}<\operatorname{Mn\| (A)}\right. \\
& \operatorname{rank}(A)=\operatorname{dim}(\operatorname{Col}(A))+\operatorname{dim}(\operatorname{DW(A))}
\end{aligned}
$$

Find the sole (if amp) t

$$
\begin{aligned}
& \text { ind the sols (if amp) ti } \\
& \text { A } \overrightarrow{\vec{x}}=\vec{b}, \text { where } \vec{b}=\left[\begin{array}{c}
0 \\
-1 / 2 \\
-1
\end{array}\right] \\
& {\left[\begin{array}{ccc}
-2 & -1 & 0 \\
-1 & -1 & -1 \\
0 & -1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 / 2 \\
-1
\end{array}\right]}
\end{aligned}
$$

U - decomposition

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
& 1 & 0 \\
& 1
\end{array}\right]} \\
& \left.\left.\left[\begin{array}{lll}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0
\end{array}\right]+\frac{1}{-2}\left[\begin{array}{ccc}
-1 & 0 \\
-1 & -1 & -1 \\
0 & -1 & -2
\end{array}\right]\right)-\begin{array}{ccc}
-2 & -1 & 0 \\
0 & -\frac{1}{2} & -1 \\
0 & -1 & -2
\end{array}\right]
\end{aligned}
$$

d. Prove that $\left\|A A_{2} \leq\right\| A\left\|_{2}\right\| 2 \|_{2}$

First. Some reminders.
1). $\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}$

$$
\text { 27. }\|A\|_{2}=\frac{\|A x\|_{2}}{\|A\|_{2}} .
$$

$$
\max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

Note: This is an "induced" vector, which means if measures how big the size of the output As o can be writ. the set of the input x.

Pf. we want to show for any vector $x, \quad\|A x\|_{2} \leqslant\|A\|_{2}\|x\|_{2}$ (If $x \neq 0$), rewrite as

$$
\frac{\|A x\|_{2}}{\|x\|_{2}} \leqslant\|A\|_{2}
$$

For any $x \neq 0$, we know that

$$
\frac{\|A x\|_{2}}{\|x\|_{2}} \leqslant \max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\|A\|_{2}
$$

So indeed

$$
\frac{\|A x\|_{2}}{\|K\|_{2}} \leqslant\|A\|_{2}
$$

on equivalently,

Intuition for conditioning.
Roughly, a matrix is i11-conditioned if it is close to being singintar

Example
Consider $A_{x}=b$,
$w / A=\left[\begin{array}{cc}1 & 1 \\ 2+\varepsilon & 2\end{array}\right] \times b=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
$\varepsilon \approx 0$ (but $\varepsilon \neq 0$).

$$
\begin{gathered}
A x=b \Leftrightarrow\left[\begin{array}{ll}
1 & 1 \\
2+\varepsilon & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\Leftrightarrow \\
x_{1}+x_{2}=1 . \\
\\
(2+2) x_{1}+2 x_{2}=2
\end{gathered}
$$

Gremetire persparive.

the hypar spores one-aliones -onup of each voter.
\rightarrow the marecik becomes almast singular.

 Ele. Seve dian 1
cumeretio dias nap have a whagu satm!
$I l l=$ condictioning avises when he dera asound ele boundary of

Nofice two cases.
(1) \& 70 . rous of A are linearty independert.
thay form a hasis of \mathbb{R}^{2}. should be a unique sorn.
(2) $\varepsilon=0, \quad A$ is just $\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$.
not livenly inaspat
pous are depentent. $L \mathcal{W}$ with row premwitasions.

Q: why do we get $P A=L V$? Keypoint: every row operation can be implemented by a mat. molt. l. $q=A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 9 & 8 & 9\end{array}\right] 2$
$F_{2} \leftarrow F_{2}-4 F_{1}$
$\rightarrow\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 9\end{array}\right]$ This procedure can be Transform.

$$
C_{1}=\left[\begin{array}{lll}
1 & & \\
-4 & & \\
& & 1
\end{array}\right]
$$

first step. $G A=A^{(1)} \quad$ (check).
Can also implement row suaps by multiplying by permutation matrix.

Date.
No.
e. q. Say I want to swap n_{2} and $\sqrt{3}$. in A^{11}.
So, $\quad A^{(1)}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 9\end{array}\right]$

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
7 & 8 & 9 \\
0 & -3 & -6
\end{array}\right]=A^{(2)}
$$

Sen $P_{1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, Then

$$
P_{1} A^{(1)}=A^{(2)}
$$

So, in total, we 'le applied:

$$
P_{1} C A=A^{(2)}
$$

To remove $\left[A^{(2)}\right]_{21}=7, \quad 2^{\prime} 11$ apply $C_{2}=\quad C_{2} P_{1} G_{1} A=A^{(3)}$

The punt is adorition operation we angled win n permutation operations.

Problem 析
If one uses GE. u/ pivoting. then the resutiting system has better conditioning.
Note GE enonsymons the limes. $A_{x=l}$ to an equivalent sysconn Un =C that is glossy to solve (wing) back subsincion).
$b / c-U$ is U^{7}

Lets-tsy to build a counterexample Consider eartier example:

$$
A=\left[\begin{array}{cc}
1 & 1 \\
2+\varepsilon & 2
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Q.

What happens of he do GE?
$A \quad\left[\begin{array}{cc|c}1 & 1 & 1 \\ 2+\varepsilon & 2 & 2\end{array}\right]$

$$
\rightarrow\left[\begin{array}{cc|c}
1 & 1 & 1 \\
0 & -\varepsilon & -\varepsilon
\end{array}\right]
$$

Example.

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right] \\
& \operatorname{Aret}(A)=0
\end{aligned}
$$

Observation: A is not invertible.
Definition The determinant of a square matrix, an $n \times n A$ is given by:

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{j+1} a_{i j} \operatorname{det}\left(M_{i j}\right)
$$

where $M_{i j}$ is the sub-mative obtained from A by removing its th row $+j^{\text {th }}$ colin.
Note:- No weed to expand along fore con,

Can in fact we any row you like!
Ex: Using A as in precious example,

$$
\operatorname{det}(A)=0 .
$$

expand along the second now.

$$
\operatorname{det}(A)=0 \cdot \operatorname{det}\left(M_{21}\right)-(1) \cdot \operatorname{det}\left(\left[\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right]\right) .
$$

$\angle 0 \cdot \operatorname{det}\left(N_{23}\right)$.

$$
=-\operatorname{det}\left(\left[\begin{array}{cc}
2 & 0 \\
10
\end{array}\right]\right)=0
$$

- Properties Verfieal bars mean dot.
1). Sealing properties. e.q. der $\left(\left[\begin{array}{ll}a_{11} & a_{n} \\ a_{n} & a_{n n}\end{array}\right]\right)$.

$$
=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{n} & a_{22}
\end{array}\right|
$$

$$
\text { last time }\left\{\begin{array}{l}
\text { Determinant. } \\
\text { Reank-nullity. }
\end{array}\right.
$$

Recall. Suppose 1 want to Solve $A x=b$.
Then: (1): A sole exists (FF $b \in \operatorname{col}(A)$.
(Deft of mat-vee mult.)

$$
A_{x=b} \Leftrightarrow x_{1} \vec{a}_{1}+\cdots+x_{n} \vec{a}_{n}=\vec{b}
$$

Sorn iff I can find coifs to express \vec{b} as lin. comb of cotes of A
(2) The null spare of A determines the number of solus we have a soon for every ert. of $N(A)$.

2: why?
 (So $\left.A x^{*}=\vec{b}\right)$ Now trike amy eAt. Z in $N(A)$.

$$
\left(S_{0} A z=\overrightarrow{0}\right)
$$

Conserve: $A\left(x^{*}+z\right)=$

so $y=x^{*}+2$ is also a sorn to $\quad A_{1}=6$!
To be prese, the number of free parameters degrees of freedom in He general S_{0} 品 $-\hat{p}_{0} \quad A \vec{\lambda}=\vec{b}$ is
$\operatorname{dim} N(A), A \cdot K . A$ nullity of A. Which is $n-r k(A)$.
by RK -Nullity The.
12 is what kinds of hasis ne have for the coll space

22: How do I find these coff?? ie., x_{i}, \cdots, x_{n}, sit.

$$
x_{1} \vec{a}_{1}+x_{n} \vec{a}_{2}+\cdots+x_{n} \vec{a}_{n}=\stackrel{\rightharpoonup}{b}
$$

A: Not so easy in general. (Use GE/LU fact.) ... Buy if we have an on. basis of ot (A), We hie a rive expluit formula Orthonormal: Orthogonal of normalized

Orthogonal
Def The vectors $\vec{v}, \vec{w} \in \mathbb{R}^{n}$ are orthogonal if $\vec{v}^{\top} \vec{w}=0$.
Deft: The vectors q_{1}, \cdots, q_{r} are orthonormal if they are mumbly orthogonal and each voc has norm 1. Explicitly, $q_{i}^{T} q_{j}=\delta_{i j}$, Here

$$
\delta_{i j}=\left\{\begin{array}{ll}
1, & \text { if } i=j, \\
0, & \text { if } i \neq j
\end{array} \quad\right. \text { denotes the }
$$

Kronecker delta.
(Recall: $V^{N} V=\|V\|_{2}^{2}=\sum_{k=1}^{n} v_{k}^{2}$ for am. $\left.v i \in \mathbb{R}^{n}\right)$.
Example: $\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]$ are osthog ont, not orthonemin

$$
\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=2
$$

$$
\left[\begin{array}{c}
\frac{1}{v} \\
-\frac{1}{t}
\end{array}\right]^{T}\left[\begin{array}{c}
\frac{1}{t} \\
-\frac{1}{t}
\end{array}\right]=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
$$

Observations.

$=$ Orthogonality $: \rightarrow$ synoymous
perpendicular in $\mathbb{R}^{2} \& \mathbb{R}^{3}$

- Notion of "right angles" in genera

Q = Why should we care about tHese bass?
A: Suppose (for simplicity).
A is non non-singularand we want to solve $A x=b$. If q_{1}, \ldots, q_{n} is an $0 . n$. basis of $\operatorname{col}(A)$. then I can readily compute $c_{1}, \ldots, c_{n}, s, \%$

$$
a_{1} \vec{q}_{q_{1}}+\vec{a}_{2} \vec{q}_{q_{2}}+\ldots+c_{n} \vec{q}_{n}=\vec{b}
$$

Q: How?
A: Use $\vec{q}_{i} \vec{q}_{j}=\delta_{i j}$! Multiply by \vec{q}_{i}^{\top} to obtain

$$
\begin{aligned}
& C_{1}\left(\vec{q}_{i}^{\top} \vec{q}_{i}\right)^{0}+\cdots+C_{i}\left(\vec{q}_{j}^{\top} \vec{q}_{i}\right)^{1}+ \\
& \cdots+\vec{C}_{n}\left(\vec{q}_{i}^{\top} \vec{q}_{n}\right)^{0}=\left(\vec{q}_{i}^{\top} \vec{b}\right) . \\
& \Rightarrow \vec{C}_{i} \cdot 1=\vec{q}_{i}^{\top} \vec{b} \\
& \Leftrightarrow \vec{c}_{i}=\vec{q}_{i}^{\top} \vec{b} \quad \ldots>\text { Sames } \Rightarrow
\end{aligned}
$$

Given an $0, n$. basis for $\operatorname{col}(A)$
I can find c_{1}, \cdots, c_{n}, sit.

$$
\vec{b}=c_{1} \vec{q}_{n}+\cdots+c_{n} \vec{q}_{n} \text { using }
$$

$$
C_{i}=\vec{q}, \vec{b}
$$

Matrix perspective.
Finding c_{1}, \ldots, c_{n} is equiv. to $\vec{a} \vec{q}_{1}+\cdots+c_{n} \vec{q}_{n}=\vec{b}$ ए.

$$
\left[\begin{array}{lll}
\vec{q}_{1} & \cdots & \vec{q}_{n}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{n}
\end{array}\right]=\vec{b}
$$

$\Leftrightarrow Q \vec{c}=\vec{b}$
Note:- Much like if coif. mot is lower/ upper triangular, lin. sys is easy to solve. $\left(\theta\left(n^{2}\right) \cos\right.$) if mat. has $0 . n$. corns.
In particular, sole:

$$
\vec{c}=\left[\begin{array}{c}
\vec{q}_{1}^{\top} b \\
\vdots \\
\vdots \\
\dot{q}_{n}^{\top} b
\end{array}\right]=\left[\begin{array}{c}
-\vec{a}_{1}^{\top} \\
-\dot{q}_{2}^{\top} \\
-\dot{\vec{q}}_{n}^{\top}
\end{array}\right] \vec{b}
$$

$$
=Q^{\top} \vec{b}
$$

Let's take a closer look... Mutrinining $Q \vec{c}=b$ by 2^{\top} aires

$$
\left(b^{\top}, b\right) \vec{c}=\alpha^{\top} \vec{b}
$$

Since 2 is inerrable bic
orthogonality $\Rightarrow \operatorname{lin}$. ind., we
Must have: $Q^{\top} Q=I$
Notice: this is equivalent to $q_{i}^{\top} q_{j}=\delta_{j}$

$$
\left[q_{i}^{\top} a_{j}-\right]=\left[\square q_{i}^{\top}\right]\left[\begin{array}{l}
1 \\
a_{j}- \\
1
\end{array}\right]
$$

Deft : An xn matrix is arimognal If its coleus ane orthonormal. corns. Equivalently, $n \times n=0$ is orthogonal
if $\quad Q^{\top} Q=I$
Note: if Q is orthogonal,

$$
X^{-1}=Q^{\top}
$$

Example:

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right]
$$

is orthogonal. (Hadamard gate)

Q: How can we produce an 0.n basis for oul(A)?.
A. Use standard Grem-subimilt

Coreati nog ma for numbers.
Basic 1 den: Step-by-stop

Construction: at each step, use a new coth of A and remove components parallel to (corrained In span of) vectors yon 'we already found!
Say A is $n \times n$.
Goal: Construct an. list $q_{1}, \cdots, q_{n}, q_{2} t . \operatorname{span}\left(q_{1}, \cdots q_{k}\right)$ $=\operatorname{span}\left(\vec{a}_{1}, \cdots, \vec{a}_{k}\right)$ for $k=1, \cdots, n$.
Gram -Schmidt Orthogonanizarlion:
Step 1 : Take $\vec{q}_{1}=\frac{\overrightarrow{a_{1}}}{\left\|a_{1}\right\|}$. (simply normalize).
Step \mathbb{R}^{2} : want on. \vec{q}_{1}, \vec{q}_{2}, sit.
$\vec{q} \in \operatorname{span}\left(\vec{q}_{1}, \vec{q}_{2}\right)$.
So I need:

$$
C_{1} \vec{q}_{1}+C_{2} \stackrel{\rightharpoonup}{q}_{2}=\vec{a}_{2}
$$

Before:

$$
\begin{aligned}
& \vec{c}_{1}=\vec{q}_{1}^{\Gamma} \overrightarrow{a_{2}}, \quad \text { so } \\
& \vec{c}_{2} \vec{q}_{2}=\vec{a}_{2}-\left(\vec{q}_{1}^{T} \vec{q}_{2}\right) \vec{q}_{1}
\end{aligned}
$$

$S_{0} \vec{q}_{2}$ as normalized

$$
\overrightarrow{w_{2}}=\overrightarrow{a_{2}}-\left(\vec{q}_{1}^{\top} \vec{a}_{2}\right) \vec{q}_{1}
$$

$$
\therefore \vec{q}_{2}=\frac{\vec{w}_{2}}{\left\|\vec{w}_{2}\right\|}
$$

Step $3 q_{1}, q_{2}, q_{3}$
sit $\vec{a}_{3} \in \operatorname{span}\left(q_{1}, q_{2}, q_{3}\right)$
So we want

$$
c_{1} \vec{q}_{1}+c_{2} \vec{q}_{2}+c_{3} \vec{q}_{3}=\vec{a}_{3}
$$

From before.

$$
\begin{aligned}
& c_{1}=q_{1}^{\top} \vec{a}_{3}, \\
& c_{2}=q_{2}^{\top} \overrightarrow{a_{3}} .
\end{aligned}
$$

So: $\vec{c}_{2} \vec{q}_{3}=\vec{a}_{3}-\left(q_{1}^{\top} \vec{a}_{3}\right) q_{1}-\left(q_{2}^{\top} \vec{a}_{3} \vec{q}_{2}\right.$
is orthogonal to \vec{q}_{1}, \vec{q}_{2}
So take $\vec{q}_{3}=\frac{\vec{w}_{3}}{\left\|w_{3}\right\|}$
Step K: Remove from $\overrightarrow{\theta_{k}}$ complots.

Date.
parallel to $\vec{q}, \ldots, \vec{q}_{k-1}$ and nomomata!

$$
\begin{gathered}
\omega_{k}=\vec{a}_{k}-\left(q_{1}^{\top} \vec{a}_{k}\right) q_{1}-\cdots-\left(q_{k-1}^{\top} \vec{a}_{k}\right) q_{k-1} . \\
{\overrightarrow{q_{k}}}_{k}=\frac{\omega_{k}}{\left\|w_{k}\right\|} \text { (normalize!). }
\end{gathered}
$$

Notice: we obtain $A=2 R$, wis Q. Orthogonal and R upper triangular if we keep track

$$
\text { of } r_{m}=q_{i}^{\top} a_{k} \text { ! }
$$

$$
\left[\begin{array}{lll}
\overrightarrow{a_{1}} & \cdots & \overrightarrow{a_{n}}
\end{array}\right]=A=Q\left[\begin{array}{lll}
r_{11} & r_{2} & r_{13} \\
& r_{22} & \sqrt{3} \\
& & \sqrt{33}
\end{array}\right]
$$

look at the second colt,

$$
\begin{aligned}
\vec{a}_{2} & =Q\left[\begin{array}{c}
r_{1} \\
a_{2} \\
0
\end{array}\right] \\
& =r_{n} \vec{q}_{1}+r_{m} \vec{q}_{2}
\end{aligned}
$$

$A \vec{x}=\vec{b}$.

- Gauss Elimination
- or Decomposition
- Lforafive Methods.

Reqnesian Models.
Find silu-pions minimize:

$$
\vec{\varepsilon}=\vec{y}-A \vec{t}
$$

Weeks 7
matres.
Date.
No.

Square matrices.
\rightarrow represents aperectors
III
linear transformation.
\mathbb{R}^{n} on \mathbb{R}^{n}

\mathbb{R}^{n}

There are "special" vectors that done change direction under the transformation.

In particular, quin $n \times n A$, an eigen vector is $v \in \mathbb{R}^{n}$ sit.

$$
A \vec{v} \sim \stackrel{\rightharpoonup}{v}
$$

\leftrightarrows
equivalent to saying thenels a seat ar λ, Bit. $A \vec{v}=\lambda \vec{v}$ ζ
Def on
eigenvalue.
Given on $n \times r A$, the Solar A is an eigenvalue of A if there is $\quad \vec{v} \neq 0$ sit.

$$
A \vec{v}=\lambda \vec{v}
$$

The Ne \vec{v} is a λ-ogenvector of A.

* square marerices dance ohouge the dimension of the vector.
Q. How to find eigenvectors ℓ determine eigenvalues?
A: From $A \vec{v}=\lambda \vec{v}$.

$$
\Leftrightarrow A \vec{x}-\lambda \vec{v}=0
$$

$$
\stackrel{S}{\lambda I}
$$

$$
\Leftrightarrow(A-7 D) \vec{v}=0 \xrightarrow{T B C} .
$$

Date.
No.

$$
\begin{array}{r}
\phi=\left(u_{1}-u_{0}\right)+P_{2}\left(V_{1}-\forall_{0}\right)-T_{2}\left(s_{1}-s_{0}\right) \\
P_{2} z R T \\
\\
=\left(h_{1}-h_{0}\right)-R\left(Z_{1}-T_{1}-z_{0} T_{0}\right)+P_{0}\left(V_{1}-u_{0}\right) \\
1-T_{0}\left(s_{1}-s_{0}\right)
\end{array}
$$

Cuafirm: $C_{P}\left(T_{1}-T_{0}\right)$

', tlese ane frim wo terble..?

Weok 6-2.
Soln of himear systems.

$$
A \vec{x}=\vec{b}
$$

approximate soln $\vec{x}^{\prime} \cong \vec{x}$

- Limited precision
- compnting w/ ancerainay.

$$
A \vec{x}=\vec{b}
$$

$$
a_{22}=-1 \rightarrow \vec{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- quess $\vec{x}^{(0)}$
$\lim _{k \rightarrow \infty} \stackrel{\rightharpoonup}{x} \stackrel{(k)}{=} \vec{x}$
- Sequence: $\vec{x}^{(0)} \longrightarrow \vec{x}^{(1)} \rightarrow \ldots \rightarrow \vec{x}^{(k)}$

Date.
No.
Sequence terminerce: $\left\|\vec{x}^{(k)}-\vec{x}\right\|<t_{0} \mid$
\rightarrow simple, loss computationn lost
Definifions.
Error: $\quad \vec{e}^{(k)}=\vec{x}^{(k)} \vec{x}$
Residnal: $\vec{r}^{(k)}=\vec{b}-\vec{A} \vec{x}^{(k)}$
approch converge, erman e ruichl

$$
\Rightarrow 0: \lim _{l-\infty}\left(x^{\left(l l_{1}\right.}-x\right)=\lim _{l \rightarrow \infty}\left(A \vec{x}^{(l)}-\vec{b}\right) .
$$

Tn tams of noms. $\rightarrow \cdots$
Spliting $\vec{A}=\stackrel{\Delta}{n} \rightarrow \bar{n}$

$$
H \vec{F}=\vec{b}=(\overrightarrow{M-M y} \vec{x} \geq \vec{b}
$$

$$
A=M-N \longrightarrow \text { deconnate. }
$$

fleropto process: +3

$$
\begin{aligned}
& M \vec{x}^{(1)}=N \vec{x}^{(0)}+b_{1} \\
& M x^{(2)}=M \dot{x}^{(2)}+b \\
& \vdots \\
& M A x^{(1)}=M \vec{x}^{(1-1)}-b \\
& M-M=A
\end{aligned}
$$

Simpties $\quad S / 1 p$ ystem

$$
\begin{aligned}
\left\|e^{(k}\right\| & =\| e^{k) 0} s_{k} \mid \\
& \left.=\| G e^{v o}\right)^{2} \\
& \longrightarrow(G>0 .
\end{aligned}
$$

comger curimita.

Jacobi Solver, \rightarrow
ζ
Specual redion \rightarrow tese convergegnee of nom.
Janbi:

$$
\begin{aligned}
& -M=D . \\
& =N=-h(A)-2(A)
\end{aligned}
$$

Alternative Vien \rightarrow - Cerathe.

Solve $(A-A I) \vec{\gamma}=0$

- Keypoint. Orily possobte if $A=\lambda I$ is singular,
\Leftrightarrow ads are dependent

$$
\Leftrightarrow \mathcal{N}(A) \neq\{0\} .
$$

$\Leftrightarrow \quad \operatorname{det}(A-\lambda L)=0$
Eqpoint we can ocly findr egenvectors corresponding to eigen values \rightarrow Can saly solve

$$
(A-\lambda I) \vec{v}=0 \text {. if } \operatorname{det}(A-\lambda L)=0
$$

Lets tackle - He Garter
first Example:
for $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Find 1 s.t.

$$
\operatorname{dot}(A-\lambda I)=0 .
$$

A. Q compare determinant

$$
\left|\begin{array}{cc}
-\lambda & 1 \\
1 & -\lambda
\end{array}\right|=\lambda^{2}-1
$$

$$
\downarrow
$$

(2) Solve polynomial: $\lambda= \pm 1$

$$
\Rightarrow \text { find eigenvalues })
$$

(3) we can row coll for
argenvectors.
Q, 9 find equanves comespondiny
to $A=1$, by soling

$$
\begin{aligned}
& (A-l) \vec{v}=0 \\
\Rightarrow & {\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right] \vec{v}=0 }
\end{aligned}
$$

$\lambda=1 \rightarrow$ the moretice has a nullipne, arrows para-

- 11.1 to each other or scalable -ts each other.

Say $B=A-I=\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]$.
$\left[\vec{b}_{1} \vec{b}_{2}\right] \Rightarrow \overrightarrow{b_{2}}=-\vec{b}_{2}$

$$
\Leftrightarrow-\overrightarrow{b_{1}}+\vec{b}_{2}=0
$$

So $V=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is a 1 - eigenvec

$$
\text { of } A
$$

Now repent process to find
\qquad
In this case, solve.

$$
\begin{aligned}
& (A+I) \vec{v}=0 \\
& {\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \vec{v}=0}
\end{aligned}
$$

$\vec{v}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is ar eigen vector of A

Observations:
\rightarrow For any A : and amy eigenvalue λ of A, there is more than one λ-eigenvector. Why this is true?

Notice: Amy liner combination of At oren vectors is also a
A-eigenvector, (ie. the eigenspana)
San $\vec{v}_{1} \& \vec{v}_{2}$ ane λ-eigen vectors.
Notice. $A\left(C_{1} \overrightarrow{v_{1}}+C_{i} \overrightarrow{v_{2}}\right)=?$
$\equiv c_{1}\left(A \overrightarrow{v_{1}}\right)+c_{2}\left(A \vec{v}_{2}\right)$ (linear trons)

$$
\begin{aligned}
& =a_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{2} \vec{v}_{2} \\
& =\lambda\left(a_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}\right)
\end{aligned}
$$

', another eigan-vector ll!.
$\vec{v}=G_{1} \overrightarrow{v_{1}}+G_{2} \vec{v}$ is also a
A-eigen vector.
$b \in f \quad A \vec{v}=\lambda \vec{v}$
Qi Given an eigenvalue λ of A, What's the dimension of the sinspuce of the corresponding eigenvector?
A: the number of linearly ind.
A-ign vecteress is $\operatorname{dim}[\Delta x(A-x \pi)]$

Date.

Example
Consider $L=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
J=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Notice $I \vec{v}=(1) \cdot \vec{v}, \&$

$$
J\left[\begin{array}{l}
1 \tag{So}\\
2
\end{array}\right]=(1)\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

1 is an eigenvalue for I\&J
BUT how many lin. ind. egerveres?
(1) $(I-I) \vec{v}=0$
\downarrow
So we have 2 dir. Ind. égenvers.
(2) $\cdot(J-I) \stackrel{\rightharpoonup}{v}=0 \rightarrow[1] \vec{v}=0$.

$$
\operatorname{dim}[N(J-I)]=2-\operatorname{sank} \quad \operatorname{rank}=1
$$

S: we just have 1 lin. ind egenver.

Di: Do ergenvals exist? How many are there? ?
A:
Key point: $\operatorname{det}(A-X I)$ is a degree n polynomial.
So it always has x solutions.

- H done hove te be distinct, $\&$ dance have t b be noil.

1) I/F: A is singular IFF D is an eigenvalue of A.

True: if A is singular, then there is $\vec{v}+0$, sit. $A \vec{v}=\overrightarrow{0}=0: \vec{v}$

Zn other words, $\vec{v} \in N(A) \Rightarrow \vec{v}$ is a 0 - eigenvector of A.

Alterneridely, we know that

$$
0=\operatorname{det}(A)=\operatorname{dot}(A-0.7) \quad 80
$$

$\operatorname{det}(A-\lambda I)=0$ when $\lambda=0$.
Conversely, if a is an eigenvalue, then there is a corresponding eigenvector, in., $\vec{v} \neq 0$, spf.

$$
A \stackrel{\rightharpoonup}{v}=0 \cdot \vec{v}=0 .
$$

So if 0 is an eigencal, every corresponding eigen veer $\vec{v} \in \mathcal{N}(A)$.
Atfernativaly, if $\lambda=0$ is am eigenvalue, $\operatorname{det}(A-\lambda I)=0$. when $\lambda=0$, which means $\operatorname{det}(A)=0$.
2). T/E A \& A^{\top} the de sane eigented. True Prof:- Eigenvalues ane roots of $\operatorname{der}(A-\lambda I) ;$ we know $\operatorname{det}(B)=\operatorname{det}\left(B^{C}\right)$ for any B.
So. $\quad \operatorname{det}\left(A^{\top}-\lambda I\right)=\operatorname{det}\left(A^{\top}-\lambda \tau^{2}\right)$

Date.
No.

$$
\begin{aligned}
& =\operatorname{det}(A-\lambda I)^{x} \\
& =\operatorname{det}(A-\lambda I) .
\end{aligned}
$$

Recall: $\quad \operatorname{det}(A-B) \neq \operatorname{det}(A) \neq \operatorname{det}(B)$ in general!
But:: $\left|\begin{array}{lll}1 & 2+a & 3 \\ 4 & 5+b & 6 \\ 7 & 8+c & 9\end{array}\right|=\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right|$

Operator perspective

$$
+\left|\begin{array}{lll}
1 & a & 3 \\
4 & b & 6 \\
7 & c & 9
\end{array}\right|
$$

A 2×2 matrix. transforms vectors in the xy-plane.

Example - $\quad A=\left[\begin{array}{cc}1 & 1 \\ 0 & 3 / 2\end{array}\right]$

From last lecture, $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, we found eigenvalues $y=-1,1$, $w /$ eigen vectors $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$

$$
\begin{aligned}
& (1,0) \rightarrow(0,1) \\
& (0,1) \rightarrow(1,0 .) \\
& (1,2) \rightarrow(2,1 .)
\end{aligned}
$$

Note: A is ahouschider reflection!

$$
\begin{gathered}
A_{v}=I-\frac{3}{v^{\top} v} v_{v}^{\top} \\
v=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{gathered}
$$

Recall: we sid the characteristic polynomial $\not \partial(z)=\operatorname{dot}(A-z I)$
has degree n fir $n \times n$ A. S_{0} A has n eigenvalues. let's. begin with easy/good case.

Quo: $\chi_{A}(8)$ has n distinct. neal roots.
Let's count lin. ind. eigenvers.
(1) For each eigenvalue, there must be an oigen vex.
(But if $\operatorname{det}\left(A-\lambda^{2}\right)=0$ then $A-x z$ is singular, so there is $\vec{v} \neq 0, \quad$ St. $(A-A l) \vec{v}=0$. $\Leftrightarrow A \vec{v}=\lambda \stackrel{\rightharpoonup}{v}$
(2) Ligenveotors ciresponding to distinct
eigenvalues are lin. ind.
Q: van!?
A: (Sketch). Suppose v_{1}, \cdots, v_{k} ane eigenvers of A.w/ correspond
Cigenames, $\lambda_{1}, \cdots, \lambda_{k}$ (distinct),
If $c_{1} \vec{v}_{1}+\cdots+C_{k} \vec{v}_{k}=0$ we need to show $C_{1}=\cdots=C_{k}=0$

Hone: (nytiply $(*)$ by $(A-\lambda ; 2)$ \$88

So, if A has n distinct eigenvals, It has n lin. ind eigenvectors!
\rightarrow we have a basis of \mathbb{R}^{n}. named as "eigenbasis"

Concretely, we have

$$
A v_{j}=A_{j} v_{j} \cdot \text { for } j=1, \cdots, k
$$

and v_{1}, \ldots, v_{n} are lin. ind.
Let's combine these into a single matrix relation.
$\left[A \vec{v}_{1} A \vec{v}_{2} \cdots A \vec{v}_{n}\right]=\left[\vec{\lambda}_{1} \vec{v}_{1} \cdots \cdot \lambda_{n} \vec{v}_{n}\right]$

$$
\begin{aligned}
& A\left[\begin{array}{cccc}
\frac{1}{\vec{v}_{1}} & \vec{v}_{2} & \cdots & \frac{1}{v_{n}} \\
1 & 1 & & 1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\lambda_{1}} & \frac{1}{\lambda_{i} \vec{v}_{2}} & \cdots \\
\lambda_{n} \vec{v}_{n} \\
1 & 1 & 1
\end{array}\right] \\
& {\left[\begin{array}{cc}
2 & \\
- & 3
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
9 & 12
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
2 \\
\end{array}\right]=\left[\begin{array}{ll}
2 & 6 \\
6 & 12
\end{array}\right]
$$

5

$$
\Leftrightarrow A V=V A
$$

Q: is V invertible?
A: Yes, b / c eigenvalues are lin. ind.

$$
H=V \Lambda V^{-1}
$$

* the canonical form. II!

Note: Dissinct eigenvals is suffecient for existence of docomp., bot Nof neressany, wher We really need is x lin. ind eigenvecs.
Degenerate Cares: (reperated eigenvel)
Erample: Repeated eigenvaits but diagonalizable.

$$
I=\left[\begin{array}{ll}
1 & \\
& 1
\end{array}\right]
$$

Eigenvals 1,1
Eigenvecs. 2 lin. ind.
eqenvecs: $\vec{v}_{i}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \quad \overrightarrow{v_{2}}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$,

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]^{-1}
$$

Repeated eigencals but NoT diagonantizabse

$$
J=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Cigenatl: $x_{1}(z)-(z-1)^{2}$

$$
1,1,
$$

Sigenves Oney $\left[\begin{array}{l}1 \\ 0\end{array}\right]$, Not enough lin. Ind eigenvees to form eigen bostis.
Deffin: Algebracic wiulti. of oigenval. λ
of A is the multi. of λ as an toot of cher poly.
Deity Geom Multi is dim $N(A-\lambda y)$
=\# of lin ind. λ-eigenvees.
Diagonalizability \Rightarrow all. and geom. multi. coincide for every eigenval. C"enough lin
ind. eggenueus for each eigenu4".)
Wore: Then real marts Can hove complex eigenvals.
Exemante : $\quad R=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$

$$
A_{p}(z)=z^{2}+1
$$

\rightarrow Eigenvess are also complex.
How is this useful in scieme/eng?
Systems of ODE.

$$
\vec{y}^{\prime}(-e)=\left[\begin{array}{c}
y_{1}^{\prime}(t) \\
\vdots \\
y_{n}^{\prime}(t)
\end{array}\right]=A y(t)
$$

$\frac{e_{1} q_{1}}{1}$ if $n=1$,

$$
y^{\prime}=a y
$$

exponential qrowth/decay...

$$
\text { ie. } \left.v(t)=\sum^{2}\right]^{(0)}
$$

where $x>1, \rightarrow M$ witting

$$
\vec{q}(t)=\theta^{A t} \mathcal{M}(0)
$$

Here, $\operatorname{set} e^{A^{t}}=\sum_{n=0}^{\infty} \frac{\left(A_{t}\right)^{n}}{n!}$
\# Spoiler Canonical form makos this completion sinople!
key points
least-square norm sorn arise when $A \vec{x}=\vec{b}$.
has no sole or too many. Least - Squares
Approximerte sol when $A \vec{x}=\vec{b}$ is not consistent.

Typically, mast element interesting for overdetermined copstems (too mary rows constraints, so there is no worn to wet all requirements exalotly).
Equivalently, $\vec{b} \notin \operatorname{span}\left(\overrightarrow{a_{1}}, \ldots, \vec{a}_{n}\right)$.

So we ask for the next bot thing i.e., find $\vec{x} \in \mathbb{R}^{n}$ S.t. $\underset{\vec{x}}{\operatorname{minimixe}}\|A \vec{x}-\vec{b}\|$.
Let $\vec{r}(\vec{x})=A \vec{x}-\vec{b}$
Grail. Make residual \vec{r} as small as possible.
Q: How to find such in \vec{x} ?
A: One option, Catcalls!
i.e. $\operatorname{let}+l(\vec{x})=\|\vec{r}(\vec{x})\|_{2}$
and solve $\nabla \tilde{\ell}=0$.
Good revs. If we square the loss, ne can find \vec{x} by solving
a linear system!

Normal guarions

$$
\begin{aligned}
l(\vec{x}) & =\|r(x)\|_{2}^{2}=(A \vec{x}-\vec{b})^{\top}(A \vec{x}-\vec{b}) \\
& =\vec{x}^{\top} A^{\top} A \vec{x}-2 b^{\top} A \vec{x}+b^{\top} b-
\end{aligned}
$$

So, $\nabla \ell(\vec{x})=0$ is equiv.
$A^{\top} A \vec{x}=A^{\top} \vec{b}$ (normal sqn.).
(will hare a 501 n as long as the curs are INDEPENDENT .I!.

Q. why dies A need to have fill rank $(n$. lir. ind torres

$$
N(A)=0
$$

$A: \quad$ Four, $\quad N\left(A^{\top} A\right)=N(A)$ for any $A, \longrightarrow \ldots$ prove this
And $r^{\prime}\left(A^{\top} A\right)=0$ means $A^{\top} A$ is invantible
So $\vec{x}_{t 5}=\left(A^{\top} A\right)^{-1} A^{\top} b$
Notes about numerics

- The condition number:

$$
K\left(A^{\top} A\right)=K(A)^{2}
$$

of the conf mas for normal
eggs can be much bigger than That of A!!!

Fix. Use $12 R$ fact.
Prentice Exam Ph. 2

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 2 \\
0 & 1
\end{array}\right], \vec{b}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]
$$

$\rightarrow A$ full rank V
Notice if $B=\left[\begin{array}{ll}b_{11} & b_{2} \\ b_{21} & b_{22}\end{array}\right]$.

$$
B^{-1}=\frac{1}{\operatorname{det}(B)} \cdot\left[\begin{array}{ll}
b_{22} & -b_{12} \\
-b_{21} & b_{11}
\end{array}\right]
$$

Typically most. nedundant for
undetermined when ne want to solect a certain solon amongst Infinitely many
minimize $\|\vec{x}\|_{2}$

$$
\text { 8.+. } A \vec{x}=\vec{b}
$$

Least norm
Suppose we uar to solve $L N_{-}$sorn to $A \vec{x}=\vec{b}$,

G amongst all possible solus, chose one closest to the origin.

Procedure:
(1). Use (right) psendoinvege

1 terative Neth
$\chi_{N_{N}}=A^{\top}\left(A A^{\top}\right)^{-1} b$. probl-Hw
(2) Fire find geneal sorn, (use calculus!) eq..

$$
\vec{x}(t)=\left[\begin{array}{c}
1-t \\
t
\end{array}\right], \quad \text { compute }
$$

nome, $\|x(t)\|^{2}=(1-t)^{2}+t$ and minimize!

Date.
$A \rightarrow \lambda$
Whe we ve ejouls of
A^{+}, A^{\top}, \cdots relered $-A$

Squar A inerobe?
A nor.
$\operatorname{det}(A)=0$
Singuaricy x^{*}

Mede 9 -1.
Date.
No.

- power methed
- ezzencen. det., nom
- spectrar represcreation
\rightarrow Rever on pre conterts.
tark- Sactean qonweurnation.
\uparrow linear coxubinerrion.

Whe's lef?? power method, OR itar, Snepurar value decanoposition.

No. conputing ele ergenval.

$$
\operatorname{det}(A-\lambda I)=0
$$

- can suly usedefor cmul n

$$
\begin{aligned}
& \left|\lambda_{\min }\right|>0 \\
& \left|k(A)=\left|\lambda_{\max }\right| /\left|\lambda_{\min }\right|\right. \\
& \left|\lambda_{\min }(G)\right|<1 \rightarrow\left|G^{+\|}\right|<1 .
\end{aligned}
$$

Pover methed.
diagonatizable $A \in \mathbb{R}^{n \times n}$.

$$
\left|\lambda_{1} 1>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{n}\right| .\right.
$$

Itienate: Given $\vec{u}^{(0)}$

$$
\begin{aligned}
& \vec{u}^{(1)}=A \vec{u}^{(0)} . \\
& \vec{u}^{(1)}=A \vec{u}^{(1)}=A^{2} \vec{u}^{(0)} .
\end{aligned}
$$

$$
\vec{u}^{(k)}=A \vec{u}^{(k-1)}=A^{k} \vec{u}^{(0)}
$$

Troject $\vec{u}^{(\cdot)}$ on the hasis:

$$
\begin{aligned}
\vec{w}^{(0)} & =\sum_{i=1}^{n} \alpha_{i} \vec{v}_{i} \\
\rightarrow \vec{u}^{(1)} & =A \vec{u}^{(0)}=A \sum_{i=1}^{n} \alpha_{i} \vec{v}_{i}
\end{aligned}
$$

$$
=\sum_{i=1}^{n} \alpha_{i} \lambda_{i} \vec{V}_{i}
$$

$$
\vec{u}^{(k)}=A^{k} \vec{u}^{(0)}=\sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{k} \vec{v}_{i}
$$

$$
=\lambda_{1}^{k}\left[\alpha_{1} \vec{v}_{1}+\sum_{i=2}^{n} \alpha_{i}^{k}\left(\frac{\lambda_{i}}{\lambda_{i}}\right)^{k} \vec{\nu}_{i}\right]
$$

Reanl: $\left|\lambda_{1}\right|>\cdots>\lambda_{n} \mid$

$$
\rightarrow \vec{u}^{(k)} \cong \lambda_{1}^{k} \alpha_{1} \vec{v}_{1}
$$

$\vec{u}^{(k)}$ aligns towareds \vec{v}_{1}.

- dregonalizable natriv $A \in \mathbb{R}^{n \times n}$.

$$
\begin{gathered}
\vec{u}^{(k)}=A \vec{u}^{(k-1)}=A^{k} \vec{u}^{(0)} \\
A \overrightarrow{u_{1}}=\lambda_{1} \vec{v}_{1} \rightarrow \vec{V}_{1}^{\top} A \vec{v}_{1}=\vec{v}_{1}^{\top} \lambda_{1} \vec{v}_{1} \\
\lambda_{1}=\frac{\vec{v}_{1}^{\top} \vec{v}_{1}}{\vec{v}_{1}^{\prime}} \cdot J
\end{gathered}
$$

Atmal poner inerations: Rormalzosion.

$$
=\vec{u}^{(k)}=A \vec{n}^{(k-1)}
$$

$$
-\vec{w}^{(k)}=\vec{u}^{(k)} /\left\|\vec{u}^{(k)}\right\| .
$$

$$
\therefore \lambda^{(k)}=\left(\vec{w}^{(k)}\right)^{\top} A \vec{w}^{(k)}
$$

$$
=k
$$

Concergene cortolled. by eiginat
\qquad get $\lambda_{\min } \rightarrow$ pover mothud for A^{-1} not $\lambda_{\text {max }}$ or $\lambda_{\text {min }}$

$$
A=\mu I \Longleftrightarrow \lambda-\mu
$$

$$
(A-\mu) \vec{v}=(\lambda-\mu) \vec{v}
$$

\downarrow
$\hat{A}=A-\mu=\quad \tilde{x}^{2}=\lambda-\mu$

$$
\tilde{A} \vec{v}=\tilde{\lambda} \vec{v}
$$

logen $\frac{1}{\tilde{\lambda}} \rightarrow \frac{1}{\lambda-\mu}$. Sniffed Inwerse Pouer 1 terations.

convergas to the spectal radios, Jax. converenence speed depond on $\lambda_{2} / \lambda_{1}$. $\left|\lambda_{2}\right|<\left|\lambda_{1}\right| \rightarrow$ anvege gnickly. shiffent lavesse pour iter. converge t I \min if $\operatorname{shift}=0$.

Speñal case: $\lambda_{1}=\lambda_{2}$.

$$
\text { conerge to } \lambda_{1}\left(\alpha_{1} \vec{v}_{1}+\alpha_{2} \vec{v}_{2}\right) .
$$

\rightarrow Speotrar Radius.

$$
\rho(A)=\left|\lambda_{\text {max }}\right| .
$$

$$
\|A\| \geqslant \rho(A)
$$

- Assmme $\rho(A)=\left|\lambda_{k}\right|$.
- defin $\forall=\left[\begin{array}{llll}\vec{v}_{k} & \vec{v}_{k} \cdots & \vec{v}_{k}\end{array}\right]$

$-\|A \forall\| \leqslant\|A\|\|\forall\|$.

$$
=A \forall=\left[A v_{k} A \vec{v}_{k} \cdots A \vec{A} \vec{v}_{k}\right]
$$

$$
=-\lambda x V
$$

and $\left\|\lambda_{k} \forall\right\|=\left\|\lambda_{k}\right\|\|f\|$

$$
=\rho(A)\|\forall\| .
$$

- Herfore $\|A \forall\|=\rho(A)\|\forall\|$

$$
\begin{aligned}
& \leq\|A\|\|\forall\| \\
& \rightarrow \rho(A) \leq\|A\|
\end{aligned}
$$

Splectal redius is a bound symmetric. diegonitale $A \in \mathbb{R}^{n \times n}$

$$
\begin{aligned}
& A=7 \Lambda \nabla^{-1} . \\
& \rightarrow\left\{\begin{array}{l}
\operatorname{dot}(A B)=\operatorname{det}(A) \operatorname{dot}(B) . \\
\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{dot}(A) . \\
A \text { ar } B \subset \text { diagonel/torengen }
\end{array}\right. \\
& \operatorname{det}(A)=\operatorname{det}\left(\forall \wedge Z^{-1}\right) \text {. } \\
& =\operatorname{det}(\forall) \operatorname{det}(\Lambda) \operatorname{dot}\left(7^{-1}\right) \\
& =\operatorname{det}(\Lambda)=\Pi_{i} \lambda_{i}
\end{aligned}
$$

If any $\lambda_{i}=0 \rightarrow$ mericir is not invertible!

Dregonalizebiliey.
deg: $A=\forall \wedge \forall^{-1}$ exists invar: : A^{-1} exists.
seampler. along. \& invert.
Invert. \rightarrow relarces do eggancals
diag. \rightarrow eigenvectors
Spectral Representation of a Marerix. preview of SHD.
Symmetric \& diagonizable. $A \in \mathbb{R}^{n+x}$.

$$
\begin{aligned}
& A=\forall \wedge \forall^{-1}=\forall \wedge V^{\top} \\
& \rightarrow A=\sum_{i=1}^{n} \lambda_{i} \vec{v}_{i} \vec{v}_{i}^{\top}
\end{aligned}
$$

Remark: $\vec{v}_{i} \cdot \vec{v}_{i}^{T} \neq \vec{v}_{i}^{T} \vec{v}_{i}$.
$\vec{V}_{i}^{\top} \vec{V}_{1} \Rightarrow$ inner product. $\vec{V}_{i} \vec{V}_{i}^{\top} \Rightarrow$ outer product.

$$
\begin{aligned}
& Q, R=q \mu(A) \\
& A \leq Q R .
\end{aligned}
$$

Manematicilly,
$A \rightarrow$ neal non-singular matrix.
$A, B \rightarrow$ similar matrices.
exist mon-singplar matrix T

$$
\underset{A=T B T^{-1}}{\stackrel{1}{2}}
$$

If $A \subset B$ are similar matron, They have the same eigenvalues.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(T B T^{-1}-\lambda I\right) \\
& =\operatorname{det}(T) \operatorname{det}(B-\lambda I) \operatorname{dot} \mathbb{I}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{det}(B-\lambda I) \\
T A T^{-1} y & =\lambda_{2} y
\end{aligned}
$$

$$
A^{(1)}=\varphi^{\top} A \varphi
$$

$$
A^{(1)}=\varphi^{(1)} R
$$

$$
A^{(2)}=R^{(1)} \varphi^{(1)}
$$

$$
\begin{aligned}
& A^{(k)}=\varphi^{(k-1)} \varphi^{(k-2)} A \\
& (\hat{Q})^{\top}=(\tilde{\phi})^{-1} \underbrace{\varphi^{(i)} \cdots \varphi^{(k-1)}}
\end{aligned}
$$

$$
A^{(k)}=\hat{\theta} A Q \quad \tilde{\varphi}
$$

Date.
$A \rightarrow$ diagiona Tratte
$A=\left[\begin{array}{c}1 \\ 1 \\ x_{1} \\ 1\end{array}\right]\left[\begin{array}{cc}\Lambda & \\ \lambda_{1} & \\ \lambda_{2} & \\ & \\ & \\ & \\ \lambda_{n}\end{array}\right]\left[\begin{array}{l}T_{i}^{-1} \\ \end{array}\right]$

$$
A=T \Lambda T^{-1}=Q S Q^{-1}
$$

find erganals l eigenvec.

$$
\begin{aligned}
& A^{(3)}=\alpha . \\
& A^{(3)}=\alpha_{2} A^{2}+\alpha_{1} A^{\prime}+\alpha_{0} I \\
& \sqrt{A}=P(\sqrt{A})^{2}+P_{A}=P_{0} I \\
& \sqrt{\lambda}=P_{0}[]^{2}+R_{1} \lambda+P_{0} \\
& \sqrt{\lambda_{2}}=P_{1} \\
& \sqrt{\lambda_{3}}=P_{2}
\end{aligned}
$$

Week $8-3$.

$$
A=\left[\begin{array}{ccc}
2 & 1 & -4 \\
0 & 1 & 8 \\
0 & 0 & 4
\end{array}\right]
$$

(a) find the chovacteristre polynaximl
(b). Find a form for A^{-1} in terms of poners of A
(c) Codanate A^{-1} and chermaize $A A^{-1}=I$
(a)

$$
\begin{aligned}
& (2-\lambda)(1-\lambda)(4-\lambda)=0 \\
& A^{3}-7 A^{2}-14 A+8 I=0 \\
& A^{-1}=\frac{1}{8}\left[A^{2}-7 A+14\right]
\end{aligned}
$$

Date.
No.

$$
\begin{aligned}
& A^{-1}=\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 3 / 2 \\
0 & 1 & -2 \\
0 & 0 & 1 / 4
\end{array}\right] \\
& A=\left[\begin{array}{lll}
C & 2 & 0 \\
2 & c & 2 \\
0 & 2 & c
\end{array}\right]
\end{aligned}
$$

(1) Find values of $c \rightarrow A$ postive
(2) For $c=0$
$\downarrow^{\text {tor eigenvalues, ergenver lass decouple }}$ Find A^{10} using coupling Find A^{10}, using Caloy-Haniton
(1)

$$
\begin{aligned}
& \text { (1) positive definite } \rightarrow \\
& =(c-\lambda)^{3}-4(c-\lambda)-4(c-\lambda) \\
& =(c-\lambda)\left[(c-2)^{2}-8\right]
\end{aligned}
$$

devampoling $-1 \times 0 \times \frac{\text { Date }}{\text { No. }}$

$$
\begin{aligned}
& A=c, \quad c=\sqrt{8} . \\
& \downarrow \\
& C=\sqrt{8} \\
& \lambda_{1}=\sqrt{8}, \lambda_{2}=0, \lambda_{3}=\sqrt{8} \\
& A V_{1}=\lambda V_{2} \cdots A v_{1}=\lambda V_{1} \\
& {\left[\begin{array}{lll}
0 & 2 & 0 \\
2 & 0 & 2 \\
0 & 0 & 0
\end{array}\right] \quad \ddots\left[\begin{array}{ccc}
-\sqrt{2} & 2 & 0 \\
2 & -\sqrt{2} & 2 \\
0 & 2 & \sqrt{2}
\end{array}\right]}
\end{aligned}
$$

$$
\begin{array}{cc}
L & \\
\vec{v}^{2}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) & \vec{v}^{2}\left(\begin{array}{c}
1 \\
8 \\
1
\end{array}\right]
\end{array}
$$

$$
\begin{aligned}
& A x_{3}=x x_{1} \\
& {\left[\begin{array}{ccc}
\sqrt{2} & 2 & 0 \\
2 & 18 & 2 \\
0 & 8 r & \sqrt{8}
\end{array}\right] \rightarrow \overrightarrow{A^{\prime}}=\left[\begin{array}{c}
-\frac{1}{n} \\
1
\end{array}\right]}
\end{aligned}
$$

$A^{n}=Z \Omega X^{-1} Z \Lambda Z^{-1} X \wedge z \cdots$

$$
\rightarrow \mathbb{X} \Omega^{n} I^{-1} \rightarrow e^{A} \rightarrow \bar{X} e^{\Lambda} \mathbb{X}^{-1}
$$

$$
A^{10}=[
$$

Final Week.

$$
X_{A}(Q)=\operatorname{det}(A-Z I) \text {. }
$$

Ap venation:

$$
\begin{aligned}
\operatorname{det}(B-2 I)= & \operatorname{det}\left(S A S^{-1}-Z I\right) \\
& =\operatorname{det}(S) \operatorname{det}(A-Z I) \operatorname{det}\left(S^{-1}\right) \\
& =\operatorname{det}(A-Z I)
\end{aligned}
$$

Galey-Hamiton Theorem.
Thu: (CH). Every Matrix Sotisfian
its charovericitic polynomial ie., if A is $n \times n$, then

$$
\chi_{A}(A)=\nabla_{n \times n}
$$

w/ $X_{A}(Z)=\operatorname{det}(A-Z I)$ denoting
the characteristic poly. of A.
He e, we went to write.

$$
\begin{array}{r}
\chi_{A}(z)=\left(z-\lambda_{1}\right)\left(z-\lambda_{2}\right) \cdots\left(z-\lambda_{n}\right) \\
\equiv z^{n}+C_{1} z^{n-1}+\cdots+C_{n} z+ \\
\operatorname{det}(A)
\end{array}
$$

Proof: (Sketch).
Suppose A is dragrulizelte.
So $A=T \Lambda T^{-1}$ for a_{n} inventibk T and diagonal Λ. WIS: $X_{A}(A) \vec{x}=\overrightarrow{0}$ for all $\vec{x} \in \mathbb{R}^{n}$.

Kayporat:- A is diagmoilizable,
so its ergenvecs $\vec{v}_{1}, \vec{v}_{2}, \ldots \vec{v}_{n}$ are a basis of R^{n}.

So for any \vec{x}_{i}, he can wire

$$
\vec{x}=a \vec{v}_{1}+\cdots \operatorname{cn}_{n} \vec{v}_{n}
$$

for sone toefl g : Since v_{j} is a x_{j}-eigences,

$$
\begin{array}{r}
A \vec{v}_{j}=\lambda_{j} \vec{v}_{j} \\
\Leftrightarrow\left(A-\lambda_{j}\right) \vec{V}_{j}=0
\end{array}
$$

So now, we try on de char
poly.: $X_{A}(A)=\left(A-\lambda_{I} I\right)\left(A-\lambda_{I} I\right) \ldots\left(A-\lambda_{n} I\right)=$ evalueied this on $\stackrel{\rightharpoonup}{x}$
Notice $\left.\left[\prod_{j=1}^{n}\left(A-\lambda_{j} I\right)\right] \vec{x}=C_{[}\left[\prod_{j=1}\left(A_{1}-\lambda_{j}\right]\right)\right]^{\prime}$

$$
\begin{aligned}
& \quad+\cdots+C_{n}\left[\prod_{j=1}^{n}\left(A-\lambda_{j} I\right)\right] V_{n} \\
& =C_{1}\left(A-\lambda_{2} I\right) \cdots\left(A-\lambda_{n} I\right)\left(A-\lambda_{2} I\right) v_{1} \\
& +\cdots+C_{n}\left(A_{1}-\lambda_{1} I\right) \cdots\left(A-\lambda_{n} I\right) V_{n}
\end{aligned}
$$

Non-diagonalizable A : the angurevt: (see geretalised eigenvectors, Jorden b.).

Main reason: CH still worlds is b / c char. poly. has enough repeated fevers...
-
Consider 2 $J=\left[\begin{array}{ll}2 & 1 \\ & 2\end{array}\right]$ diecganaibatitey
argon vols: 2,2 ND. of eigenvalues. ersenvec: 1 crumple cheese.

$$
\begin{aligned}
X(1 z) & =(z-2)(z-2) \\
& =(J-2 L)(J-2 L)\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Applications

1) Laversion formula.

Example OH implies $X_{j}(5)=(J-2 x)^{2}$

$$
50 J^{2}-4 J+4[=0
$$

Rearrarge to obtain inverse!

$$
\Leftrightarrow J(J-4 I)=-4 I
$$

muleiply by J^{-1} to obtain a fimula!

$$
\begin{aligned}
& \rightarrow \quad(J-4 I)=-4 J^{-1} \\
& \Rightarrow \quad J^{-1}=\frac{1}{4}(J-4 I)
\end{aligned}
$$

(keypsint constant term is der(A)

$$
\begin{aligned}
& \left.\left.\operatorname{det}(A-z I)\right|_{z=0}=X_{A} 10\right) \\
= & C_{1} z^{n-1}+\cdots+C_{n-2} z+\left.C_{n-1}\right|_{z=0}
\end{aligned}
$$

2) Aralytier funs of Morizas:

$$
e^{A}=T+\cdots
$$

$$
=K_{1} I+K_{2} A+\cdots+K_{n} A^{n-1}
$$

koylou_swispane methods

If Adaitional hineer Algebra Notes
Dererminamits.
Det'n: Scaver function of marrix certries that an determine uk-her metrix is singuar.
How to deternine?
(1) $\quad|x| \rightarrow \operatorname{det}(A)=A$.
(2) $\operatorname{det}\left(\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\right)=(-1) a_{11} \operatorname{det}\left(a_{22}\right)$.

$$
+(-1)^{1+2} a_{12} \operatorname{det}\left(a_{21}\right)
$$

$$
=a_{11} a_{22}-a_{12} a_{21} .
$$

$C_{i j}$ is A wl Th row \& $j^{\text {th }}$ coln
$\operatorname{det}\left|\begin{array}{lll}2 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right|=0$ etiminared number of row flips $\operatorname{det}(A)=0$ iff A is singuar $\rightarrow \operatorname{det}(A)=(-1)^{k}$
up dore: $\begin{cases}k_{i} \rightarrow i+1 & \\ k_{i+1} \rightarrow i & k_{i+1} \rightarrow i+2 \\ k_{i+2} \rightarrow i+1 & k_{i+2 \rightarrow i+2} \\ & \vdots \\ k_{j-1} \rightarrow j & k_{j-1 \rightarrow j-2} \\ k_{j \rightarrow j-1} & \end{cases}$
$b \in \operatorname{Coln}_{0}(A) \Longleftrightarrow A_{x=b}$ has a solution.

$$
\operatorname{dim}\left(N^{\prime}(A)\right)=n-r k(A) .
$$

$\}^{5}$ tels nom. Dot in systems sot.
$\Rightarrow A_{x=0} \quad \Longleftrightarrow 0 \cdot x=0$.
$z_{i} x_{i} \vec{u}_{i}=0 \quad$ Same relation $\quad \operatorname{col}^{\prime} n(A) \leftrightarrow \operatorname{coln}(0)$

$$
\Rightarrow \operatorname{dim}(\operatorname{col}(A))+\operatorname{dim}(N(A))=n
$$

Saury vector $\in \mathbb{R}^{k}$ is sum of the components

$$
\text { in } \operatorname{col}(A) \& N(A)
$$

basis of $N(U)=N(A)$.
If vectors $\vec{x}_{1}, \cdots, \vec{x}_{m}$ in \mathbb{R}^{n} span subspace s in $\mathbb{R}^{n} \quad \operatorname{dim}(s)=m$.

False - Hts not a basis \rightarrow redundant.
\rightarrow If A, B have same row space, conn spore, same mull space $\rightarrow A=B$.

False counterexample: $A=\alpha B$.
If $m \times n$ matrix $A, A \vec{x}=\vec{b}$ always has. at least one solon for avery choice of \vec{b}, then the only sorn to $A^{\top} \vec{y}=\overrightarrow{0}$ is $\vec{y}=\overrightarrow{0}$.

True.
\square to have at least ore sorn for amy \vec{b}, coin space must be all of \mathbb{R}^{m}.
\vec{b} must be in \mathbb{R}^{m}
$r(A)=m$.
$\operatorname{dim}\left(N^{\sim}(A)\right)=m-m=0, \quad \sim\left(A^{\top}\right)=r(A)$.
only sorn: $\vec{y}=\overrightarrow{0}$, zero vector.

A $m \times n$ matrix, rank $r \leq \min \{m, n\}$.
(a). $A \vec{x}=\vec{b}$ has no sot regardless \vec{b} Impossible. for $\vec{b}=0$. always $\vec{x}=0$.
(b). $A \vec{x}=\vec{b}$ has exactly one sold for any \vec{b}. IFF colin of A form a basis space \mathbb{R}^{m} (independent).

$$
m=n=r \quad \text { (A non-singular, square). }
$$

(c) $A \vec{x}=\vec{b}$ has infinitely many sol'n for any \vec{b}.

$$
\begin{array}{cc}
\operatorname{dim}(N(A)) \geqslant 1 . & \rightarrow \text { subspace containing } \\
n-r \geqslant 1 . & \text { only zero } \vec{v},
\end{array}
$$

$r=m$,
$m=r<n$.
null space.
(d). If $\vec{x}_{i}, i=1, \cdots, m$ are orthogonal. they are independent, $\vec{x}_{i} \in \mathbb{R}^{m}, n>m$.

True

$$
\begin{gathered}
c_{1} \vec{x}_{1}+\cdots+c_{m} \vec{x}_{m}=0 \\
\left(c_{1} \overrightarrow{x_{1}}+\cdots+c_{m} \vec{x}_{m}\right)\left(\begin{array}{c}
\vec{x}_{1} \\
\vec{x}_{2} \\
\vdots \\
\vec{x}_{m}
\end{array}\right)=0 .
\end{gathered}
$$

$$
c_{1} \vec{x}_{1}^{\top} \vec{x}_{i}+c_{2} \vec{x}_{2}^{\top} \vec{x}_{j}+\cdots+c_{m} \vec{x}_{m}^{\top} x_{i}=0
$$

All orthogonal:
$G_{T} \vec{X}_{i}^{\top} \vec{X}_{i}=0$ remains:
as $\vec{x}_{T}^{\Gamma} \vec{x}_{i} \neq 0$.

$$
C_{i}=0, \text { for } i=1, \cdots, m
$$

Q: Prove that $\|A x\|_{2} \leq\|A\|_{2}\|x\|_{2}$.

$$
\text { 1) }\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}
$$

induced norm:

$$
\text { 2). }\|A\|_{2}=\max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} \quad \cdots \text { maximum over ai\| }
$$

\rightarrow this is an "induced" norm, which means it measures how big the size of the output $A x$ can be, write the size of the input x.

If want to show,
for any vector $\vec{x},\|A x\|_{2} \leq\|A\|_{2}\|x\|_{2}$. (If $x \neq 0)$, rewrite as

$$
\frac{\|A x\|_{2}}{\|x\|_{2}} \leq\|A\|_{2}
$$

If for any $x \neq 0$, we know that

$$
\frac{\|A x\|_{2}}{\|x\|_{2}} \leq \max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\|A\|_{2}
$$

So indeed,

$$
\|A x\|_{2} \leq\|A\|_{2}\|x\|_{2}
$$

It conditioning a sises when matrix is close to singular conditioning.
\rightarrow Intuition for condition number.
Roughly, a matrix is ill-conditioned if it is "close" to being singular.
Example: Consider $A \vec{x}=\vec{b}$.

$$
\begin{aligned}
& \omega / A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
2+\varepsilon & 2
\end{array}\right] \text { and } \\
& b=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \varepsilon \neq 0, \text { but } \quad \varepsilon \neq 0 . \\
& A \vec{x}=\vec{b} \leftrightarrow\left[\begin{array}{ll}
1 & 1 \\
2+\varepsilon & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
&
\end{aligned}
$$

Notes on Determinants.

- Scalar function of matrices entries that can determine whether matrix is singular.

Inductive deft:
(1) $|x|$ mat A.

$$
\operatorname{det}([a])=a
$$

(2) $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

$$
\operatorname{det}(A)=a \operatorname{det}([Q])-b \cdot \operatorname{det}([c]) \text {. }
$$

$$
=a d-b c \text {. }
$$

$$
\begin{aligned}
& \text { (3) If } A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right] . \\
& \operatorname{det}(A)= \\
& +a \cdot \operatorname{det}\left(\left[\begin{array}{ll}
e & f \\
h & k
\end{array}\right]\right)-b \cdot \operatorname{det}\left(\left[\begin{array}{ll}
d & f \\
g & k
\end{array}\right]\right) \\
& \left.+\left[\begin{array}{ll}
d & e \\
g & h
\end{array}\right]\right) . \\
& =a(e k-n f)+(-b)(d k-g f)+c(d h-g e)(a)
\end{aligned}
$$

but.

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

$\operatorname{det}(A)=0, \quad A$ is not invertible.
Defin. The determinant of $m \times n \quad A$:

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{j+1} a_{i j} \operatorname{det}\left(M_{i j}\right)
$$

where $M_{i j}$ is the sub-mat obtained from A by removing its $i^{\text {th }}$ row $e j^{\text {th }}$ colt.
Note: Can use any row we like!
Example: Using A as in previous example: expand along second row.

$$
\begin{aligned}
\operatorname{det}(A)=0= & -0 \cdot \operatorname{det}\left(M_{21}\right)+1 \cdot \operatorname{det}\left(M_{22}\right) \\
& +0 \cdot \operatorname{det}\left(M_{23}\right) \times(-1) \\
= & -\operatorname{det}\left(\left[\begin{array}{ll}
2 & 0 \\
1 & 0
\end{array}\right]\right)=0
\end{aligned}
$$

* Notation vertical bars mean deft i.e.,

$$
\operatorname{det}\left(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right)=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
$$

Properties

1) Scaling.

$$
\left|\begin{array}{ll}
t \cdot a & b \\
t \cdot c & d
\end{array}\right|=t\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

2). Additive

$$
\left|\begin{array}{ll}
a+r & b \\
c+w & d
\end{array}\right|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|+\left|\begin{array}{ll}
v & d \\
w & d
\end{array}\right|
$$

Note: Second colt the samel
3) Alternating

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=-\left|\begin{array}{ll}
b & a \\
d & c
\end{array}\right|
$$

swapping col'ns neopts determinant.

Q: What happens if two coli's are scalar multiple of each other?

$$
\left|\begin{array}{ll}
t a & a \\
t c & c
\end{array}\right|=t\left|\begin{array}{ll}
a & a \\
c & c
\end{array}\right|
$$

A. That matrix has determinant zero!

$$
t\left|\begin{array}{ll}
a & a \\
c & c
\end{array}\right|=-t\left|\begin{array}{ll}
a & a \\
c & c
\end{array}\right|=0
$$

Consequence: Using additivity, the last result can be extended to general linear combination.

Theorem: $\operatorname{det}(A)=0$, IF A is singular.
Roughly, $\operatorname{det}(A)$ "detects" linear combination in columns of A.

Fact: $1 \quad|A|=\left|A^{\top}\right|$ for amy $n \times n$ matrix.
Consequence: we have all the same prop. for rows.
(a.9. swaps, scalars, multi, add.).

Keypoint: We can compute der (A) by performing
Gauss elimination and keeping track of the tow operation.
$\operatorname{det}(V)$ is easy to compute.

$$
\begin{aligned}
& \text { Example: }\left|\begin{array}{cc}
a & b \\
c-\alpha a & d-\alpha b
\end{array}\right| \\
& =\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|+\left|\begin{array}{cc}
a & b \\
-\alpha a & -\alpha b
\end{array}\right| \rightarrow \text { sane row or cot'a } \\
& =\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
\end{aligned}
$$

(2) $\quad|A B|=|A||B|$.

The determinant of a product is the product of determinants.

Example: Show that if P is a projection matrix.

Example: Show that $\operatorname{det}(I)=1$
Proof: let A be amy non-sinqular nan matrix.

$$
\begin{aligned}
& \because A \cdot I=A \\
& \therefore|A I|=|A||I|=|A| \\
& \because|\operatorname{det}(A)| \neq 0, \quad|I|=1
\end{aligned}
$$

Recall
Theorem: Given any mon matrix A_{j}
lin. indp. rows $=$ lin. ind. coins.

$$
A=\left.[] \in \mathbb{R}^{1000 \times 100} \int_{\text {row }}^{1}\right|_{\text {colt. }}
$$

rows in $\mathbb{R}^{100} ;$ col'ns in \mathbb{R}^{1000} In symbols,

$$
\operatorname{dim} \operatorname{row}(A)=\operatorname{dim} \operatorname{coln}(A) .
$$

Example

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 4 \\
3 & 7 & 7
\end{array}\right]
$$

Using Gaussian Elimination, find $A=L 25$.

$$
V=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{dim}(\operatorname{row}(V))=\operatorname{dim}(\operatorname{row}(A)) & =2 \\
& =\operatorname{dim}(\operatorname{coln}(A))
\end{aligned}
$$

Since $\operatorname{rank}(A)=2$, and first 2 colons are linearly ind.

$$
\operatorname{col}(A)=\operatorname{span}\left(\vec{a}_{1}, \vec{a}_{2}\right)
$$

In general,

$$
\begin{gathered}
A \vec{x}=0, \leftrightarrow V \vec{x}=0 \\
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n}=0
\end{gathered}
$$

So, Same linear relation exist between the coles of $V \&$ coins of A.
\rightarrow pick out coins of A corresponding to input coles of U.
Q. What is $N(A)$ ie., $\quad \operatorname{dim}(\cot (A))=\operatorname{rank}(A)$.

Here, 2 linearly independent rows in V.O

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 4 \\
3 & 7 & 7
\end{array}\right] \vec{x}=0
$$

Recall:

$$
\begin{aligned}
& V=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \\
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

$2^{\text {nd }}$ row: $x_{2}=2 x_{3}$.
$1^{\text {st }}$ row: $x_{1}=-2 x_{2}-3 x_{3}$

$$
=-7 x_{3} .
$$

Key observation: 2 eqns $\rightarrow\left\{\begin{array}{l}\operatorname{rank}(A)=2 . \\ \operatorname{dim}(\operatorname{col} \ln (A))=2\end{array}\right.$
1 degree of freedom for Null space.
Theorem

$$
\operatorname{dim}(\cot n(A))+\operatorname{dim}(N(A))=n .
$$

for any man matrix A.
thus, every vector in \mathbb{R}^{n} is the same of the two components.
i.e., a veetor in $\operatorname{col}(A)$
k a vector in $N(A)$
\rightarrow Consequence $\quad A \vec{x}=\vec{b}$,

- If $b \in \operatorname{col}(A) \leftrightarrow A \vec{x}=\vec{b}$
has a soln.
- $\operatorname{Dim}(N(A))=n-\operatorname{rank}(A)$.
tells you \# of DoFs in soln

$$
\text { to } A \vec{x}=\vec{b} \text {. }
$$

Problem 1. Decide whether each of the following statements is true or false. If true, then prove it; otherwise, provide a counterexample.
(a) If $A B=I$, then $A=I$.

Solution. Counterexample: $B=A^{-1}$.
(b) If $A B=0$, then A or B is a zero matrix.

Solution. Counterexample:

$$
A=\left[\begin{array}{ll}
a & a \tag{1}\\
a & a
\end{array}\right], B=\left[\begin{array}{cc}
b & -b \\
-b & b
\end{array}\right]
$$

where a and b are non-zero scalars.
(c) If $A B$ and $B A$ are defined, then both A and B must be square.

Solution. Counterexample: A is a 2×3 matrix, and B is a 3×2 matrix. More generally, A is a $m \times n$ matrix, and B is a $n \times m$ matrix.
(d) If $A B$ and $B A$ are defined, then both $A B$ and $B A$ are necessarily square.

Solution. Assume A is a $m \times n$ matrix, and B is a $n \times m$ matrix. Since both $A B$ and $B A$ are defined, assume $A B=\mathcal{A}$, and $B A=\mathcal{B}$, then \mathcal{A} has dimension $n \times n$, and \mathcal{B} has dimension $m \times m$. Assume A and B can be generalized to two second-order tensors, using indicial notation:

$$
\begin{array}{ll}
A_{i j} B_{j i}=\mathcal{A}_{i i}, & i \in[1, m], j \in[i, n] \tag{2}\\
B_{j i} A_{i j}=\mathcal{B}_{j j}, & i \in[1, m], j \in[i, n]
\end{array}
$$

Hence, both $A B$ and $B A$ are necessarily square.
(e) If A is invertible, then $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$.

Solution. If A is invertible, then $\left(A^{-1}\right)^{\top}=\left(A^{\top}\right)^{-1}$. We further get $\left(A^{-1}\right)^{\top} A^{\top}=I$, then we finally get:

$$
\begin{equation*}
\left(A^{-1} A\right)^{\top}=I \tag{3}
\end{equation*}
$$

then the relation $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$ is established.

Problem 2. Suppose A and B are $n \times n$ symmetric matrices; that is, $A=A^{T}$ and $B=B^{T}$. Decide whether each of the following matrices is symmetric. If it is, prove it; otherwise, provide a counterexample.
(a) $A^{2}-B^{2}$.

Solution.

$$
\begin{align*}
\left(A^{2}-B^{2}\right)^{\top} & =((A A)-(B B))^{\top} \\
& =(A A)^{\top}-(B B)^{\top} \\
& =A^{\top} A^{\top}-B^{\top} B^{\top} \tag{4}\\
& =(A A)-(B B) \\
& =A^{2}-B^{2}
\end{align*}
$$

(b) $(A+B)(A-B)$.

Solution.

$$
\begin{align*}
{[(A+B)(A-B)]^{\top} } & =(A-B)^{\top}(A+B)^{\top} \\
& =\left(A^{\top}-B^{\top}\right)\left(A^{\top}+B^{\top}\right) \tag{5}\\
& =(A-B)(A+B)
\end{align*}
$$

A counterexample would be $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right], B=\left[\begin{array}{ll}7 & 5 \\ 5 & 6\end{array}\right]$, then $(A-B)(A+B)=$ $\left[\begin{array}{cc}-69 & -66 \\ -54 & -51\end{array}\right]$, and $(A+B)(A-B)=\left[\begin{array}{ll}-69 & -54 \\ -66 & -51\end{array}\right]$, where $(A-B)(A+B) \neq(A+$ $B)(A-B)$.
(c) $A B A B$.

Solution.

$$
\begin{align*}
{[A B A B]^{\top} } & =(A B)^{\top}(A B)^{\top} \\
& =B^{\top} A^{\top} B^{\top} A^{\top} \tag{6}\\
& =B A B A
\end{align*}
$$

Using the same counterexample from (b), we get $A B A B=\left[\begin{array}{ll}713 & 672 \\ 924 & 881\end{array}\right]$, and $B A B A=$ $\left[\begin{array}{ll}713 & 924 \\ 672 & 881\end{array}\right]$. It is found that $A B A B \neq B A B A$, hence the statement is wrong.
(d) $A B A$.

Solution.

$$
\begin{align*}
{[A B A]^{\top} } & =(A)^{\top}(A B)^{\top} \\
& =A^{\top} B^{\top} A^{\top} \tag{7}\\
& =A B A
\end{align*}
$$

The statement is true.

Problem 3. A square matrix A is called right stochastic if the elements in each row have a unit sum. That is, a given $n \times n$ matrix A is right stochastic if

$$
\sum_{j=1}^{n} a_{i j}=1
$$

, for each $1 \leq i \leq n$. Suppose A and B are $n \times n$ right stochastic matrices. Show that $A B$ is right stochastic.

Solution. Assuming both A and B are right stochastic, by expanding $A B$ we get

Since both A and B are right stochastic, we know $\sum_{j=1}^{n} a_{i j}=1$ and $\sum_{j=1}^{n} b_{i j}=1$, therefore $\sum_{j=1}^{n} \sum_{j=1}^{n} a_{i j} b_{i j}=\underbrace{\left(a_{i 1}+a_{i 2}+\ldots+a_{i j}\right)}_{\equiv 1} \underbrace{\left(b_{i 1}+b_{i 2}+\ldots+b_{i j}\right)}_{\equiv 1}=1$. Hence $A B$ is right stochastic.

Problem 4. Consider the system of equations $A x=b$, with

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 2 & 3 \\
3 & 4 & 4 & 5 \\
4+\epsilon & 5 & 4 & 5
\end{array}\right], \quad \text { and } b=\left[\begin{array}{c}
10 \\
17 \\
43 \\
46+\epsilon
\end{array}\right]
$$

(a) Show that if $\epsilon \neq 0$, the correct solution is $x 1=1, x 2=2, x 3=3$, and $x 4=4$. In addition, show that if $\epsilon=0$, the vector $x^{*}=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]^{\top}$ is still a solution (but not the only one). Find a linear relationship between the rows of A in this case.
Solution. We can first solve for x by doing the inverse of A :

$$
A^{-1}=\frac{1}{\epsilon}\left[\begin{array}{cccc}
1 & \frac{1}{2} & -\frac{3}{2} & 1 \tag{9}\\
-(\epsilon+1) & -\frac{\epsilon+1}{2} & \frac{\epsilon+3}{2} & -1 \\
6 \epsilon-1 & \frac{\epsilon-1}{2} & \frac{-2(\epsilon-1)}{2} & -1 \\
-(4 \epsilon-1) & \frac{1}{2} & \frac{2 \epsilon-3}{2} & 1
\end{array}\right]
$$

we then get:

$$
\begin{align*}
x & =A^{-1} b \\
& =\left[\begin{array}{c}
\frac{1}{\epsilon}(\epsilon+46)-\frac{1}{\epsilon} 46 \\
\frac{1}{2 \epsilon}[43(\epsilon+3)-37(\epsilon+1)]-\frac{1}{\epsilon}(\epsilon+46) \\
\frac{10}{\epsilon}(6 \epsilon-1)-\frac{56}{\epsilon}(\epsilon-1)-\frac{1}{\epsilon}(\epsilon+46) \\
\frac{43}{2 \epsilon}(2 \epsilon-3)-\frac{10}{\epsilon}(4 \epsilon-1)+\frac{17}{2 \epsilon}+\frac{1}{\epsilon}(\epsilon+46)
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \tag{10}
\end{align*}
$$

If $\epsilon=0$, substitute it back to Eq. (10) we can still get $x=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$. Hence, $x=x^{*}$ is still one of the solutions.
However, when $\epsilon=0$ the equation to be solved becomes

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \tag{11}\\
-1 & 0 & 2 & 3 \\
3 & 4 & 4 & 5 \\
4 & 5 & 4 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
10 \\
17 \\
43 \\
46
\end{array}\right]
$$

in which the rank of the matrix A^{1} is 3 , indicating that the system is underdetermined, where the system possesses an infinite set of solutions.
We may further identify a linear relationship between the rows of A. Assuming the first three rows possess constants α, β, γ, and the linear combination of the first three rows is the fourth row. We can then obtain a new linear system to be solved:

$$
\left[\begin{array}{ccc}
1 & -1 & 3 \tag{12}\\
1 & 0 & 4 \\
1 & 2 & 4 \\
1 & 3 & 5
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right]=\left[\begin{array}{l}
4 \\
5 \\
4 \\
5
\end{array}\right]
$$

[^0]We can then solve to get $\alpha=-2, \beta=-1, \gamma=3$. We can further contend that the linear combination takes the form

$$
-2\left[\begin{array}{l}
1 \tag{13}\\
1 \\
1 \\
1
\end{array}\right]-1\left[\begin{array}{c}
-1 \\
0 \\
2 \\
3
\end{array}\right]+31\left[\begin{array}{l}
3 \\
4 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{l}
4 \\
5 \\
4 \\
5
\end{array}\right]
$$

(b) Use MATLAB to solve the system for $\epsilon=10^{-k}$ and $k=1,2, \ldots, 15$. Plot the error in the numerical solution, given as the norm $\left\|x_{\text {numerical }}-x_{\text {exact }}\right\|$, and discuss the accuracy of your results.
Solution. To solve this problem, I wrote the following MATLAB codes:

```
err = [];
for k=1:1:15
    eps = 10^(k);
    A = [1,1,1,1;-1,0,2,3;3,4,4,5;4+eps,5,4,5]
    b = [10,17,43,46+eps]'
    x = A\b;
    x_bench = [1;2;3;4];
    err_x = norm(x-x_bench);
    err(k)=err_x;
end
```

By plotting the $\left\|x_{\text {numerical }}-x_{\text {exact }}\right\|$ (named "Norm") versus the k value, Fig. 1 is plotted on a log scale for the norm.

Figure 1: Norm- k curve for comparing the numerical and analytical solutions.
One deduces that with an increasing k value, the norm increases exponentially (realized by the "pseudo-linear" trend on the log scale). With an increasing k value, ϵ decreases in an exponential fashion, leading to the A matrix approximating the $\epsilon=0$ scenario. We already know that when $\epsilon=0$ matrix A is not fully ranked, leading to non-unique solutions. This explains when k increases, one observes an increasing error in the exponential fashion.

Problem 5. Consider 3 rectangular matrices

$$
A \in \mathbb{R}^{m \times n}, \quad B \in \mathbb{R}^{n \times k}, \quad C \in \mathbb{R}^{k \times l}
$$

(a) What is the computational cost of computing $(A B) C$?

Solution. The computational burden is

$$
\begin{equation*}
m \times k \times(2 n-1)+m \times l \times(2 k-1) \tag{14}
\end{equation*}
$$

The computational complexity of this operation is then either $\mathcal{O}(m n k)$ or $\mathcal{O}(m l k)$, which are both $\mathcal{O}\left(\mathrm{n}^{3}\right)$.
(b) What is the computational cost of computing $A(B C)$?

Solution. The computational burden is

$$
\begin{equation*}
n \times l \times(2 k-1)+m \times l \times(2 n-1) \tag{15}
\end{equation*}
$$

The computational complexity of this operation is then either $\mathcal{O}(m n k)$ or $\mathcal{O}(m l k)$, which are both $\mathcal{O}\left(\mathrm{n}^{3}\right)$.
(c) Which method would you use to calculate the product of 3 matrices to minimize the computational cost?
Solution. One may realize the order of computational complexity for the two methods:

1. $\mathcal{O}((A B) C)=\mathcal{O}(m n k)$ or $\mathcal{O}(m l k)$.
2. $\mathcal{O}(A(B C))=\mathcal{O}(n l k)$ or $\mathcal{O}(m l n)$

Among the dimensions $m, n, l, \& k$, if the smallest value is

$$
\begin{aligned}
& m: \mathcal{O}(A B C)_{\min } \\
& n=\mathcal{O}(n l k), \text { I would pick the method } A(B C) \\
& l: \mathcal{O}(A B C)_{\min }=\mathcal{O}(m l k), \text { I would pick the method }(A B) C \\
& k: \mathcal{O}(A B C)_{\min } \\
&=\mathcal{O}(m n k), \text { I would pick the method }(A B) C . \\
&=\mathcal{O} l n), \text { I would pick the method } A(B C) .
\end{aligned}
$$

Problem 6. A closed economic model involves a society in which all the goods and services produced by members of the society are consumed by those members. No goods or services are imported from without and none are exported. Such a system involves N members, each of whom produces goods or services and charges for their use. The problem is to determine the prices each member should charge for their labor so that everyone breaks even after one year. For simplicity, we assume each member produces one unit per year.

Consider a simple closed system limited to a farmer, a carpenter, and a weaver so that $N=3$. Let p_{1} denote the farmer's annual income (that is, the price she charges for her unit of food), let p_{2} denote the carpenter's annual income, and let p_{3} denote the weaver's. On an annual basis, the farmer and the carpenter consume 35% each of the available food, while the weaver consumes the remaining 30\%. In addition, the carpenter uses 20% of the wood products he makes, while the farmer uses 35%, and the weaver uses the remaining 45%. The farmer uses 45% of the weaver's clothing, the carpenter uses 30\%, and the weaver himself consumes the remaining 25%.
(a) Write down the break-even equations for the farmer, the carpenter, and the weaver. Solution. We can first tabulate the consumption for farmer, carpenter, and weaver:

	food [\%]	wood [\%]	clothing [\%]
farmer	35	35	45
carpenter	35	20	30
weaver	30	45	25

We can then write out the equation sets for money balance for farmer, carpenter, and weaver:

$$
\begin{array}{rr}
\text { farmer : } & 0.65 p_{1}-0.35 p_{2}-0.45 p_{3}=0 \\
\text { carpenter : } & -0.35 p_{1}+0.8 p_{2}-0.3 p_{3}=0 \tag{16}\\
\text { weaver : } & -0.3 p_{1}-0.45 p_{2}+0.75 p_{3}=0
\end{array}
$$

(b) Express your system of break-even equations as a homogeneous matrix equation and solve it using MATLAB to find the break-even prices p_{1}, p_{2}, p_{3}.
Solution.
We can then solve for the linear equation $\left[\begin{array}{ccc}0.65 & -0.35 & -0.45 \\ -0.35 & 0.8 & -0.3 \\ -0.3 & -0.45 & 0.75\end{array}\right]\left[\begin{array}{l}p_{1} \\ p_{2} \\ p_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. The solution for p is then $\left[\begin{array}{l}0.6586 \\ 0.4993 \\ 0.5630\end{array}\right]^{2}$.

[^1]Problem 1. Determine which of the following sets are vector spaces. If you think a set is a vector space, prove it. If not, identify at least one vector space property that fails to hold.

Recall that to prove a set is a vector space, it is sufficient to show it is a subspace of a known vector space.
${ }^{\text {Note }}$ In this problem, I will consider the vectors symbolized as u, v, w^{1} in vector space V.

1. The set of all 2×2 matrices $A=\left[a_{i j}\right]$ with $a_{11}=-a_{22}$ under standard matrix addition and scalar multiplication.

Solution. The set is a vector space. To prove it is a subspace of a known vector space, we recall the definition of a subspace:

- The zero vector is contained in the set V.
- $u+v \in V$.
- $v \in \mathbb{R}, c \in \mathbb{R} \rightarrow c v \in \mathbb{R}$.

Assuming there are two matrices in the defined set, $A^{I}, A^{I I} \in V_{A}$. One may test the definitions respectively.

- The zero matrix $A_{0}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \in V_{A}$. It can be deduced that the first definition holds.
- $A^{\star}=A^{I}+A^{I I}=\left[\begin{array}{cc}a_{11}^{I} & a_{12}^{I} \\ a_{21}^{I} & -a_{11}^{I}\end{array}\right]+\left[\begin{array}{cc}a_{11}^{I I} & a_{12}^{I I} \\ a_{21}^{I I} & -a_{11}^{I I}\end{array}\right]=\left[\begin{array}{cc}a_{11}^{I}+a_{11}^{I I} & a_{11}^{I}+a_{12}^{I I} \\ a_{11}^{I}+a_{21}^{I I} & -a_{11}^{I}-a_{11}^{I I}\end{array}\right]$. Note that for A^{\star} the defined property of the set also holds, i.e., $a_{11}^{\star}=-a_{22}^{\star}$. Hence, the second definition holds.
- $A^{\dagger}=c A^{I}=\left[\begin{array}{cc}c a_{11}^{I} & c a_{12}^{I} \\ c a_{21}^{I} & -c a_{11}^{I}\end{array}\right]$. For the matrix A^{\dagger}, the vector set property preserves, i.e. $a_{11}^{\dagger}=-a_{22}^{\dagger}$. Hence, the third definition holds.

Since the three definitions of a subspace to a known vector space hold, it is hence proven that the A is a vector space.
2. The set of all 3×3 upper triangular matrices under standard matrix addition and scalar multiplication.

Solution. This set is a vector space. Recall the definitions of a subspace to a known vector space from $\# 1$. We can first represent the set as M, where $M=$ $\left[\begin{array}{ccc}m_{11} & m_{12} & m_{13} \\ 0 & m_{22} & m_{23} \\ 0 & 0 & m_{33}\end{array}\right]$. We hence test the definitions of the vector space based on the subspace definition:

[^2]- The zero matrix $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ agrees with the definition. Hence the first definition holds.
- The matrix addition $M^{\star}=M^{I}+M^{I I}=\left[\begin{array}{ccc}m_{11}^{I} & m_{12}^{I} & m_{13}^{I} \\ 0 & m_{22}^{I} & m_{23}^{I} \\ 0 & 0 & m_{33}^{I}\end{array}\right]+\left[\begin{array}{ccc}m_{11}^{I I} & m_{12}^{I I} & m_{13}^{I I} \\ 0 & m_{22}^{I I} & m_{23}^{I I} \\ 0 & 0 & m_{33}^{I I}\end{array}\right]$ $=\left[\begin{array}{ccc}m_{11}^{I}+m_{11}^{I I} & m_{12}^{I}+m_{12}^{I I} & m_{13}^{I}+m_{13}^{I I} \\ 0 & m_{22}^{I}+m_{22}^{I I} & m_{23}^{I}+m_{23}^{I I} \\ 0 & 0 & m_{33}^{I}+m_{33}^{I I}\end{array}\right]$ The new matrix M^{\star} also agrees with the property of the upper triangular matrix. Hence definition 2 still holds.
- For scalar multiplication, $M^{\dagger}=c M=\left[\begin{array}{ccc}c m_{11} & c m_{12} & c m_{13} \\ 0 & c m_{22} & c m_{23} \\ 0 & 0 & c m_{33}\end{array}\right]$. The new matrix still preserves the property of the upper triangular matrix, therefore the third definition of vector set still holds.

One can then conclude that the 3×3 upper triangular matrix preserves the properties of being a subspace to a known vector space.
3. The set of all 3×3 lower triangular matrices of the form

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
b & c & 1
\end{array}\right]
$$

under standard matrix addition and scalar multiplication.
Solution. This is false. Considering the axiom $\mathcal{C} u \in V^{2}$. If \mathcal{C} is a non-one value, definition 1 is to be failed to hold:

$$
\mathcal{C} u=\mathcal{C}\left[\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
b & c & 1
\end{array}\right]=\left[\begin{array}{lll}
\mathcal{C} & 0 & 0 \\
a & \mathcal{C} & 0 \\
b & c & \mathcal{C}
\end{array}\right]
$$

which violates the axiom of the original set. A simple counterexample could be when $\mathcal{C}=5$:

$$
\mathcal{C} u=\left[\begin{array}{lll}
5 & 0 & 0 \\
a & 5 & 0 \\
b & c & 5
\end{array}\right]
$$

Hence, this is not a vector space, as it fails to hold to the property of $\mathcal{C} u \in V$, where V stands for the vector space.
4. The set of all solutions to the linear system $A x=b$, under standard vector addition and scalar multiplication.

[^3]Solution. This is false. Assuming the matrix A is invertible, one can represent the solution of the linear system as $V: x=A^{-1} b$ as the vector set. Now, consider the definition used in $\# 3$:

$$
x^{\prime}=\mathcal{C} x=\mathcal{C} A^{-1} b
$$

According to the definition of a vector space, it should be obeyed that $x^{\prime} \in V$. However, substituting x^{\prime} one gets:

$$
\begin{aligned}
A x^{\prime} & =A \mathcal{C} A^{-1} b \\
& =\mathcal{C} A A^{-1} b \\
& =\mathcal{C} b \neq b, \quad(\text { when } \mathcal{C} \neq 1)
\end{aligned}
$$

Hence, the axiom of $\mathcal{C} u \in V$ is violated, this is not a vector space.
5. The set of all degree 2 polynomials under standard polynomial addition and scalar multiplication.
Solution. The set can be represented in the form $\left\{a x^{2}+b x+c \mid x \in \mathbb{R}\right\}$. We consider the axiom of $u+v \in V$. Assuming there are two vector sets written as:

$$
a_{1} x^{2}+b_{1} x+c_{1}, \quad a_{2} x^{2}+b_{2} x+c_{2}, \text { with } x \in \mathbb{R}
$$

If $a_{1}=-a_{2}$, meanwhile $b_{1} \neq-b_{2}$, the new system under addition will be

$$
\left(b_{1}-b_{2}\right) x+\left(c_{1}-c_{2}\right)
$$

which violates the definition of the degree 2 polynomial, i.e., $u+v \notin V$. What's more, if $a_{1}=-a_{2}$ and $b_{1} \neq-b_{2}$, the new system is

$$
c_{1}-c_{2}
$$

which is just a constant, also does not agree with the degree 2 polynomial, i.e., $u+v \notin$ V. Hence, this is not a vector space, from the previous two counterexamples.

Problem 2. 1. Show that the matrix

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]
$$

has no $L U$ decomposition by writing out the equations corresponding to

$$
A=\left[\begin{array}{cc}
l_{11} & 0 \\
l_{21} & l_{22}
\end{array}\right]\left[\begin{array}{cc}
u_{11} & u_{12} \\
0 & u_{22}
\end{array}\right],
$$

and showing that the system has no solution.
Solution. One can first try to apply LU decomposition to the matrix A :

$$
L=\left[\begin{array}{ll}
1 & 0 \\
& 1
\end{array}\right], \quad U=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]
$$

By conducting row operations with multiplying factors, one tries to construct an updated U as an upper triangular matrix. Assuming the multiplying factor is λ :

$$
L=\left[\begin{array}{ll}
1 & 0 \\
\lambda & 1
\end{array}\right], \quad U=\left[\begin{array}{cc}
0 & 1 \\
1 & 1-\lambda
\end{array}\right]
$$

It can be seen that $u_{21}=1$ is independent of the value of λ, hence on cannot construct a upper triangular matrix for U, since the lower triangular part of U is a constant 1 independent of the row operation multiplier.

We can then proceed to further show the given system has no solution

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
l_{11} & 0 \\
l_{21} & l_{22}
\end{array}\right]\left[\begin{array}{cc}
u_{11} & u_{12} \\
0 & u_{22}
\end{array}\right] \\
& =\left[\begin{array}{cc}
l_{11} u_{11} & l_{11} u_{12} \\
l_{21} u_{11} & l_{21} u_{12}+l_{22} u_{22}
\end{array}\right]
\end{aligned}
$$

To establish A, the relation $l_{11} u_{11}=0$ has to be satisfied. Hence one obtains either $l_{11}=0$ or $u_{11}=0$.

If $l_{11}=0$, then $l_{11} u_{12}=0 \neq 1$, violating the original value in A. Hence, $l_{11}=0$ is not a solution to this linear system.
If $u_{11}=0$, then $l_{21} u_{11}=0 \neq 1$, violating the original value in A. Hence, $u_{11}=0$ is not a solution to this linear system.
Hence, $A=\left[\begin{array}{cc}l_{11} & 0 \\ l_{21} & l_{22}\end{array}\right]\left[\begin{array}{cc}u_{11} & u_{12} \\ 0 & u_{22}\end{array}\right]$ has no solution.
2. Reverse the order of the rows of A and show that the resulting matrix does have an $L U$ decomposition.

Solution. After reversing the order, the new A is

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

which is an upper triangular matrix. One can then further apply the LU decompostion:

$$
L=\left[\begin{array}{ll}
1 & 0 \\
& 1
\end{array}\right], \quad U=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Since U is already an upper triangular matrix, it is intuitive that $L=I$ establishes the LU relationship.

$$
L=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad U=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

and hence the given statement is proved.
One may also prove this statement in the way provided in $\# 1$:

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
l_{11} & 0 \\
l_{21} & l_{22}
\end{array}\right]\left[\begin{array}{cc}
u_{11} & u_{12} \\
0 & u_{22}
\end{array}\right] \\
& =\left[\begin{array}{lc}
l_{11} u_{11} & l_{11} u_{12} \\
l_{21} u_{11} & l_{21} u_{12}+l_{22} u_{22}
\end{array}\right] \equiv\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

From $l_{21} u_{11}=0$ we know that either $l_{21}=0$ or $u_{11}=0$. Since $l_{11} u_{11}=1$, indicating that $u_{11} \neq 0$, therefore it has to be satisfied that $l_{21}=0$.
Based upon this, we can further establish the relationship:

$$
\begin{aligned}
l_{11} u_{11} & =1 \\
l_{11} u_{12} & =1 \\
l_{22} u_{22} & =1
\end{aligned}
$$

It can be deduced that this system is solvable. One of the possible solutions is

$$
l_{11}=l_{22}=u_{11}=u_{12}=u_{22}=1
$$

The statement is hence proved.

Problem 3. We say an $n \times n$ matrix A is strictly diagonally dominant (SDD) if

$$
\left|a_{i, i}\right|>\sum_{j \neq i}\left|a_{i, j}\right|
$$

for each $i=1, \ldots, n$.
Show that if A is $S D D$, it is also invertible.
Hint: Recall that A is invertible if and only if the linear system $A x=0$ has no non-trivial solutions.

Solution.

Based on the hint, we can first write out a N-dimensional linear system:

$$
\begin{aligned}
A \vec{x} & =0 \\
{\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & & a_{2 n} \\
a_{n 1} & a_{n 2} & \ldots & & \\
a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] } & =0 \\
{\left[\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}
\end{array}\right] } & =0 \\
{\left[\begin{array}{c}
\sum_{j=1}^{n} a_{1 j} x_{j} \\
\sum_{j=1}^{n} a_{2 j} x_{j} \\
\vdots \\
\sum_{j=1}^{n} a_{n j} x_{j}
\end{array}\right] } & =0
\end{aligned}
$$

Since we already assumed A is SDD, and based on the definition $\left|a_{i, i}\right|>\sum_{j \neq i}\left|a_{i, j}\right|$ it can be deduced that it is required for $a_{i i} \neq 0$ to satisfy the SDD condition. The linear system can be further written in the form

$$
\left[\begin{array}{c}
a_{11} x_{1}+\sum_{j=2}^{n} a_{1 j} x_{j} \\
a_{22} x_{2}+\sum_{j=1}^{n=1} a_{2 j} x_{j} \\
a_{33} x_{3}+\sum_{j=1}^{n \mid n \neq 3} a_{3 j} x_{j} \\
\vdots \\
a_{n n} x_{n}+\sum_{j=1}^{n-1} a_{n j} x_{j}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

This will lead to

$$
\begin{gathered}
a_{11} x_{1}=-\sum_{j=2}^{n} a_{1 j} x_{j} \\
a_{22} x_{2}=-\sum_{j=1}^{n \mid n \neq 2} a_{2 j} x_{j}
\end{gathered}
$$

$$
a_{n n} x_{n}=-\sum_{j=1}^{n-1} a_{n j} x_{j}
$$

And further

$$
\begin{align*}
& \left|a_{11} x_{1}\right|=\left|\sum_{j=2}^{n} a_{1 j} x_{j}\right| \\
& \left|a_{22} x_{2}\right|=\left|\sum_{j=1}^{n \mid n \neq 2} a_{2 j} x_{j}\right| \tag{1}\\
& \left|a_{n n} x_{n}\right|=\left|\sum_{j=1}^{n-1} a_{n j} x_{j}\right|
\end{align*}
$$

Or in the simplified form:

$$
\left|a_{i i} x_{i}\right|=\left|\sum_{i \neq j} a_{i j} x_{j}\right|
$$

Based on the definition of SDD, we can further derive that:

$$
\left|a_{i i}\right|>\sum_{i \neq j}\left|a_{i j}\right| \geq\left|\sum_{i \neq j} a_{i j}\right|
$$

Hence, in order to satisfy $\left|a_{i i} x_{i}\right|=\left|\sum_{i \neq j} a_{i j} x_{j}\right|$ under the condition of $\left|a_{i i}\right|>\left|\sum_{i \neq j} a_{i j}\right|$, is to let $x_{k}=0$. In other words, the solution vector \vec{x} has to be

$$
\vec{x}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Under this scenario, the linear system $A x=0$ has non non-trivial solutions. Hence, if A is SDD, it is also invertible. The statement is proven.

However, in this problem, based on the fact that $\left|a_{i, i}\right|>\sum_{j \neq i}\left|a_{i, j}\right|$ we already know that the summation of the row ${ }^{3}$ shall not be zero. So Equation (1) may not be fully needed to complete the proof. Because based on the fact that row summation shall not be zero discerns that the solution to $\left[\begin{array}{c}a_{11} x_{1}+\sum_{j=2}^{n} a_{1 j} x_{j} \\ a_{22} x_{2}+\sum_{j=1}^{n \rightarrow 2} a_{2 j} x_{j} \\ \vdots \\ a_{n n} x_{n}+\sum_{j=1}^{n-1} a_{n j} x_{j}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right]$ should be $\vec{x}=0$. Hence, both ways complete the proof.

[^4]Problem 4. 1. Compute an $L U$ decomposition of the tridiagonal matrix A by hand, with

$$
A=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]
$$

Now let $b=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$ and use your computed $L U$ factors to solve the system $A x=b$ (by hand).
Solution. Given A, Computing the LU decomposition by hand one obtains the following steps:

$$
\begin{aligned}
& L=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
& 1 & 0 & 0 \\
& & 1 & 0 \\
& & & 1
\end{array}\right], \quad U=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] \\
& \Longrightarrow L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 2 & 1 & 0 & 0 \\
& & 1 & 0 \\
& & & 1
\end{array}\right], \quad U=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] \\
& \Longrightarrow L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 2 & 1 & 0 & 0 \\
0 & -2 / 3 & 1 & 0 \\
& & & 1
\end{array}\right], \quad U=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & 0 & 4 / 3 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] \\
& \Longrightarrow L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 2 & 1 & 0 & 0 \\
0 & -2 / 3 & 1 & 0 \\
0 & 0 & -3 / 4 & 1
\end{array}\right], \quad U=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & 0 & 4 / 3 & -1 \\
0 & 0 & 0 & 5 / 4
\end{array}\right]
\end{aligned}
$$

Verifying the results one may get:

$$
L U=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]=A
$$

Using the LU factor to solve $A x=b$:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 2 & 1 & 0 & 0 \\
0 & -2 / 3 & 1 & 0 \\
0 & 0 & -3 / 4 & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & 0 & 4 / 3 & -1 \\
0 & 0 & 0 & 5 / 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Decomposing to $L y=b$, one solves

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 2 & 1 & 0 & 0 \\
0 & -2 / 3 & 1 & 0 \\
0 & 0 & -3 / 4 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]} \\
& \rightarrow\left\{\begin{array} { l }
{ y _ { 1 } = 1 } \\
{ - \frac { 1 } { 2 } y _ { 1 } + y _ { 2 } = 1 } \\
{ - \frac { 2 } { 3 } y _ { 2 } + y _ { 3 } = 1 } \\
{ - \frac { 3 } { 4 } y _ { 3 } + y _ { 4 } = 1 }
\end{array} \quad \rightarrow \left\{\begin{array}{l}
y_{1}=1 \\
y_{2}=\frac{3}{2} \\
y_{3}=2 \\
y_{4}=\frac{5}{2}
\end{array}\right.\right.
\end{aligned}
$$

One can then solve for $U x=y$:

$$
\begin{gathered}
{\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & 0 & 4 / 3 & -1 \\
0 & 0 & 0 & 5 / 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
1 \\
3 / 2 \\
2 \\
5 / 2
\end{array}\right]} \\
\rightarrow\left\{\begin{array} { l }
{ 2 x _ { 1 } - x _ { 2 } = 1 } \\
{ \frac { 3 } { 2 } x _ { 2 } - x _ { 3 } = \frac { 3 } { 2 } } \\
{ \frac { 4 } { 3 } x _ { 3 } - x _ { 4 } = 2 } \\
{ \frac { 5 } { 4 } x _ { 4 } = \frac { 5 } { 2 } }
\end{array} \rightarrow \left\{\begin{array}{l}
x_{1}=2 \\
x_{2}=3 \\
x_{3}=3 \\
x_{4}=2
\end{array}\right.\right.
\end{gathered}
$$

The solution vector $\vec{x}=\left[\begin{array}{l}2 \\ 3 \\ 3 \\ 2\end{array}\right]$ is obtained. \square
2. Using MATLAB, implement the LU decomposition algorithm specialized for tridiagonal matrices. Your code should be able to factor any tridiagonal matrix. Comment on how the computational cost of your algorithm scales with the size of your matrix.
Solution. I wrote the following MATLAB function to obtain the LU decomposition for matrix A :

```
function [L,U] = hw2_q4(A)
n = rank(A);
L=eye(n);U=A;
for i=2:n-1
    for j=1:n-2
        if i>j
            L(i,j)=U(i,j)/U(i-1,j);
            end
            if i== j+1
            U(i,j+1)=U(i,j+1) - (U(i,j)*U(i-1,j+1)/U(i-1,j));
            end
            if isnan(L(i,j)) || isnan(U(i,j))
                    L(i,j) = 0;U(i,j) = 0;
            end
```

```
    end
end
L(n,n-1) = U(n,n-1)/U(n-1,n-1);
U(n,n) = U(n,n) - (L(n,n-1)/L(n-1,n-1)) * U(n-1,n);
for i=2:n
    for j=1:n-1
        if i>j
            U(i,j)=0;
        end
    end
end
fprintf("========================" ")
end
```

To implement this function, I wrote the following codes:

```
%%
clear;clc
A = [1 -8 0 0; 2 -2 -7 0; 0 7 3 -6; 0 0 8 -7];
[L_test,U_test] = hw2_q4(A);
err1 = A-L_test*U_test
%%
clear;
A = [9 2 0 0 0; 3 5 -2 0 0; 0 2 8 -6 0;0 0 3 9 -7; 0 0 0 1 5];
[L_test,U_test] = hw2_q4(A);
err2 = A-L_test*U_test
%%
clear;
A = [9 2 0 0 0 0; 3 5 -2 0 0 0; 0 2 8 -6 0
    0; 0 0 0 0 3 2];
[L_test,U_test] = hw2_q4(A);
err3 = A-L_test*U_test
```

and the corresponding three errors are shown as:

```
=========================
err1 =
\begin{tabular}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{tabular}
========================
err2 =
    1.0e-15*
\begin{tabular}{rrrrr}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.1110 & 0
\end{tabular}
```



```
========================
err3=
    1.0e-15*
\begin{tabular}{rrrrrr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.1110 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.4441 & 0
\end{tabular}
```

Indicating the algorithm works, with acceptable errors $\left(<10^{-15}\right)$.
In my code implementation, I used two "for" loops to assign the updated values to matrices L and U. Assume the dimension of the matrix is d. Hence, my algorithm scales the square relationship to the matrix size, i.e. $\mathcal{O}\left(d^{2}\right) .{ }^{4}$ However, based on Prof. Gerristen's note, I realize this LU decomposition can also be achieved in just one for loop, in that case, the computational complexity is $\mathcal{O}(d)$. Hence, my algorithm is definitely not the most efficient way to conduct LU decomposition for a given A, but it can achieve the objective with acceptable accuracy. In my algorithm implementation, for example, when the matrix size increases from 4 to 5 , the computational burden increases scaling is approximately $\frac{25}{16}$. \square

[^5]Problem 5. We are interested in solving the $1 D$ heat equation numerically. In $1 D$, the heat equation has the form

$$
\frac{d^{2} T}{d x^{2}}=f(x), \text { for } 0 \leq x \leq 1
$$

with x denoting the distance along a rod with constant thermal conductivity, T denoting the temperature of the rod, and f denoting the distributed heat source.

Discretize the equation using the second-order central finite difference scheme on a uniform grid with spacing $h=1 / N$ (see Section 1.7 in Prof. Gerritsen's note for a derivation).

Consider the source term $f(x)=-10 \sin \left(\frac{3 \pi x}{2}\right)$ and fix the boundary conditions $T(0)=0$ and $T(1)=2$.

1. Verify that

$$
T_{\text {exact }}(x)=\left(2+\frac{40}{9 \pi^{2}}\right) x+\frac{40}{9 \pi^{2}} \sin \left(\frac{3 \pi x}{2}\right)
$$

is the exact solution to the heat equation with the given source term and boundary conditions.

Solution. Solving the heat equation using the given source term and boundary conditions, one has

$$
\begin{aligned}
T & =\iint f(x) d x d x \\
& =\iint\left[-10 \sin \left(\frac{3 \pi x}{2}\right)\right] d x d x \\
& =\int\left[\frac{20}{3 \pi} \cos \left(\frac{3 \pi x}{2}\right)+c\right] d x \\
& =\frac{40}{9 \pi^{2}} \sin \left(\frac{3 \pi x}{2}\right)+c x
\end{aligned}
$$

SUbstituting the boundary conditions $T(0)=0$ and $T(1)=2$, one has

$$
\begin{aligned}
-\frac{40}{9 \pi^{2}}+c & =2 \\
c & =2+\frac{40}{9 \pi^{2}}
\end{aligned}
$$

One hence obtain the analytical solution:

$$
T(x)=\left(2+\frac{40}{9 \pi^{2}}\right) x+\frac{40}{9 \pi^{2}} \sin \left(\frac{3 \pi x}{2}\right)
$$

The solved T matched with the exact solution $T_{\text {exact }}$. The given relationship is hence proved.
2. Use your specialized tridiagonal LU implementation from Problem 4 to obtain a numerical approximation for $T_{j}=T(j h), j=1, \ldots, N-1$, for $N=10,20,40,80,160$. Plot all your approximations together with the exact solution on the same set of axes. Comment on the relationship between N and the approximation error $\left\|T_{\text {numerical }}-T_{\text {exact }}\right\|$.

Solution. Using the second-order central-difference scheme, we have

$$
\frac{d^{2} T\left(x_{i}\right)}{d x^{2}} \approx \frac{T_{i+1}-2 T_{i}+T_{i-1}}{h^{2}}
$$

Referring to section 1.7 in Prof. Gerritsen's note, by plugging in the approximation, one has

$$
T_{i+1}-2 T_{i}+T_{i-1}=h^{2} f_{i}
$$

Given the boundary conditions, $T(0)=0$ and $T(1)=2$, one can reformulate the finite difference approximation scheme into $A \vec{T}=\vec{c}$, where the matrix can be expanded as

$$
A=\left[\begin{array}{ccccccc}
-2 & 1 & & & & \\
1 & -2 & 1 & & & \\
& 1 & -2 & 1 & & \\
& & \vdots & & & & \\
& & 1 & -2 & 1 & & \\
& & & 1 & -2 & 1 & \\
& & & & 1 & -2 & 1
\end{array}\right], \quad \vec{T}=\left[\begin{array}{c}
T_{1} \\
T_{2} \\
T_{3} \\
\vdots \\
T_{N-3} \\
T_{N-2} \\
T_{N-1}
\end{array}\right], \quad \vec{c}=\left[\begin{array}{c}
h^{2} f_{1} \\
h^{2} f_{2} \\
h^{2} f_{3} \\
\vdots \\
h^{2} f_{N-3} \\
h^{2} f_{N-2} \\
h^{2} f_{N-1}-2
\end{array}\right]
$$

Using the LU decomposition obtained from Q4, we can rewrite the system into

$$
[L][U]\left[\begin{array}{c}
T_{1} \\
T_{2} \\
\cdots \\
T_{N}
\end{array}\right]=\left[\begin{array}{c}
h^{2} f_{1} \\
h^{2} f_{2} \\
\ldots \\
h^{2} f_{N-1}-2
\end{array}\right]
$$

Based on this simple formulation, we can write a MATLAB function to obtain the numerical solution \vec{T} given different grid size N :

```
function [T_vec, T_exact, error] = hw2_q5(N)
x = 0:1/(N-1):1;%define grid
f = -10*sin((3*pi*x)/2);%define source term
h = 1/N;
T_vec = ones(N,1);
c_vec = h^2*f';
c_vec(end) = c_vec(end)-2;
for i = 1:N-1
    for j = i:N-1
        if i==j
            A(i,j)=-2;
                    A(i,j+1)=1;
                A(i+1,j)=1;
        end
    end
end
A(N,N)=-2;
[L,U]=hw2_q4(A);
y_vec = L\c_vec;
T_vec = U\y_vec;% numerically approximated
```


Figure 1: Numerical approximation solutions comparison.

```
%% exact solution
T_exact = (2 + (40/(9*pi^2)))*x + ( 40/(9*pi^2) )*sin( (3*pi*x)/2 );
error = norm(T_vec-T_exact);
end
```

One obtains Figure 1 by plotting the numerically approximated solutions with the exact solution. For a better understanding of the approximation error, we also plot the norms $\left\|T_{\text {nuemrical }}-T_{\text {exact }}\right\|$ in Figure 2, by recalling the MATLAB "norm()" function ${ }^{5}$. It is observed that the norm decreases in an exponential fashion.

Theoretically, with more data points corresponding to the increasing grid number, one may expect the cumulative L2 norm to increase as the evaluated data points increase. But simultaneously the error between the exact solution and the approximations also decreases. Figure 1 shows that the decreasing trend of the difference between the approximation and the exact solution plays a dominant role for the L2 norm whereas the increasing data point effect is hence relatively low.

[^6]

Figure 2: The norm for the central difference scheme with different N.

Problem 1. This problem explores issues that arise when computing the $Q R$ factorization numerically. In lecture we explained how to use the Gram-Schmidt procedure to construct an orthonormal basis of the column space of a given matrix. The problem is that, in numerical computations, the vectors produced by the Gram-Schmidt recipe gradually lose orthogonality. See this for yourself!
(a) Let M denote the $n \times n$ Hilbert matrix, with entries $m_{i j}=\frac{1}{i+j-1}$. Set $n=15$ and use the Gram-Schmidt procedure to find $Q=\left[\begin{array}{lll}q_{1} & \cdots & q_{n}\end{array}\right]$.
The theory tells us Q should be orthogonal so that $Q^{\top} Q=I$. Test this by computing norm(Q'* Q - eye(15)). Report the norm you found and briefly comment on your result: does this computation agree with the theory we discussed?
Note: The built-in qr function in MATLAB performs more sophisticated calculations, so you will have to implement your own Gram-Schmidt routine.

Solution.

In this problem, I have two approaches that give me slightly different results. The second one reports slightly more accurate $Q^{\top} Q$ results but does not follow the standard solution procedure. I will report both of them here.

For my first approach, I follow the standard textbook formula, containing codes as follows

```
M = zeros(15, 15);
for i = 1:15
    for j = 1:15
            M(i, j) = 1 / (i + j - 1);
    end
end
for j = 1:15
    v = M(:,j);
    for i = 1:j-1
        R(i,j) = Q(:,i)'*M(:,j);
        v= v-R(i,j)*Q(:,i);
    end
    R(j,j) = norm(v);
    Q(:,j)=v/R(j,j);
end
norm = norm(Q' * Q - eye(15));
```

By using this code, the reported Q and $Q^{\top} Q$ are shown in the following figure.

It can be observed that the error starts to propagate after column 7, and the reported $Q^{\top} Q$ is very inaccurate. In this case, the reported norm (norm $=$ norm ($Q^{\prime} * Q-$ eye(15))) is 7.9351. And obviously, this does not agree with the theory we discussed.
Following this result, I was not satisfied with the accuracy. There is another approach that does not follow the standard procedure: instead of using the MATLAB multiplication "*", I used the dot product "dot()", and surprisingly the results improved quite a bit! Hence I also report that approach here. My MATLAB codes write:

```
clc;clear;close all
M = zeros(15, 15);
for i = 1:15
    for j = 1:15
        M(i, j) = 1 / (i + j - 1);
    end
end
Q = zeros(15, 15);
for i = 1:15
    v = M(:, i);
    for j = 1:i - 1
            v = v - Q(:, j) * dot(Q(:, j), v);
    end
    Q(:, i) = v / norm(v); sum(Q(:, i));
end
norm = norm(Q' * Q - eye(15));
```

Using this code one can also plot the matrices for both M, Q, and $Q^{\top} Q$, shown as follows:

It can be seen that this approach indeed improves the accuracy, even though it does not follow the standard solution procedure. The calculated corresponding norm is 0.9961 , indicating there are some system-related numerical errors involved during the QR decomposition process, but it gives the generally accurate Q matrix.
In short, the first method reported follows the standard QR decomposition, yet reports a pretty high norm. The second method is more of a personal way to tweak for more accurate results. Both methods are not accurate based on the evaluated norms.

Householder matrices arose as a solution to this problem. The Householder reflection H_{v} is defined by

$$
H_{v}=I_{n}-\frac{2}{v^{\top} v} v v^{\top} .
$$

We now turn to studying some properties of H_{v}. These will help us understand how to use Householder reflections to develop a numerically stable QR factorization.
(b) Show that H_{v} is symmetric and orthogonal.

Solution. In this problem, one needs to prove

$$
\left\{\begin{array}{l}
H_{v}^{\top}=H_{v} \tag{1}\\
H_{v} H_{v}^{\top}=I
\end{array}\right.
$$

One can begin with writing out H_{v}^{\top} :

$$
\begin{align*}
H_{v}^{\top} & =\left(I_{n}-\frac{2}{v^{\top} v} v v^{\top}\right)^{\top} \\
& =I_{n}^{\top}-\left(\frac{2}{v^{\top} v} v v^{\top}\right)^{\top} \\
& =I_{n}^{\top}-\left(v v^{\top}\right)^{\top}\left(\frac{2}{v^{\top} v}\right)^{\top} \tag{2}\\
& =I_{n}-2 v v^{\top} \frac{1}{v^{\top} v} \\
& =I_{n}-\frac{2}{v^{\top} v} v v^{\top}=H_{v}
\end{align*}
$$

The matrix H_{v} is hence proved to be symmetric. To show they are orthogonal, we can then expand $H_{v}^{\top} H_{v}$:

$$
\begin{align*}
H_{v}^{\top} H_{v} & =\left(I_{n}-v v^{\top} \frac{2}{v^{\top} v}\right)\left(I_{n}-\frac{2}{v^{\top} v} v v^{\top}\right) \\
& =\left(I_{n}-v v^{\top} \frac{2}{v^{\top} v}\right)^{2} \\
& =I_{n}-4 \frac{v v^{\top}}{v^{\top} v}+4 \frac{v v^{\top} v v^{\top}}{v^{\top} v v^{\top} v} \tag{3}\\
& =I_{n}-4 \frac{v v^{\top}}{v^{\top} v}+\frac{4 v v^{\top}}{v^{\top} v} \\
& =I_{n}-4 \frac{v v^{\top}}{v^{\top} v}+4 \frac{v v^{\top}}{v^{\top} v} \\
& =I_{n}
\end{align*}
$$

The matrix H_{v} are hence probed to be orthogonal.
(c) Show that $H_{v} v=-v$. Also show that if w is orthogonal to v, then $H_{v} w=w$.

Solution. First, to show $H_{v} v=-v$, we begin with expanding H_{v} :

$$
\begin{align*}
H_{v} v & =\left(I_{n}-\frac{2}{v^{\top} v} v v^{\top}\right) v \\
& =v-\frac{2}{v^{\top} v} v v^{\top} v \tag{4}\\
& =v-2 v \\
& =-v
\end{align*}
$$

Now, take the assumption of w is orthogonal to v, we know that $\vec{w}^{\top} \vec{v}=0$. We can further expand $H_{v} w=w$:

$$
\begin{align*}
H_{v} w & =\left(I_{n}-\frac{2}{v^{\top} v} v v^{\top}\right) w \tag{5}\\
& =w-\frac{2}{v^{\top} v} v v^{\top} w
\end{align*}
$$

Since we already know that $\vec{v}^{\top} \vec{w}=\vec{w}^{\top} \vec{v}=0$. We further expand Eqn. 5:

$$
\begin{equation*}
H_{v} w=w \tag{6}
\end{equation*}
$$

The statement is hence proved.
(d) Now suppose u and w are vectors such that $\|u\|=\|w\|$. Show that $H_{u-w} u=w$.

Hint: Write $u=\frac{1}{2}((u-w)+(u+w))$, show that $(u-w)^{\top}(u+w)=0$, and consider your previous results.

Solution. Based on the hint, we may begin with trying to prove

$$
\begin{equation*}
(u-w)^{\top}(u+w)=0 \tag{7}
\end{equation*}
$$

Since $\|u\|=\|w\|$, we may further expand the $(u-w)^{\top}(u+w)$:

$$
\begin{equation*}
(u-w)^{\top}(u+w)=u^{\top} u+u^{\top} w-w^{\top} u-w^{\top} w \tag{8}
\end{equation*}
$$

One may assume the contact angle u and w is θ. Hence:

$$
\begin{align*}
u^{\top} w & =\|u\|\|w\| \cos \theta \\
w^{\top} u & =\|w\|\|u\| \cos \theta \tag{9}
\end{align*}
$$

We may substitute back to the previous equation, getting:

$$
\begin{align*}
u^{\top} u+u^{\top} w-w^{\top} u-w^{\top} w & =\underbrace{\|u\|\|u\|-\|w\|\|w\|}_{=0}+\underbrace{\|u\|\|w\| \cos \theta-\|w\|\|u\| \cos \theta}_{=0} \tag{10}\\
& =0
\end{align*}
$$

This equation is hence proved.
Based on the results in (c), one has

$$
\begin{align*}
H_{u-w}(u-w) & =w-u \\
H_{u-w} u-H_{u-w} w & =w-u \\
H_{u-w} u & =\underbrace{H_{u-w} w}_{\text {expand }}+w-u \tag{11}
\end{align*}
$$

By expanding the marked term we have:

$$
\begin{align*}
H_{u-w} w & =\left(I_{n}-\frac{2}{(u-w)^{\top}(u-w)}(u-w)(u-w)^{\top}\right) w \\
& =w-2 \frac{u u^{\top} w-u w^{\top} w-w u^{\top} w+w w^{\top} w}{u^{\top} u-u^{\top} w-w^{\top} u+w^{\top} w} \\
& =\frac{w u^{\top} u-w u^{\top} w-w w^{\top} u+w w^{\top} w-2\left(u u^{\top} w-u w^{\top} w-w u^{\top} w+w w^{\top} w\right)}{u^{\top} u-u^{\top} w-w^{\top} u+w^{\top} w} \\
& =\frac{w u^{\top}(u+w)-w w^{\top}(u+w)-2 u u^{\top} w+2 u w^{\top} w}{u^{\top} u-u^{\top} w-w^{\top} u+w^{\top} w} \\
& =\frac{\left(w u^{\top}-w w^{\top}\right)(u+w)+2\left(u w^{\top}-u u^{\top}\right) w}{u^{\top} u-u^{\top} w-w^{\top} u+w^{\top} w} \\
& =\frac{\overbrace{w\left(u^{\top}-w^{\top}\right)(u+w)}^{=^{\top} 0}+2 u\left(w^{\top}-u^{\top}\right) w}{(u-w)^{\top}(u-w)} \tag{12}
\end{align*}
$$

Now, we may substitute Eqn. (12) back to Eqn. (11):

$$
\begin{align*}
H_{u-w} w & =\frac{2 u\left(w^{\top}-u^{\top}\right) w+(w-u)\left(u^{\top}-w^{\top}\right)(u-w)}{(u-w)^{\top}(u-w)} \\
& =\frac{\left(2 u w^{\top}-2 u u^{\top}\right) w+\left(w u^{\top}-w w^{\top}-u u^{\top}+u w^{\top}\right)(u-w)}{(u-w)^{\top}(u-w)} \\
& =\frac{u w^{\top}(w+u)-u u^{\top}(w+u)+w u^{\top}(u-w)+w w^{\top}(w-u)}{(u-w)^{\top}(u-w)} \\
& =\frac{\left(u w^{\top}-u u^{\top}\right)(u+w)+\left(w u^{\top}-w w^{\top}\right)(u-w)}{(u-w)^{\top}(u-w)} \tag{13}\\
& =\frac{\overbrace{u(w-u)^{\top}(u+w)}^{=0}+w(u-w)^{\top}(u-w)}{(u-w)^{\top}(u-w)} \\
& =w
\end{align*}
$$

The statement is hence proved.
(e) Consider the matrix

$$
A=\left[\begin{array}{cc}
2 & 3 \\
-2 & 4 \\
1 & 5
\end{array}\right]
$$

Much like an elementary row matrix, H_{v} can be used to zero out elements in a column of A when v is chosen appropriately.
Let a_{1} denote the first column of A. Find a vector $v \in \mathbb{R}^{3}$ such that

$$
H_{v} a_{1}=\left\|a_{1}\right\| e_{1},
$$

where $e_{1}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\top}$. Report v and also the product $H_{v} A$.
Hint: Consider the result of part (d).
Solution. Taking the hint, since in (d) the vector is formulated as $v=u-w$. Here, we take a similar approach by setting $v=a_{1}-\left\|a_{1}\right\| e_{1}$. To verify this, the equation writes:

$$
\begin{align*}
& H_{a_{1}-\left\|a_{1}\right\| e_{1}} a_{1}=\left\|a_{1}\right\| e_{1} \\
& I_{n}-\frac{2\left(a_{1}-\left\|a_{1}\right\| e_{1}\right)\left(a_{1}-\left\|a_{1}\right\| e_{1}\right)^{\top}}{\left(a_{1}-\left\|a_{1}\right\| e_{1}\right)^{\top}\left(a_{1}-\left\|a_{1}\right\| e_{1}\right)} a_{1}=\left\|a_{1}\right\| e_{1} \tag{14}\\
& I_{n}-\frac{2\left(a_{1}-\left\|a_{1}\right\| e_{1}\right)\left(a_{1}^{\top}-\left\|a_{1}\right\| e_{1}^{\top}\right)}{\left(a_{1}^{\top}-\left\|a_{1}\right\| e_{1}^{\top}\right)\left(a_{1}-\left\|a_{1}\right\| e_{1}\right)}=\frac{\left\|a_{1}\right\| e_{1}}{a_{1}}
\end{align*}
$$

By expanding the left-hand side one has:

$$
\begin{equation*}
I_{n}-\frac{2\left(a_{1} a_{1}^{\top}-a_{1}\left\|a_{1}\right\| e_{1}^{\top}-\left\|a_{1}\right\| e_{1} a_{1}^{\top}+\left\|a_{1}\right\|^{2} e_{1} e_{1}^{\top}\right)}{a_{1}^{\top} a_{1}-a_{1}^{\top}\left\|a_{1}\right\| e_{1}-\left\|a_{1}\right\| e_{1}^{\top} a_{1}-\left\|a_{1}\right\|^{2} e_{1}^{\top} e_{1}}=\frac{\left\|a_{1}\right\| e_{1}}{a_{1}} \tag{15}
\end{equation*}
$$

The equation is hence established. Therefore the vector $v=a_{1}-\left\|a_{1}\right\| e_{1}$ satisfy the condition.
(f) The result of (e) suggests how to compute Q using Householder reflections: at the k th step, choose v_{k} appropriately to zero out the k th column of A below the diagonal. Applying the corresponding Householder reflections successively, we obtain an upper triangular matrix R :

$$
H_{v_{n-1}} \cdots H_{v_{1}} A=R .
$$

Thus we obtain $A=Q R$ by setting $Q=H_{v_{1}} \cdots H_{v_{n}}$, since each reflection is symmetric and orthogonal.
Implement this procedure in MATLAB. Obtain an orthonormal basis for the column space of the Hilbert matrix M and report norm ($Q^{\prime} * Q$ - eye(15)) in this case.

Solution. Given the provided instructions, we can write the new QR decomposition for M (by setting the Hilbert matrix, i.e., MATLAB hilb(), from the instructions):

```
n = 15;
M = hilb(n);
Q = eye(n);
for k = 1:n-1
    x = M(k:n, k);
    v = x;
    v(1) = v(1) + sign(x(1)) * norm(x); % Choose appropriate v_k
    v = v / norm(v);
    H = eye(n);
    H(k:n, k:n) = H(k:n, k:n) - 2 * (v * v');
    M = H * M;
    Q = Q * H
end
R = M;
norm = norm(Q' * Q - eye(15));
```


The reported norm(Q' * Q - eye(15)) is 1.76×10^{-15}. It can be deduced from both the error and the matrix visualization that QR decomposition using this method is much more accurate than that of what I wrote in (a).
The reported Q matrix (orthonormal basis) is
Q =

Columns 1 through 9

$$
\begin{array}{cccccc}
-0.7954 & 0.5546 & 0.2297 & -0.0792 & 0.0242 & -0.0067 \\
-0.0017 & 0.0004 & -0.0001 & & & \\
-0.3977 & -0.2187 & -0.6290 & 0.5333 & -0.3040 & 0.1364 \\
0.0511 & -0.0165 & 0.0046 & & & \\
-0.2651 & -0.3111 & -0.3205 & -0.2271 & 0.5476 & -0.5031 \\
-0.3141 & 0.1517 & -0.0597 & & & \\
-0.1989 & -0.3077 & -0.0918 & -0.3926 & 0.2201 & 0.2673 \\
0.5198 & -0.4617 & 0.2826 & & & \\
-0.1591 & -0.2858 & 0.0454 & -0.3396 & -0.1129 & 0.3963 \\
0.0830 & 0.3566 & -0.5090 & & & \\
-0.1326 & -0.2618 & 0.1263 & -0.2297 & -0.2787 & 0.1933 \\
-0.2967 & 0.3137 & 0.1231 & & & \\
-0.1136 & -0.2396 & 0.1739 & -0.1176 & -0.3139 & -0.0501 \\
-0.3355 & -0.0828 & 0.3840 & & & \\
-0.0994 & -0.2200 & 0.2017 & -0.0197 & -0.2717 & -0.2186 \\
-0.1631 & -0.3184 & 0.1061 & & & \\
-0.0884 & -0.2029 & 0.2173 & 0.0611 & -0.1898 & -0.2898 \\
0.0588 & -0.2820 & -0.2343 & & & \\
-0.0795 & -0.1880 & 0.2253 & 0.1260 & -0.0916 & -0.2762 \\
0.2276 & -0.0734 & -0.3245 & & & \\
-0.0723 & -0.1750 & 0.2285 & 0.1774 & 0.0097 & -0.1994 \\
0.2969 & 0.1615 & -0.1435 & & & \\
-0.0663 & -0.1636 & 0.2285 & 0.2178 & 0.1072 & -0.0799 \\
0.2566 & 0.3033 & 0.1497 & & 0.2493 & 0.1974 \\
-0.0612 & -0.1535 & 0.2265 & 0.2493 \\
0.1154 & 0.2778 & 0.3381 & & 0.0656 \\
-0.0568 & -0.1446 & 0.2232 & 0.2738 & 0.2787 & 0.2246 \\
-0.1097 & 0.0507 & 0.2234 & & & \\
-0.0530 & -0.1366 & 0.2191 & 0.2926 & 0.3511 & 0.3884 \\
-0.3998 & -0.3833 & -0.3410 & & & \\
-0.020
\end{array}
$$

Columns 10 through 15

0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000
-0.0011	0.0002	-0.0000	0.0000	-0.0000	-0.0000
0.0196	-0.0054	0.0012	-0.0002	0.0001	-0.0000
-0.1323	0.0492	-0.0147	0.0032	-0.0017	0.0002
0.3966	-0.2163	0.0882	-0.0258	0.0128	-0.0027
-0.4602	0.4651	-0.2878	0.1197	-0.0528	0.0204
-0.0776	-0.3698	0.4896	-0.3334	0.1229	-0.0944
0.3556	-0.2028	-0.2952	0.5367	-0.1393	0.2786
0.2195	0.3114	-0.2549	-0.3844	0.0119	-0.5330
-0.1676	0.2644	0.3097	-0.1715	0.0852	0.6434
-0.3404	-0.1724	0.2439	0.5353	0.1649	-0.4324
-0.1386	-0.3546	-0.2809	-0.2937	-0.5970	0.0672
0.2403	0.0015	-0.2866	-0.0971	0.6684	0.1226
0.3653	0.4372	0.4263	0.1560	-0.3460	-0.0899
-0.2792	-0.2077	-0.1388	-0.0449	0.0706	0.0200

Problem 2. (Spanning set, basis.) Consider the following vectors in \mathbb{R}^{3} :

$$
\overrightarrow{v_{1}}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \quad \overrightarrow{v_{2}}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \overrightarrow{v_{3}}=\left[\begin{array}{l}
3 \\
5 \\
4
\end{array}\right], \quad \overrightarrow{v_{4}}=\left[\begin{array}{l}
4 \\
0 \\
4
\end{array}\right], \quad \text { and } \quad \overrightarrow{v_{5}}=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right] .
$$

(a) Is this a spanning set for \mathbb{R}^{3} ? Why?

Solution. For this problem, we can construct a matrix containing the vector sets:

$$
V=\left[\begin{array}{lll}
1 & 2 & 1 \tag{16}\\
0 & 1 & 0 \\
3 & 5 & 4 \\
4 & 0 & 4 \\
0 & 2 & 1
\end{array}\right]
$$

By conducting the Gaussian elimination (or using rref in MATLAB) one can obtain its reduced echelon form:

$$
V_{r}=\left[\begin{array}{lll}
1 & 0 & 0 \tag{17}\\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

One can clearly observe from the reduced echelon form that the rank of the matrix is 3. Hence, it spans \mathbb{R}^{3}.
(b) Prove that v_{1}, \ldots, v_{5} are linearly dependent. Reduce the list to a basis of \mathbb{R}^{3} by removing redundant vectors.

Solution. To the prove the five vectors are linearly dependent, we may construct the a constant vector $\vec{\alpha}=\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \\ \alpha_{5}\end{array}\right]$ such that

$$
\begin{equation*}
\alpha_{1} \overrightarrow{v_{1}}+\alpha_{2} \overrightarrow{v_{2}}+\alpha_{3} \overrightarrow{v_{3}}+\alpha_{4} \overrightarrow{v_{4}}+\alpha_{5} \overrightarrow{v_{5}}=0 \tag{18}
\end{equation*}
$$

or in the matrix form

$$
\mathcal{V} \vec{\alpha}=0 \Longrightarrow\left[\begin{array}{ccccc}
1 & 0 & 3 & 4 & 0 \tag{19}\\
2 & 1 & 5 & 0 & 2 \\
1 & 0 & 4 & 4 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5}
\end{array}\right]=0
$$

It can be seen that there are only three constraints yet five unknowns. Hence, there will be infinitely amount of solutions exist. Therefore, the five vectors are linearly dependent.

To reduce the list to \mathbb{R}^{3} basis, we can calculate the reduced echelon form of this coefficient matrix:

$$
\mathcal{V}_{r}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 4 & -3 \tag{20}\\
0 & 1 & 0 & -8 & 3 \\
0 & 0 & 1 & 0 & 1
\end{array}\right]
$$

It can be deduced from \mathcal{V}_{r} that only the first three column vectors are linearly independent. Hence, the reduced list writes:

$$
\left\{\left[\begin{array}{l}
1 \tag{21}\\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
5 \\
4
\end{array}\right]\right\}
$$

(c) Express one of the redundant vectors as a linear combination of the basis you found in (b).

Solution. It can be identified that the fourth vector can be written as the linear combination of the basis in the form of

$$
4\left[\begin{array}{l}
1 \tag{22}\\
2 \\
1
\end{array}\right]-8\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+0\left[\begin{array}{l}
3 \\
5 \\
4
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
4
\end{array}\right]
$$

Problem 3. (Column space, row space, null space.) Consider the following matrix A.

$$
A=\left[\begin{array}{ccccc}
3 & 4 & -1 & 15 & 12 \\
2 & 2 & 4 & -10 & -12 \\
1 & 1 & 2 & -5 & 3 \\
-2 & -3 & 3 & -20 & -18
\end{array}\right]
$$

(a) Find the condition(s) on an arbitrary vector \vec{b} such that $A \vec{x}=\vec{b}$ has at least one solution. Is the solution unique? Why?
Solution. We can first calculate the reduced echelon form of A :

$$
A_{r}=\left[\begin{array}{ccccc}
1 & 0 & 9 & -35 & 0 \tag{23}\\
0 & 1 & -7 & 30 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

It can be observed that A is not fully ranked. Hence, in order for $A \vec{x}=\vec{b}$ to have at least one solution, \vec{b} has to lie in the column space of A. The solution is not unique, since A is not full-ranked. There will be an infinite set of solutions.
Here, one also needs to identify the linear combination between the row spaces of A : $\alpha_{1} \overrightarrow{a_{1}}+\alpha_{2} \overrightarrow{a_{2}}+\alpha_{3} \overrightarrow{a_{3}}+\alpha_{4} \overrightarrow{a_{4}}=0$. One can then solve that

$$
\left\{\begin{array}{l}
\alpha_{1}=-2 \tag{24}\\
\alpha_{2}=1 \\
\alpha_{3}=0 \\
\alpha_{4}=2
\end{array}\right.
$$

So the relationship for vector b is $-2 b_{1}+b_{2}-2 b_{4}=0$
(b) Find the rank of A and provide a basis for the row space of A.

Solution. Based on the reduced echelon form given in (a), one knows the rank is 3. From the reduced echelon form, we can also identify the basis for the row space as the first three row-vectors:

$$
\mathcal{B}_{\text {row }}=\left\{\left[\begin{array}{c}
3 \tag{25}\\
4 \\
-1 \\
15 \\
12
\end{array}\right],\left[\begin{array}{c}
2 \\
2 \\
4 \\
-10 \\
-12
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
2 \\
-5 \\
3
\end{array}\right]\right\}
$$

(c) Find a basis for the null space of A. What is its dimension?

Solution. From the reduced echelon form, we can write out the null space (solutions for $A \vec{x}=0$)as the form of linear combinations of x_{i} :

$$
\begin{array}{r}
x_{1}+9 x_{3}-35 x_{4}=0 \\
x_{2}-7 x_{3}+30 x_{4}=0 \tag{26}\\
x_{5}=0
\end{array}
$$

one further deduce:

$$
\begin{align*}
& x_{1}=35 x_{4}-9 x_{3} \tag{27}\\
& x_{2}=7 x_{3}-30 x_{4}
\end{align*}
$$

One can then write out the form of the basis by setting $x_{3} \rightarrow t$ and $x_{4} \rightarrow s$:

$$
\begin{array}{r}
x_{1}=-9 t+35 s \\
x_{2}=7 t-30 s \\
x_{3}=t \tag{28}\\
x_{4}=s \\
x_{5}=0
\end{array}
$$

The basis can then be expanded in the form of

$$
\left[\begin{array}{c}
-9 \tag{29}\\
7 \\
1 \\
0 \\
0
\end{array}\right] t+\left[\begin{array}{c}
35 \\
-30 \\
0 \\
1 \\
0
\end{array}\right] s
$$

Or in the form of a set

$$
\mathcal{B}_{\text {null }}=\left\{\left[\begin{array}{c}
-9 \tag{30}\\
7 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
35 \\
-30 \\
0 \\
1 \\
0
\end{array}\right]\right\}
$$

where the vectors in the nullspace of A are linear combinations of the two vectors.
(d) Verify that every vector in $\mathcal{N}(A)$ is orthogonal to every vector in $\operatorname{row}(A)$.

Solution. To verify this, we can begin with constructing two matrices, one consists of the basis and the general form of their linear combinations (denoted as $N_{\mathcal{B}}$), and the other consists of the row vectors in A. Once the multiplication result is a zero matrix, one can hence prove that all the vectors in $\mathcal{N}(A)$ are orthogonal to every vector in $\operatorname{row}(A)$. One hence write out the two matrices $N_{\mathcal{B}}^{\top} A^{\top}$:

$$
\left[\begin{array}{ccccc}
-9 & 7 & 1 & 0 & 0 \tag{31}\\
35 & -30 & 0 & 1 & 0 \\
35 s-9 t & 7 t-30 s & t & s & 0
\end{array}\right]\left[\begin{array}{cccc}
3 & 2 & 1 & -2 \\
4 & 2 & 1 & -3 \\
-1 & 4 & 2 & 3 \\
15 & -10 & -5 & -20 \\
12 & -12 & 3 & -18
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This verifies that every vector in $\mathcal{N}(A)$ is orthogonal to every vector in $\operatorname{row}(A)$. One can also verify it using MATLAB:

```
syms t s
b1 = [[-9 7 7 1 0 0]';
b2 = [35 -30 0 1 0)';
B_null = [b1, b2, b1*t+b2*s];
A = [\begin{array}{lllll}{3}&{4}&{-1}&{15}&{12;\ldots}\end{array}...
    2 2 4 -10 -12;...
    1 1 2 -5 3;...
    -2 -3 3 -20 -18];
A_row = A';
B_null'*A_row
```

and the corresponding output is

```
ans =
[0, 0, 0, 0]
[0, 0, 0, 0]
[0, 0, 0, 0]
```

(e) Find the dimension and basis for the column space of A.

Solution. Recall the reduced echelon form of A we find in (a):

$$
A_{r}=\left[\begin{array}{ccccc}
1 & 0 & 9 & -35 & 0 \tag{32}\\
0 & 1 & -7 & 30 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

One can determine the basis for the column space of A :

$$
\mathcal{B}_{\text {col }}=\left\{\left[\begin{array}{c}
3 \tag{33}\\
2 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
4 \\
2 \\
1 \\
-3
\end{array}\right],\left[\begin{array}{c}
12 \\
-12 \\
3 \\
-18
\end{array}\right]\right\}
$$

The dimension is then 3 .

Problem 4. (Properties of Determinants.)
(a) Prove that the determinant of an orthogonal matrix is either +1 or -1 .

Solution. One begins with defining an orthogonal matrix Q, preserving the property:

$$
\begin{equation*}
Q^{\top} Q=Q Q^{\top}=I \tag{34}
\end{equation*}
$$

Using the property of determinants we have

$$
\begin{array}{r}
\operatorname{det}\left(Q^{\top} Q\right)=\operatorname{det}\left(Q^{\top}\right) \operatorname{det}(Q) \tag{35}\\
=\operatorname{det}(I)=1
\end{array}
$$

One further writes:

$$
\begin{equation*}
[\operatorname{det}(Q)]^{2}=1 \tag{36}
\end{equation*}
$$

We can then conclude that

$$
\begin{equation*}
\operatorname{det}(Q)= \pm 1 \tag{37}
\end{equation*}
$$

The statement is hence proved.
(b) Suppose L is an $n \times n$ lower triangular matrix. Show that $\operatorname{det}(L)$ is the product of the diagonal entries of L; that is, prove that

$$
\operatorname{det}(L)=\ell_{11} \cdots \ell_{n n} .
$$

Solution. One way to prove this is to expand the terms in L :

$$
L=\left[\begin{array}{ccccc}
\ell_{11} & 0 & 0 & \ldots & 0 \tag{38}\\
\ell_{21} & \ell_{22} & 0 & \ldots & 0 \\
\ell_{31} & \ell_{32} & \ell_{33} & \ldots & 0 \\
\vdots & & & \ddots & \vdots \\
\ell_{n 1} & \ell_{n 2} & \ldots & & \ell_{n n}
\end{array}\right]
$$

By computing the determinant one has

$$
\begin{align*}
\operatorname{det}(L) & =\ell_{11} \operatorname{det}\left(L_{22}\right) \\
& =\ell_{11} \operatorname{det}\left(\ell_{22} \operatorname{det}\left(L_{33}\right)\right) \\
& =\ell_{11} \operatorname{det}\left(\ell_{22} \operatorname{det}\left(\ell_{33} \operatorname{det}\left(L_{44}\right)\right)\right) \tag{39}\\
& =\ell_{11} \operatorname{det}\left(\ell_{22} \operatorname{det}\left(\ell_{33} \operatorname{det}\left(\ldots \ell_{n-2 n-2} \operatorname{det}\left(L_{n-1 n-1}\right)\right)\right)\right) \\
& =\ell_{11} \operatorname{det}\left(\ell_{22} \operatorname{det}\left(\ell_{33} \operatorname{det}\left(\ldots \ell_{n-2 n-2}\left|\begin{array}{cc}
\ell_{n-1 n-1} & 0 \\
\ell_{n n-1} & \ell_{n n}
\end{array}\right|\right)\right)\right)
\end{align*}
$$

By expanding the terms step by step, one can further deduce that

$$
\begin{equation*}
\operatorname{det}(L)=\ell_{11} \ell_{22} \ldots \ell_{n-1 n-1} \ell_{n n} \tag{40}
\end{equation*}
$$

The statement is hence proved.
(c) Prove that $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.

Solution. Given the fact that

$$
\begin{equation*}
A A^{-1}=I \tag{41}
\end{equation*}
$$

Using the property of determinants one have

$$
\begin{align*}
\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right) & =\operatorname{det}\left(A A^{-1}\right) \tag{42}\\
& =\operatorname{det}(I)=1
\end{align*}
$$

Hence, it can be easily seen that

$$
\begin{equation*}
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)} \tag{43}
\end{equation*}
$$

The statement is hence proved.
(d) Let

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
3 & 1 & 2 \\
2 & 4 & 3
\end{array}\right]
$$

Compute $\operatorname{det}(A)$ and determine the number of solutions to $A x=0$.
Solution. Calculating the determinant one has

$$
\begin{align*}
\operatorname{det}(A) & =1\left|\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right|-(-1)\left|\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right|+0 \\
& =(3-8)+(9-4) \tag{44}\\
& =-5+5 \\
& =0
\end{align*}
$$

Since the determinant is zero, one deduces that there will be an infinite number of solutions for $A \vec{x}=0$.

Problem 5. (Ohm's Law.)
Suppose we have two nodes connected by a wire with resistance R, measured in ohms. Ohm's law states that the current $I_{i j}$, measured in amperes, traveling from node i to node j is

$$
I_{i j}=\frac{V_{i}-V_{j}}{R}
$$

with V_{i} and V_{j} denoting the potential at nodes i and j, both measured in volts. Notice that current is a signed quantity, which means it can be either positive or negative, so it indicates the direction of flow. Consider the following circuit.

Suppose we know the resistance in each of the 6 wires is $R=1$ and that the potential at node i is some constant V_{i}.
(a) Let I_{i} denote the current at node i. Recalling Kirchoff's principle, which states that I_{i} is the sum of all currents entering or leaving node i, express each I_{i} as a linear combination of the voltages V_{j}.
Solution. One can first write out the matrix I :

$$
I=\left[\begin{array}{ccccc}
0 & \frac{V_{1}-V_{2}}{R_{1}} & \frac{V_{1}-V_{3}}{R_{2}} & \frac{V_{1}-V_{4}}{R_{6}} & 0 \tag{45}\\
\frac{V_{2}-V_{1}}{R_{1}} & 0 & \frac{V_{2}-V_{3}}{R_{2}} & 0 & 0 \\
\frac{V_{3}-V_{1}}{R_{3}} & \frac{V_{3}-V_{2}}{R_{3}} & 0 & \frac{V_{3}-V_{4}}{R_{4}} & 0 \\
\frac{V_{4}-V_{1}}{R_{6}} & 0 & \frac{V_{4}-V_{3}}{R_{4}} & 0 & \frac{V_{4}-V_{5}}{R_{5}} \\
0 & 0 & 0 & \frac{V_{5}-V_{4}}{R_{5}} & 0
\end{array}\right]
$$

By substituting $R=1$ one can then write out the forms for each row of I :

$$
\begin{align*}
& I_{1}=3 V_{1}-V_{2}-V_{3}-V_{4} \\
& I_{2}=2 V_{2}-V_{1}-V_{3} \\
& I_{3}=3 V_{3}-V_{2}-V_{1}-V_{4} \tag{46}\\
& I_{4}=3 V_{4}-V_{3}-V_{1}-V_{5} \\
& I_{5}=V_{5}-V_{4}
\end{align*}
$$

(b) Set up a linear system from (a) as a single matrix equation. That is, find a matrix A such that $\mathbf{I}=A \mathbf{V}$.

Solution. From (a), one can write out the coefficient matrix A :

$$
A=\left[\begin{array}{ccccc}
3 & -1 & -1 & -1 & 0 \tag{47}\\
-1 & 2 & -1 & 0 & 0 \\
-1 & -1 & 3 & -1 & 0 \\
-1 & 0 & -1 & 3 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]
$$

By multiplying the vector \vec{V} one can verify that this coefficient matrix satisfy the condtion

$$
\begin{equation*}
\vec{I}=A \vec{V} \tag{48}
\end{equation*}
$$

(c) Show that the matrix you found in (b) is singular by computing its determinant. Then find a basis for its nullspace. You may use MATLAB.

Solution. To show this matrix is singular, one can calculate the determinant of A in MATLAB:

```
>> A = [3 -1 -1 -1 0; -1 2 -1 0 0; -1 -1 3-1 0; 0; -1 0
    -1 1];
>> det(A)
ans =
    0
```

To find a basis for its nullspace, one can also calculate the nullspace using MATLAB:

```
null(A)
ans =
    0.4472
    0.4472
    0.4472
    0.4472
    0.4472
```

We then know that the nullspace is non-zero, and the basis can be written as the form

$$
\mathcal{B}_{\text {null }}=\left\{\left[\begin{array}{l}
1 \tag{49}\\
1 \\
1 \\
1 \\
1
\end{array}\right]\right\}
$$

(d) Finally, describe the set of current vectors \mathbf{I} for which the linear system you wrote down in (b) is consistent. That is, find a condition on \mathbf{I} for which your linear system always has a solution.
Solution. By calculating the rank $(\operatorname{rank}(A))$ we know the rank of A is 4 . Hence, the row vectors of A are linearly dependent. From (c) we already know the basis of the nullspace as a "ones-vector". Hence, we know that the linear combination of the row vectors of A with a coefficient of 1 should be a zero vector, i.e. $\overrightarrow{A_{1}}+\overrightarrow{A_{2}}+\overrightarrow{A_{3}}+\overrightarrow{A_{4}}+\overrightarrow{A_{5}}=$ $\overrightarrow{0}{ }^{1}$
Based on this, in order for $\vec{I}=A \vec{V}$ to always have a solution, the vector \vec{I} also needs to satisfy the linear combination relationship:

$$
\begin{equation*}
I_{1}+I_{2}+I_{3}+I_{4}+I_{5}=0 \tag{50}
\end{equation*}
$$

[^7]Problem 1. One of your friends has invented a new iterative scheme for solving the system of equations $A \vec{x}=\vec{b}$ for real $n \times n$ matrices A. The scheme is given by

$$
\begin{equation*}
\vec{x}^{(k+1)}=(I+\beta A) \vec{x}^{(k)}-\beta \vec{b}, \quad \text { with } \beta>0 \tag{1}
\end{equation*}
$$

(a) Show that if this scheme converges, it converges to the desired solution of the system of equations. In other words, your friend seems to be on to something.
Solution. One can rewrite the update scheme:

$$
\begin{align*}
\vec{x}^{(k+1)}-\vec{x}^{(k)} & =(1+\beta A) \vec{x}^{(k)}-\beta \vec{b}-\vec{x}^{(k)} \\
& =\beta A \vec{x}^{(k)}-\beta \vec{b} \tag{2}\\
& =\beta\left(A \vec{x}^{(k)}-\vec{b}\right)
\end{align*}
$$

Here, we assume that when $k \rightarrow \infty$, the system converges to the correct solution. Since the iteration scheme is proposed to solve the linear system $A \vec{x}=\vec{b}$, one can write out

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(A \vec{x}^{(k)}-\vec{b}\right)=0 \tag{3}
\end{equation*}
$$

Therefore, one knows

$$
\begin{align*}
\lim _{k \rightarrow \infty}\left(\vec{x}^{k+1}-\vec{x}^{(k)}\right) & =\lim _{k \rightarrow \infty}\left(\beta\left(A \vec{x}^{(k)}-\vec{b}\right)\right) \\
& =\beta \lim _{k \rightarrow \infty}\left(A \vec{x}^{(k)}-\vec{b}\right) \tag{4}\\
& =0
\end{align*}
$$

Indicating the algorithm converges.
(b) Derive an equation for the error $\vec{e}^{(k)}=\vec{x}^{(k)}-\vec{x}^{*}$, where \vec{x}^{*} is the exact solution, for each iteration step k.
Solution. We write:

$$
\begin{align*}
\frac{\vec{x}^{(k+1)}}{\vec{x}^{(k)}} & =(I+\beta A)-\frac{\beta \vec{b}}{\vec{x}^{(k)}} \\
\frac{\vec{x}^{(k+1)}+\beta \vec{b}}{\vec{x}^{(k)}} & =I+\beta A \tag{5}
\end{align*}
$$

We then have

$$
\begin{align*}
\frac{e^{(k+1)}}{e^{(k)}} & =\frac{\vec{x}^{(k)}-\vec{x}^{*}}{\vec{x}^{(k-1)}-\vec{x}^{*}} \\
& =\frac{\vec{x}^{(k-1)}-\vec{x}^{*}+\beta\left(A \vec{x}^{(k-1)}-\vec{b}\right)}{\vec{x}^{(k-1)}-\vec{x}^{*}} \tag{6}\\
& =1+\beta \frac{A \vec{x}^{(k-1)}-\vec{b}}{\vec{x}^{(k-1)}-\vec{x}^{*}}
\end{align*}
$$

Since we know that \vec{x}^{*} is the exact solution, we know $\vec{x}^{*}=A^{-1} \vec{b}$. We can substitute the relation back and get:

$$
\begin{align*}
\frac{e^{(k+1)}}{e^{(k)}} & =1+\beta \frac{A \vec{x}^{(k-1)}-\vec{b}}{\vec{x}^{(k-1)}-A^{-1} \vec{b}} \\
& =1+\beta \frac{A\left(\vec{x}^{(k-1)}-A^{-1} \vec{b}\right)}{\vec{x}^{(k-1)}-A^{-1} \vec{b}} \tag{7}\\
& =1+\beta A
\end{align*}
$$

Hence, we can write out the general form of $e^{(k)}$:

$$
\begin{align*}
e^{(k)} & =(I+\beta A) e^{(k-1)} \\
& =(I+\beta A)^{k} e^{(0)} \tag{8}
\end{align*}
$$

where $e^{(0)}=x^{(0)}-x^{*}$.
If A is not guaranteed to be non-singular (or A^{-1} is not guaranteed to exist), then the general form of the error is

$$
\begin{align*}
e^{(k)} & =(I+\beta A) \vec{x}^{(k-1)}-\left(\vec{x}^{*}+\vec{b}\right) \\
& =(I+\beta A)^{k} \vec{x}^{(0)}-\left(\vec{x}^{*}+\vec{b}\right) \tag{9}
\end{align*}
$$

which is the general form of the error.
(c) Does the scheme work for non-singular matrices? Explain.

Solution. This iteration scheme does not necessarily work for all non-singular matrices.
Taking the previously derived expression for the error:

$$
\begin{align*}
e^{(k)} & =e^{(k-1)}+\beta A e^{(k-1)} \\
e^{(k)}-e^{(k-1)} & =\beta A e^{(k-1)} \tag{10}
\end{align*}
$$

The success of the iteration scheme for non-singular matrices depends on the choice of the parameter β and the spectral radius of $I+\beta A$.
For the scheme to converge, the spectral radius of the iteration matrix $\rho(I+\beta A)$ must be less than 1. However, here there is no guarantee that the spectral radius will be smaller than 1.
If one were to dig deeper into the convergence of this iteration scheme, one can write out the norm (one may assume an L2 norm) for the error at $k^{\text {th }}$ from $(k-1)^{\text {th }}$ iteration:

$$
\begin{equation*}
\left\|e^{k}\right\| /\left\|e^{k-1}\right\|=\|(I+\beta A)\| \tag{11}
\end{equation*}
$$

where its spectral radius writes:

$$
\rho(I+\beta A)=\rho\left(\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \tag{12}\\
0 & 1 & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]+\beta\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
& & \vdots & \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]\right)
$$

Problem 2. Many modern machine learning models rely on Deep Neural Networks (DNNs) to fit complex functions defined by real-world data sets. In practice, thousands of weights parametrize a DNN and we "train" a model by finding "optimal" values for the model parameters. The "optimal" parameter values are determined by minimizing the model error as measured by a given loss function.

The following example will motivate the usefulness of neural networks in data fitting. Consider the following data set.

	$x^{(1)}$	$x^{(2)}$	$x^{(3)}$	$x^{(4)}$
x_{1}	0	0	1	1
x_{2}	0	1	0	1
x_{3}	1	1	1	1
y^{\top}	0	1	1	0

The data in Table 2 represents a sample of $m=4$ input-output pairs $\left(x^{(k)}, y_{k}\right), k=$ $1, \ldots, m$, corresponding to the function $f:\{0,1\}^{3} \rightarrow\{0,1\}$ defined by

$$
f(x)= \begin{cases}0, & \text { if } x_{1}+x_{2}+x_{3} \text { is odd } \\ 1, & \text { if } x_{1}+x_{2}+x_{3} \text { is even } .\end{cases}
$$

Each $x^{(k)}$ belongs to \mathbb{R}^{3} and each y_{k} is a scalar. The domain $\{0,1\}^{3}$ of f is the subset of vectors in \mathbb{R}^{3} such that each component is either 0 or 1.

We would like to "learn" f using the sample data in Table 2. In other words, we aim to fit a model g, parametrized by some weights w, to the data in Table 2 by minimizing a given loss function using gradient descent. Once we have trained our model g, we hope to use optimal parameters \vec{w}^{*} to mimic f, so that

$$
g\left(x ; \vec{w}^{*}\right) \approx f(x)
$$

for $x \in\{0,1\}^{3}$.
(a) We begin by fitting a linear model. Let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ denote the function defined by

$$
g(x ; w)=w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}=w^{\top} x .
$$

In this case, we package the model weights w_{1}, w_{2}, w_{3} in a single vector

$$
w=\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right] .
$$

We seek parameter values w_{1}, w_{2}, w_{3} minimizing the mean squared error $J(w)$, defined by

$$
J(w)=\frac{1}{2 m} \sum_{k=1}^{m}\left(g\left(x^{(k)} ; w\right)-y_{k}\right)^{2}
$$

(i) Compute $\nabla_{w} J(w)$, the gradient of J with respect to w.

Solution. One may begin with expanding all the terms in $J(w)$:

$$
\begin{align*}
J(w)= & \frac{1}{8}\left[\left(w_{1} x_{1}^{(1)}+w_{2} x_{2}^{(1)}+w_{3} x_{3}^{(1)}-y_{1}\right)^{2}\right. \\
& +\left(w_{1} x_{1}^{(2)}+w_{2} x_{2}^{(2)}+w_{3} x_{3}^{(2)}-y_{2}\right)^{2} \tag{13}\\
& +\left(w_{1} x_{1}^{(3)}+w_{2} x_{2}^{(3)}+w_{3} x_{3}^{(3)}-y_{3}\right)^{2} \\
& \left.+\left(w_{1} x_{1}^{(4)}+w_{2} x_{2}^{(4)}+w_{3} x_{3}^{(4)}-y_{4}\right)^{2}\right]
\end{align*}
$$

To compute the gradient of $J(w)$, one computes the partial derivatives of J w.r.t. w_{1}, w_{2} and w_{3}, respectively:

$$
\begin{align*}
\frac{\partial J}{\partial w_{1}} & =\frac{1}{m} \sum_{k=1}^{m}\left(g\left(x^{(k)} ; w\right)-y_{k}\right) \frac{\partial g\left(x^{(k)} ; w\right)}{\partial w_{1}} \\
\frac{\partial J}{\partial w_{2}} & =\frac{1}{m} \sum_{k=1}^{m}\left(g\left(x^{(k)} ; w\right)-y_{k}\right) \frac{\partial g\left(x^{(k)} ; w\right)}{\partial w_{2}} \tag{14}\\
\frac{\partial J}{\partial w_{3}} & =\frac{1}{m} \sum_{k=1}^{m}\left(g\left(x^{(k)} ; w\right)-y_{k}\right) \frac{\partial g\left(x^{(k)} ; w\right)}{\partial w_{3}}
\end{align*}
$$

By further derivation:

$$
\begin{align*}
& \frac{\partial J}{\partial w_{1}}=\frac{1}{m} \sum_{k=1}^{m} x_{1}^{(k)}\left(w_{1} x_{1}^{(k)}+w_{2} x_{2}^{(k)}+w_{3} x_{3}^{(k)}-y_{k}\right) \\
& \frac{\partial J}{\partial w_{2}}=\frac{1}{m} \sum_{k=1}^{m} x_{2}^{(k)}\left(w_{1} x_{1}^{(k)}+w_{2} x_{2}^{(k)}+w_{3} x_{3}^{(k)}-y_{k}\right) \tag{15}\\
& \frac{\partial J}{\partial w_{3}}=\frac{1}{m} \sum_{k=1}^{m} x_{3}^{(k)}\left(w_{1} x_{1}^{(k)}+w_{2} x_{2}^{(k)}+w_{3} x_{3}^{(k)}-y_{k}\right)
\end{align*}
$$

By reorganizing the terms we get the general formula of the gradient based on the given form of $J(w)$:

$$
\Delta_{w} J=\left[\begin{array}{l}
\frac{1}{m} \sum_{k=1}^{m} x_{1}^{(k)}\left(w_{1} x_{1}^{(k)}+w_{2} x_{2}^{(k)}+w_{3} x_{3}^{(k)}-y_{k}\right) \tag{16}\\
\frac{1}{m} \sum_{k=1}^{m} x_{2}^{(k)}\left(w_{1} x_{1}^{(k)}+w_{2} x_{2}^{(k)}+w_{3} x_{3}^{(k)}-y_{k}\right) \\
\frac{1}{m} \sum_{k=1}^{m} x_{3}^{(k)}\left(w_{1} x_{1}^{(k)}+w_{2} x_{2}^{(k)}+w_{3} x_{3}^{(k)}-y_{k}\right)
\end{array}\right]
$$

for the given input-output pairs $\left(x^{k}, y_{k}\right)$.
(ii) Use the data points $\left(x^{(k)}, y_{k}\right), k=1,2,3,4$, given in Table 2 and implement the gradient descent method to find w minimizing the mean squared error $J(w)$.

Compute and report the optimal \vec{w}^{*}.
Use a constant learning rate (step size) of 0.1 and perform at least 1500 iterations of gradient descent. Initialize each model parameter as a uniformly distributed random number in the interval $(0,1)$. In MATLAB, you may initialize w using $w=\operatorname{rand}(3,1)$.
Include any relevant code.
Solution. Given the instructions, we use gradient descent with a constant learning rate of 0.1 for 1500 iterations.
The relevant codes are attached herein:

```
clear; clc
%%
w = [w1; w2; w3];
x1_data = [00 0 1 1]';
x2_data = [[0 1 0 1 1}]'
x3_data = [[1 1 1 1 1 1}]'
y_data = [00 1 1 0
X = [x1_data,x2_data,x3_data];
J = . 5*mse(X*w, y_data);
dJ = [diff(J,w1); diff(J,w2); diff(J,w3)];
alpha = 0.1;
%% ii
i=1;
w = rand (3, 1);
while i<=1500
    dJw = subs(dJ,{w1,w2,w3},{w(1),w(2),w(3)});
    dJw = round(dJw*1000)/1000;
    w = w-alpha*dJw;
    i = i+1;
end
```

We obtain $\vec{w}^{*}=\left[\begin{array}{l}0.0030 \\ 0.0030 \\ 0.4965\end{array}\right]$. If we were to apply the solution scheme for 5000 iterations, we get $\vec{w}^{*}=\left[\begin{array}{l}0.0028 \\ 0.0028 \\ 0.4968\end{array}\right]$, which is very similar to what we get for 1500 iterations.
(iii) In this case, since g is a linear model, we may solve for the optimal weights analytically.
Obtain the optimal parameter values by solving the normal equations to verify the correctness of your gradient descent implementation. Include any relevant code.
Solution. Recall the normal equation for the least square method for a linear system $X \vec{w}=\vec{y}$:

$$
\begin{equation*}
\vec{w}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y} \tag{17}
\end{equation*}
$$

One can solve it analytically by expanding the terms:

$$
\begin{align*}
\vec{w} & =\left(\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\right)^{-1}\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & -\frac{1}{2} \\
0 & 1 & -\frac{1}{2} \\
-\frac{1}{2} & -\frac{1}{2} & \frac{3}{4}
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right] \tag{18}\\
& =\left[\begin{array}{l}
0 \\
0 \\
\frac{1}{2}
\end{array}\right]
\end{align*}
$$

One can also generate the following MATLAB codes to compute the analytical solution for \vec{w}^{*} :

```
%% iii
X = [0 0 1; 0 1 1; 1 0 1; 1 1 1];
y = [0;1;1;0];
w_anal = inv(X'*X)*X'*y;
```

and obtain the corresponding solution $\vec{w}^{*}=\left[\begin{array}{c}0 \\ 0 \\ 0.5\end{array}\right]$. One then deduces that the numerical solution obtained from gradient descent is accurate as it is close to the analytical solution.
(iv) Use the optimal parameters \vec{w}^{*} obtained in (ii) to evaluate $g\left(x^{(1)} ; \vec{w}^{*}\right)$.

Since we are fitting data sampled from the function f, we hope to obtain $f\left(x^{(1)}\right)=$ 0. However, you will find that our linear model is inadequate.

Solution. Using the numerical linear model with the approximation results of 1500 iterations, we compute $f\left(x^{(1)}\right)$:

$$
\begin{align*}
f\left(x^{(1)}\right) & \approx g\left(x^{(1)} ; w^{*}\right) \\
& =w_{1} \cdot 0+w_{2} \cdot 0+w_{3} \cdot 1 \tag{19}\\
& =0.4965
\end{align*}
$$

Since we know that in the real data $f\left(x^{(1)}\right)=0$. We therefore know that the fitted data is inaccurate, and hence our linear model is inadequate.
(b) We now consider a non-linear model g. We begin with a few definitions.

Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ denote the sigmoid function, defined by

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

Let h denote the so-called number of hidden units and let $\nu: \mathbb{R}^{h} \rightarrow \mathbb{R}^{h}$ denote the vectorization of σ, defined by

$$
\nu(z)=\left[\begin{array}{c}
\sigma\left(z_{1}\right) \\
\sigma\left(z_{2}\right) \\
\vdots \\
\sigma\left(z_{h}\right)
\end{array}\right] .
$$

Let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ denote the fully connected two-layer feed-forward neural network defined by

$$
\begin{equation*}
g(x ; \alpha, W)=\sigma\left(\alpha^{\top} \nu(W x)\right) \tag{20}
\end{equation*}
$$

This model is parametrized by the weights α_{j}, for $j=1, \ldots, h$, and $w_{i j}$, for $i=1, \ldots, h$ and $j=1,2,3$. Also known as a Multi-Layer Perceptron (MLP) head with a single hidden layer, the network defined by g is illustrated in the Figure in case $h=4$.

$$
\text { Input Layer } \in \mathbb{R}^{3}
$$

Hidden Layer $\in \mathbb{R}^{4}$
Output Layer $\in \mathbb{R}^{1}$

In this case, it will be convenient to package the model parameters in a $1 \times h$ row vector

$$
\alpha^{\top}=\left[\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{h}
\end{array}\right]
$$

and an $h \times 3$ matrix

$$
W=\left[\begin{array}{ccc}
w_{11} & w_{12} & w_{13} \\
w_{21} & w_{22} & w_{23} \\
\vdots & \vdots & \vdots \\
w_{h 1} & w_{h 2} & w_{h 3}
\end{array}\right]
$$

We will fit g to the data in Table 2 using the loss function $L\left(\alpha^{\top}, W\right)$ defined by

$$
L\left(\alpha^{\top}, W\right)=\sum_{k=1}^{m}\left(g\left(x^{(k)} ; \alpha^{\top}, W\right)-y_{k}\right)^{2}
$$

We will use gradient descent to find optimal parameter values. In order to implement the gradient descent method, it will be convenient to package the partial derivatives of the loss function with respect to our model parameters into the two gradients

$$
\begin{gathered}
\nabla_{\alpha} L\left(\alpha^{\top}, W\right)=\left[\begin{array}{ccc}
\frac{\partial L}{\partial \alpha_{1}} & \cdots & \frac{\partial L}{\partial \alpha_{h}}
\end{array}\right], \text { and } \\
\nabla_{W} L\left(\alpha^{\top}, W\right)=\left[\begin{array}{ccc}
\frac{\partial L}{\partial w_{11}} & \frac{\partial L}{\partial w_{12}} & \frac{\partial L}{\partial w_{13}} \\
\vdots & \vdots & \vdots \\
\frac{\partial L}{\partial w_{h 1}} & \frac{\partial L}{\partial w_{h 2}} & \frac{\partial L}{\partial w_{h 3}}
\end{array}\right] .
\end{gathered}
$$

Given these gradients, we will update our model parameters $\alpha^{(n)}$ and $W^{(n)}$ at the nth step of the gradient descent algorithm using

$$
\begin{align*}
\left(\alpha^{(n+1)}\right)^{\top} & \leftarrow\left(\alpha^{(n)}\right)^{\top}-\nabla_{\alpha} L\left(\left(\alpha^{(n)}\right)^{\top}, W^{(n)}\right), \tag{21}\\
W^{(n+1)} & \leftarrow W^{(n)}-\nabla_{W} L\left(\left(\alpha^{(n)}\right)^{\top}, W^{(n)}\right) .
\end{align*}
$$

We now turn to computing these gradients.
(i) Begin by showing that $\sigma^{\prime}(x)=\sigma(x)(1-\sigma(x))$.

Solution. To show the given expression, we begin with expanding the terms in $\sigma^{\prime}(x)$ (LHS):

$$
\begin{align*}
\sigma^{\prime}(x) & =\frac{d}{d x} \frac{1}{1+e^{-x}} \\
& =\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}} \\
& =\frac{1}{1+e^{-x}} \cdot \frac{e^{-x}}{1+e^{-x}} \tag{22}\\
& =\frac{1}{1+e^{-x}} \cdot \frac{1+e^{-x}-1}{1+e^{-x}} \\
& =\frac{1}{1+e^{-x}}\left(1-\frac{1}{1+e^{-x}}\right)
\end{align*}
$$

which can be rearranged as the original form of the RHS:

$$
\begin{equation*}
\sigma^{\prime}(x)=\sigma(x)(1-\sigma(x)) \tag{23}
\end{equation*}
$$

The statement is hence proved.
(ii) Next, let y denote a given vector in \mathbb{R}^{h} and compute

$$
\frac{\partial}{\partial \alpha_{j}}\left[\sigma\left(\alpha^{\top} y\right)\right]=\frac{\partial}{\partial \alpha_{j}}\left[\sigma\left(\alpha_{1} y_{1}+\cdots+\alpha_{h} y_{h}\right)\right]
$$

for each $j=1, \ldots, h$.

Let $\phi(x ; W): \mathbb{R}^{3} \rightarrow \mathbb{R}^{h}$ denote the output of the first layer of our neural network, defined by the composition

$$
\phi(x ; W)=\nu(W x) .
$$

We will use the shorthand $\phi^{(k)}=\phi\left(x^{(k)} ; W\right)$, and as usual we denote the j th component of the $h \times 1$ vector $\phi^{(k)}$ by $\phi_{j}^{(k)}$.
Solution. We may begin by expanding the general form of the LHS:

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial \alpha_{j}}\left[\sigma\left(\alpha^{\top} y\right)\right] & \left.=\frac{\partial}{\partial \alpha_{j}}\left[\sigma\left(\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \ldots
\end{array} \alpha_{h}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{h}
\end{array}\right]\right)\right] \\
& =\frac{\partial}{\partial \alpha_{j}}\left[\frac{1}{1+e^{-\left(\alpha_{1} y_{1}+\alpha_{2} y_{2}+\ldots+\alpha_{h} y_{h}\right)}}\right] \\
& =\frac{\partial}{\partial \alpha_{j}}\left[\frac{1}{1+e^{-\sum_{i=1}^{h} \alpha_{i} y_{i}}}\right] \tag{24}\\
& =\left[\begin{array}{c}
y_{1} \frac{e^{-\sum_{i=1}^{h} \alpha_{i} y_{i}}}{\left(1+e^{-\sum_{i=1}^{h} \alpha_{i} y_{i}}\right)^{2}} \\
y_{2} \frac{e^{-\sum_{i=1}^{h} \alpha_{i} y_{i}}}{\left(1+e^{-\sum_{i=1}^{h} \alpha_{i} y_{i}}\right)^{2}}
\end{array}\right] \\
\vdots \\
y_{h} \frac{e^{-\sum_{i=1}^{h} \alpha_{i} y_{i}}}{\left(1+e^{-\sum_{i=1}^{h} \alpha_{i} y_{i}}\right)^{2}}
\end{array}\right] .
$$

The general form can be written as

$$
\begin{equation*}
\frac{\partial}{\partial \alpha_{j}}\left[\sigma\left(\alpha^{\top} y\right)\right]=y_{j} \frac{e^{-\sum_{j=1}^{h} \alpha_{j} y_{j}}}{\left(1+e^{-\sum_{j=1}^{h} \alpha_{i} y_{i}}\right)^{2}} \tag{25}
\end{equation*}
$$

Since we know from the previous proof that

$$
\begin{equation*}
\frac{e^{-\sum_{j=1}^{h} \alpha_{j} y_{j}}}{\left(1+e^{-\sum_{j=1}^{h} \alpha_{i} y_{i}}\right)^{2}}=\sigma^{\prime}\left(\sum_{j=1}^{h} \alpha_{i} y_{i}\right) \tag{26}
\end{equation*}
$$

Hence, one can write out the general form of the partial derivative:

$$
\begin{equation*}
\frac{\partial}{\partial \alpha_{j}}\left[\sigma\left(\alpha^{\top} y\right)\right]=y_{j} \sigma^{\prime}\left(\sum_{j=1}^{h} \alpha_{i} y_{i}\right) \tag{27}
\end{equation*}
$$

It can be further expanded as

$$
\begin{equation*}
\frac{\partial}{\partial \alpha_{j}}\left[\sigma\left(\alpha^{\top} y\right)\right]=\sigma\left(\alpha^{\top} y\right)\left(1-\sigma\left(\alpha^{\top} y\right)\right) y_{j} \tag{28}
\end{equation*}
$$

(iii) Use the chain rule to show that

$$
\frac{\partial L}{\partial \alpha_{j}}=2 \sum_{k=1}^{m}\left(g\left(x^{(k)} ; \alpha^{\top}, W\right)-y_{k}\right) \sigma^{\prime}\left(\alpha^{\top} \phi^{(k)}\right) \phi_{j}^{(k)}
$$

Solution. We may begin by writing out the general form of L :

$$
\begin{align*}
L & =\sum_{k=1}^{m}\left(g\left(x^{(k)} ; \alpha^{\top}, W\right)-y_{k}\right)^{2} \tag{29}\\
& =\sum_{k=1}^{m}\left[\sigma\left(\alpha_{i} \sigma\left(W x_{i}^{(k)}\right)\right)-y_{k}\right]^{2}
\end{align*}
$$

Using the chain rule, we can rewrite the loss function as

$$
\begin{equation*}
\frac{\partial L}{\partial \alpha_{j}}=\frac{\partial L}{\partial g} \frac{\partial g}{\partial \alpha_{j}} \tag{30}
\end{equation*}
$$

We may get some intuition by expanding the general form of g :

$$
g=\frac{1}{1+e} \frac{{ }_{-\alpha^{\top}}\left[\begin{array}{c}
\sigma\left(W x_{1}^{(k)}\right) \tag{31}\\
\sigma\left(W x_{2}^{(k)}\right) \\
\vdots \\
\sigma\left(W x_{h}^{(k)}\right)
\end{array}\right]}{}
$$

Or simply

$$
\begin{equation*}
g=\frac{1}{1+e^{-\alpha^{\top}\left(W x_{j}^{(k)}\right)}} \tag{32}
\end{equation*}
$$

By computing the partial derivative of g one gets:

$$
\begin{align*}
\frac{\partial g}{\partial \alpha_{j}} & =\frac{\left.-(-1) e^{-\alpha^{\top} \sigma\left(W x_{j}^{(k)}\right.}\right)}{\left(1+e^{-\alpha^{\top} \sigma\left(W x_{j}^{(k)}\right)}\right)^{2}} \sigma\left(W x_{j}^{(k)}\right) \\
& =\frac{\sigma\left(W x_{j}^{(k)}\right) e^{-\alpha^{\top} \sigma\left(W x_{j}^{(k)}\right)}}{\left(1+e^{-\alpha^{\top} \sigma\left(W x_{j}^{(k)}\right)}\right)^{2}} \tag{33}\\
& =\sigma\left(W x_{j}^{(k)}\right) \sigma^{\prime}\left(-\alpha^{\top} \sigma\left(W x_{j}^{(k)}\right)\right. \\
& =\sigma^{\prime}\left(\alpha^{\top} \phi^{(k)}\right) \phi_{j}^{(k)}
\end{align*}
$$

One can also expand the form of $\frac{\partial L}{\partial g}$:

$$
\begin{align*}
\frac{\partial L}{\partial g} & =\frac{\partial\left(\sum_{k=1}^{m}\left(g_{k}-y_{k}\right)^{2}\right)}{\partial g_{k}} \\
& =2 \sum_{k=1}^{m}\left(g_{k}-y_{k}\right) \tag{34}\\
& =2 \sum_{k=1}^{m}\left(g\left(x^{(k)} ; \alpha^{\top}, W\right)-y_{k}\right)
\end{align*}
$$

Applying the chain rule and concatenate the two terms one has:

$$
\begin{align*}
\frac{\partial L}{\partial \alpha_{j}} & =\frac{\partial L}{\partial g} \frac{\partial g}{\partial \alpha_{j}} \\
& =2 \sum_{k=1}^{m}\left(g\left(x^{(k)} ; \alpha^{\top}, W\right)-y_{k}\right) \sigma^{\prime}\left(\alpha^{\top} \phi^{(k)}\right) \phi_{j}^{(k)} \tag{35}
\end{align*}
$$

The statement is hence proved.
Keeping (iii) in mind, notice that the $1 \times h$ gradient $\nabla_{\alpha} L\left(\alpha^{\top}, W\right)$ can be written as the vector-matrix product

$$
\nabla_{\alpha} L\left(\alpha^{\top}, W\right)=2\left(\left(\vec{g}-y^{\top}\right) \star v^{\top}\right) \Phi^{\top}
$$

where \vec{g} denotes the $1 \times m$ row vector

$$
\vec{g}=\left[\begin{array}{lll}
g\left(x^{(1)} ; \alpha^{\top}, W\right) & \cdots & g\left(x^{(m)} ; \alpha^{\top}, W\right)
\end{array}\right]
$$

v^{\top} is an appropriately defined $1 \times m$ row vector, and Φ denotes the $h \times m$ matrix

$$
\begin{aligned}
\Phi & =\left[\phi\left(x^{(1)} ; W\right), \ldots, \phi\left(x^{(m)} ; W\right)\right] \\
& =\left[\phi^{(1)}, \ldots, \phi^{(m)}\right] .
\end{aligned}
$$

Here \star denotes the element-wise vector product, so that for any $1 \times h$ row vectors a and b, the product $a \star b$ is again a $1 \times h$ row vector with

$$
(a \star b)_{j}=a_{j} b_{j} .
$$

(iv) Next, use the chain rule to compute $\frac{\partial L}{\partial w_{i j}}$.

The calculation in part (ii) will serve as a motivating blueprint.
Solution. Using the chain rule, we can write

$$
\begin{equation*}
\frac{\partial L}{\partial w_{i j}}=\frac{\partial L}{\partial g} \frac{\partial g}{\partial \phi} \frac{\partial \phi}{\partial w_{i j}} \tag{36}
\end{equation*}
$$

We first expand the last term $\frac{\partial \phi}{\partial w_{i j}}$:

$$
\frac{\partial \phi}{\partial w_{i j}}=\frac{\partial\left[\begin{array}{c}
\sigma\left(\left[\begin{array}{cc}
w_{11} & \ldots \\
\ldots & w_{i j}
\end{array}\right] x_{1}^{(k)}\right) \tag{37}\\
\sigma\left(\left[\begin{array}{cc}
w_{11} & \ldots \\
\ldots & w_{i j}
\end{array}\right] x_{2}^{(k)}\right) \\
\sigma\left(\left[\begin{array}{cc}
w_{11} & \cdots \\
\ldots & w_{i j}
\end{array}\right] x_{h}^{(k)}\right)
\end{array}\right]}{\partial w_{i j}}
$$

Or in the general form:

$$
\begin{equation*}
\frac{\partial \phi}{\partial w_{i j}}=\sigma^{\prime}\left(w_{i j} x_{j}^{(k)}\right) x_{j}^{(k)} \tag{38}
\end{equation*}
$$

One can then deal with the second term in the chain rule expansion:

$$
\begin{align*}
\frac{\partial g}{\partial \phi} & =\frac{\partial\left[\sigma\left(\alpha^{\top} \nu(W x)\right)\right]}{\partial[\nu(W x)]} \\
& =\frac{\partial\left[\frac{1}{1+e^{-\alpha^{\top} \nu(W x)}}\right]}{\partial[\nu(W x)]} \tag{39}\\
& =\frac{-\left(-\alpha^{\top}\right) e^{-\alpha^{\top}(\nu(W x))}}{\left(1+e^{-\alpha^{\top}(\nu(W x))}\right)^{2}} \\
& =\alpha^{\top} \sigma^{\prime}\left(-\alpha^{\top} \nu\left(W x_{j}^{(k)}\right)\right)
\end{align*}
$$

The first term in the chain rule can be obtained by recalling the previous question:

$$
\begin{equation*}
\frac{\partial L}{\partial g}=2 \sum_{k=1}^{m}\left(g\left(x_{j}^{(k)} ; \alpha^{\top}, W\right)-y_{k}\right) \tag{40}
\end{equation*}
$$

By concatenating the three terms back into the chain rule we have

$$
\begin{align*}
\frac{\partial L}{\partial w_{i j}} & =2 \sum_{k=1}^{m}\left(g\left(x_{j}^{(k)} ; \alpha^{\top}, W\right)-y_{k}\right) \alpha_{j} \sigma^{\prime}\left(-\alpha^{\top} \nu\left(W x_{j}^{(k)}\right)\right) \sigma^{\prime}\left(w_{i j} x_{j}^{(k)}\right) x_{j}^{(k)} \\
& =2 \sum_{k=1}^{m}\left(g\left(x_{j}^{(k)} ; \alpha^{\top}, W\right)-y_{k}\right) \alpha_{j} \sigma^{\prime}\left(-\alpha^{\top} \phi_{j}^{(k)}\right) \sigma^{\prime}\left(w_{i j} x_{j}^{(k)}\right) x_{j}^{(k)} \tag{41}
\end{align*}
$$

Specifically for our case, with 4 hidden layers and 4 data sets with three fitting parameters, the model can be written as:

$$
\begin{equation*}
\frac{\partial L}{\partial w_{i j}}=\sum_{k=1}^{4} 2\left(g^{(k)}-y_{k}\right) \sigma^{\prime}\left(\sum_{i=1}^{4} \alpha_{i} \sigma\left(N_{i}^{(k)}\right)\right) \alpha_{i} \sigma^{\prime}\left(w_{i 1} x_{1}^{(k)}+w_{i 2} x_{2}^{(k)}+w_{i 3} x_{3}^{(k)}\right) x_{j}^{(k)} \tag{42}
\end{equation*}
$$

(v) For ease of implementation, we write the $h \times 3$ gradient $\nabla_{W} L\left(\alpha^{\top}, W\right)$ as a matrixmatrix product.
In particular, find $h \times m$ matrices S and P such that

$$
\nabla_{W} L\left(\alpha^{\top}, W\right)=2(S \star P) X^{\top}
$$

where X denotes the $3 \times m$ matrix of data points:

$$
X=\left[\begin{array}{lll}
x^{(1)} & \cdots & x^{(m)}
\end{array}\right] .
$$

Here $S \star P$ denotes the element-wise product of S and P, so that

$$
(S \star P)_{i j}=s_{i j} p_{i j} .
$$

Hint: The matrix P can be expressed as an outer product.

Solution.

Given that $\nabla_{W} L\left(\alpha^{\top}, W\right)$ can be written as a matrix-matrix product $2(S \star P) X^{\top}$, where S is an $h \times m$ matrix, P is an $h \times m$ matrix, X is a $3 \times m$ matrix of the data table.
Following our previous solution, recall $\frac{\partial L}{\partial w}$:

$$
\begin{equation*}
\frac{\partial L}{\partial w_{i j}}=2 \sum_{k=1}^{m}\left(g\left(x_{j}^{(k)} ; \alpha^{\top}, W\right)-y_{k}\right) \alpha_{j} \sigma^{\prime}\left(-\alpha^{\top} \phi_{j}^{(k)}\right) \sigma^{\prime}\left(w_{i j} x_{j}^{(k)}\right) x_{j}^{(k)} \tag{43}
\end{equation*}
$$

From the hint, by observing the other terms one may see the "outer product":

$$
\begin{equation*}
p_{i j}=\alpha_{j} \sum_{k=1}^{m}\left(g_{k}-y_{k}\right) \sigma^{\prime}\left(W x^{(k)}\right) \tag{44}
\end{equation*}
$$

where the multiplication between $\left(g_{k}-y_{k}\right)$ and $\sigma^{\prime}\left(W x^{(k)}\right)$ are per element-wised. Or one may also write out the general form for P :

$$
\begin{equation*}
P=\alpha^{\top}\left((\vec{g}-\vec{y}) \sigma^{\prime}(W X)\right) \tag{45}
\end{equation*}
$$

where X stores all the $\vec{x} \mathrm{~s}: ~ X=\left[\vec{x}^{(1)}, \vec{x}^{(2)}, \vec{x}^{(3)}, \vec{x}^{(4)}\right]$.
And the form for S :

$$
\begin{equation*}
S=\sigma^{\prime}\left(\alpha^{\top} \sigma^{\prime}\left(\alpha^{\top} \phi\right)\right) \tag{46}
\end{equation*}
$$

Note that this is not the only way to construct S and P.
(vi) Implement the gradient descent method to fit your neural network g to the data in Table 2.
Use $h=4$ hidden units and perform at least 1500 iterations of gradient descent, updating your model parameters at each step as described by (21). Initialize each parameter by independently drawing a uniformly distributed random number in
the interval $(0,1)$. In MATLAB, you may initialize your parameters using $\operatorname{alpha}=\operatorname{rand}(1, h) ; \quad W=\operatorname{rand}(h, 3)$;
Report optimal values for the model parameters. Report your fitted model's output for each data point in Table 2.
Include a convergence plot graphing the total loss as a function of iteration number, and include all relevant code.

Solution.

Given the hints and previous derivations, I wrote the following codes:

```
clear;clc
x1_data = [00 0 1 1]';
x2_data = [l0}
x3_data = [[1 1 1 1 1 1}]['
y_data = [\begin{array}{llll}{0}&{1}&{1}&{0}\end{array}];'y = y_data;
X = [x1_data,x2_data,x3_data]';
h = 4; alpha = rand (1, h); W = rand(h, 3);
%Define helper functions
sigmoid = @(x) 1./(1 + exp(-x));
dsigmoid = @(s) s .* (1 - s);
one_layer = @(X, W) sigmoid(W * X);
nn = @(X, alpha, W) one_layer(one_layer(X, W), alpha);
phi = @(i) sigmoid(W*X(:,i));
Phi = [phi(1),phi(2),phi(3),phi(4)];
%% NN iterations
y = y_data;y = y';
fprintf("------------------------")
for iter = 1:5000
    g = nn(X, alpha, W);
    phi = one_layer(X,W);
    dL_dalpha = 2*(g - y) .* dsigmoid(g) * phi;
    S = dsigmoid(one_layer(X,W));
    P = alpha' * (g - y) .* dsigmoid(g);
    dL_dW = 2 * S.*P*X';
    fprintf("**********************"); fprintf("Iteration %d",
        iter); fprintf("**********************\n")
        W = W - dL_dW;
        alpha = alpha - dL_dalpha;
        Loss(iter) = mse(nn(X, alpha, W),y);
end
y_pred = nn(X, alpha, W);
```

And after 5000 iterations, we get the output (the prediction) as

```
>> y_pred
```

```
y_pred =
    0.0069 0.9892 0.9922 0.0092
```

The convergence plot is attached in the following figure (loss was plotted in the log scale). It can be clearly observed that the loss decreases and converges to a very low value $\left(\sim 10^{-4}\right)$. And the corresponding output $0.0069 \quad 0.9892 \quad 0.9922 \quad 0.0092$ is very close to the given training data $y=\left[\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right]^{\top}$. Hence, the neural network worked well to converge to the desired value.

Note also this is not the only way to make the NN work. If one were to strictly stick with the hint, we may also construct two MATLAB functions "grad1()", "grad2()" as follows:

```
function dL_dW = grad1(X, y, alpha, W)
    % Helper functions
    sigmoid = @(X) 1./(1 + exp(-X));
    dsigmoid = @(s) s .* (1 - s);
    one_layer = @(X, W) sigmoid(W * X);
    nn = @(X, alpha, W) one_layer(one_layer(X, W), alpha);
    nn2 = @(alpha, Phi) one_layer(one_layer(Phi), alpha);
    g = nn(X, alpha, W);
    S = dsigmoid(one_layer(X,W));
    P = alpha' * (g - y) .* dsigmoid(g);
    dL_dW = 2 * S.*P*X';
end
function dL_dalpha = grad2(Phi, y, alpha)
    dsigmoid2 = @(s) s .* (1 - s);
    sigmoid = @(X) 1./(1 + exp(-X));
    one_layer = @(X, W) sigmoid(W * X);
    one_layer2 = @(Phi) sigmoid(Phi);
```

```
    Phi_func = @(Phi) one_layer2(Phi);
    nn2 = @(alpha, Phi) one_layer(sigmoid(Phi), alpha);
    g = nn2(alpha, Phi);
    dL_dalpha = 2*(g - y) .* dsigmoid2(g) * Phi;
end
```

Surprisingly, using this method, for 5000 iterations, I got an extremely accurate result:

```
>> y_pred
y_pred =
    0.0000 1.0000 1.0000 0.0000
```

Using this method, the corresponding loss evolution is plotted as follows:

One observes that the loss drops to $\sim 10^{-12}$, which is extremely small. So it is found that using this "function-based" approach, the approximation accuracy has been significantly improved.
Here, the loss is plotted using the MATLAB mse (\cdot) function, which is not directly using the loss L we defined in the instruction. One may also directly plot the corresponding convergence of loss L as follows (this is a different attempt with a different set of randomized initialization), which should show the same trend:

Both the "mse" loss and the defined L show the same converging trend. The corresponding reported optimal weights W and α are

```
>> W
W =
    5.0344 3.9085 -6.9991
    -2.6231 2.1599 -0.8294
        6.7636 7.3798 -3.0521
    -3.2643 3.3287 2.3026
>> alpha
alpha =
    -8.0477 5.2885 7.8228 -7.2177
```

(vii) Using the optimal parameter values obtained in (vi), evaluate your neural network $g\left(x ; \alpha^{\top}, W\right)$ at the point $x^{(1)}=[0,0,1]^{\top}$.
Report your model's prediction and compare it with your result from part (a)(iv).

Solution.

Based on the given output I printed (from Method 1) from the last sub-question, we know the corresponding evaluated y_{1} is 0.0069 , which is very close to 0 . If one uses the prediction from my reported second method, the prediction is $y_{1}=$ 0.0000 , which indicates that with 4 -digit precision the prediction is basically the same as the training data. This result is significantly more accurate than the pure linear model prediction from (a)(iv).
Here, we may have some additional discussions for the neural network implementation. Using the function approach ("grad1(•)" and "grad2(•)"), the numerical accuracy is higher. If one directly computes the $\frac{\partial L}{\partial W}$ and $\frac{\partial L}{\partial \alpha}$ in the same MATLAB script, the numerical accuracy is reported lower.

Implementation hints:

- Built-in functions in MATLAB are vectorized, which means, for instance, that the MATLAB command \exp (ones (4,2)) applies the exp function to each component of the array ones $(4,2)$.
- In MATLAB, you may perform component-wise array products and quotients by prefixing the appropriate operator with a period. For instance, the command $v . * w$ computes the component-wise product of the arrays v and w.
- The following MATLAB code might be useful. Aside from the helper functions below, all that is needed to implement gradient descent are methods grad1 (X, y, alpha, W) and grad2 (Phi, y, alpha) that can evaluate the relevant derivatives. Each of these can be implemented with less than 7 lines of code!

```
%Initialize parameters
h=4; alpha = rand(1, h); W = rand(h, 3);
%Define helper functions
sigmoid = @(x) 1./(1 + exp (-x));
dsigmoid = @(s) s .* (1 - s);
one_layer = @(X, W) sigmoid(W * X);
nn =@(X, alpha, W) one_layer(one_layer(X, W), alpha);
```

Problem 3. (a) Compute the eigenvalues and eigenvectors of the following matrix:

$$
A=\left[\begin{array}{lll}
-1 & 3 & 1 \\
-1 & 3 & 1 \\
-3 & 3 & 3
\end{array}\right]
$$

Solution. We begin with calculating the eigenvalues:

$$
\begin{align*}
& \operatorname{det}(A-\lambda I)=0 \\
&(-1-\lambda)\left|\begin{array}{ccc}
-1-\lambda & 3 & 1 \\
-1 & 3-\lambda & 1 \\
-3 & 3 & 3-\lambda
\end{array}\right|=0 \tag{47}\\
& 3-\lambda 1 \\
& 3-\lambda
\end{align*}|-3| \begin{array}{cc}
-1 & 1 \\
-3 & 3-\lambda
\end{array}\left|+\left|\begin{array}{cc}
-1 & 3-\lambda \\
-3 & 3
\end{array}\right|=0\right.
$$

Expanding the equation one has

$$
\begin{equation*}
-(1+\lambda)(3-\lambda)^{2}+6(3-\lambda)+3(1+\lambda)-12=0 \tag{48}
\end{equation*}
$$

Solving the equation one gets

$$
\left\{\begin{array}{l}
\lambda_{1}=0 \tag{49}\\
\lambda_{2}=2 \\
\lambda_{3}=3
\end{array}\right.
$$

One can solve for the eigenvectors for the different eigenvalues respectively.
For $\lambda_{1}=0$, we have

$$
\left[\begin{array}{lll}
-1 & 3 & 1 \tag{50}\\
-1 & 3 & 1 \\
-3 & 3 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=0
$$

We can then solve the systems of equations:

$$
\left\{\begin{array} { l }
{ 3 v _ { 2 } - v _ { 1 } + v _ { 3 } = 0 } \tag{51}\\
{ 3 v _ { 2 } - v _ { 1 } + v _ { 3 } = 0 } \\
{ 3 v _ { 2 } - 3 v _ { 1 } + 3 v _ { 3 } = 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
v_{1}=v_{3} \\
v_{2}=0
\end{array}\right.\right.
$$

One then get the first eigenvector:

$$
\vec{V}_{1}=\left[\begin{array}{l}
1 \tag{52}\\
0 \\
1
\end{array}\right]
$$

Here, the normalized form of the eigenvector \vec{V}_{1} should be

$$
\vec{V}_{1}=\left[\begin{array}{c}
1 / \sqrt{2} \tag{53}\\
0 \\
1 / \sqrt{2}
\end{array}\right]
$$

For $\lambda_{2}=2$, we have

$$
\left[\begin{array}{lll}
-3 & 3 & 1 \tag{54}\\
-1 & 1 & 1 \\
-3 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=0
$$

We can then solve the systems of equations:

$$
\left\{\begin{array} { l }
{ 3 v _ { 2 } - 3 v _ { 1 } + v _ { 3 } = 0 } \tag{55}\\
{ v _ { 2 } - v _ { 1 } + v _ { 3 } = 0 } \\
{ 3 v _ { 2 } - 3 v _ { 1 } + v _ { 3 } = 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
v_{1}=v_{2} \\
v_{3}=0
\end{array}\right.\right.
$$

One then get the second eigenvector:

$$
\vec{V}_{2}=\left[\begin{array}{l}
1 \tag{56}\\
1 \\
0
\end{array}\right]
$$

Here, the normalized form of the eigenvector \vec{V}_{2} should be

$$
\vec{V}_{2}=\left[\begin{array}{c}
1 / \sqrt{2} \tag{57}\\
1 / \sqrt{2} \\
0
\end{array}\right]
$$

For $\lambda_{3}=3$, we have

$$
\left[\begin{array}{lll}
-4 & 3 & 1 \tag{58}\\
-1 & 0 & 1 \\
-3 & 3 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=0
$$

We can then solve the systems of equations:

$$
\left\{\begin{array} { l }
{ 3 v _ { 2 } - 4 v _ { 1 } + v _ { 3 } = 0 } \tag{59}\\
{ v _ { 3 } - v _ { 1 } = 0 } \\
{ 3 v _ { 2 } - 3 v _ { 1 } = 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
v_{1}=v_{2} \\
v_{1}=v_{3}
\end{array}\right.\right.
$$

One then get the third eigenvector:

$$
\vec{V}_{3}=\left[\begin{array}{l}
1 \tag{60}\\
1 \\
1
\end{array}\right]
$$

Here, the normalized form of the eigenvector \vec{V}_{3} should be

$$
\vec{V}_{3}=\left[\begin{array}{l}
1 / \sqrt{3} \tag{61}\\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right]
$$

The three eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$, and three eigenvectors $\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}$ are then obtained.

We may also represent them in the form of a spanning set, denoted as \mathbf{V} :

$$
\mathbf{V}=\left\{\left[\begin{array}{c}
1 / \sqrt{2} \tag{62}\\
0 \\
1 / \sqrt{2}
\end{array}\right],\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right],\left[\begin{array}{l}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right]\right\}
$$

(b) Prove that if a symmetric matrix A has n distinct eigenvalues, then the corresponding eigenvectors are orthogonal to each other.
Solution. Since we know that A is symmetric, and A has n distinct eigenvalues, it is then known that one can apply the canonical decomposition for A^{1} :

$$
\begin{equation*}
A=Y \Lambda Y^{-1} \tag{63}
\end{equation*}
$$

where Λ stores all the eigenvalues. We then know the matrix Y stores all the vectors. Since it is known that by definition for the canonical decomposition, the columns in Y are orthogonal. Hence the statement is proven.
One may also prove this statement without thinking about the canonical decomposition. Let's denote the symmetric matrix A with distinct eigenvalues as A and its corresponding eigenvectors as $v_{1}, v_{2}, \ldots, v_{n}$ corresponding to eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. By definition, the eigenvalues and eigenvectors for A are given by:

$$
\begin{equation*}
A \vec{v}_{i}=\lambda_{i} \vec{v}_{i} \tag{64}
\end{equation*}
$$

Now, let's consider two distinct eigenvectors \vec{v}_{i} and \vec{v}_{j} corresponding to eigenvalues λ_{i} and λ_{j} where $i \neq j$. We want to prove that \vec{v}_{i} and \vec{v}_{j} are orthogonal. In other words, we want to show that $\vec{v}_{i}^{\top} \vec{v}_{j}=0$.
From the definition in Equation (64), we know that

$$
\begin{equation*}
\left(A-\lambda_{i}\right) \vec{v}_{i}=0 \tag{65}
\end{equation*}
$$

We can multiply Equation (65) by \vec{v}_{j} :

$$
\begin{equation*}
\vec{v}_{j}^{\top} A \vec{v}_{i}-\vec{v}_{j}^{\top} \lambda_{i} \vec{v}_{i}=0 \tag{66}
\end{equation*}
$$

Since we know that A^{\top} is a symmetric matrix, we know:

$$
\begin{align*}
\vec{v}_{j}^{\top} A^{\top} \vec{v}_{i}-\vec{v}_{j}^{\top} \lambda_{i} \vec{v}_{i} & =0 \tag{67}\\
\left(A \vec{v}_{j}\right)^{\top} \vec{v}_{i}-\lambda_{i} \vec{v}_{j}^{\top} \vec{v}_{i} & =0
\end{align*}
$$

Since we also know that (by definition) $A \vec{v}_{j}=\lambda_{j} \vec{v}_{j}$, Equation (67) can be further written as

$$
\begin{align*}
\lambda_{j} \vec{v}_{j}^{\top} \vec{v}_{i}-\lambda_{i} \vec{v}_{j}^{\top} \vec{v}_{i} & =0 \tag{68}\\
\left(\lambda_{j}-\lambda_{i}\right) \vec{v}_{j}^{\top} \vec{v}_{i} & =0
\end{align*}
$$

[^8]Since we already assumed that A has n distinct eigenvalues, we know that $\lambda_{j} \neq \lambda_{i}$, or $\left(\lambda_{j}-\lambda_{i}\right) \neq 0$. Hence, the only way to establish Equation (68) is

$$
\begin{equation*}
\vec{v}_{j}^{\top} \vec{v}_{i}=0 \tag{69}
\end{equation*}
$$

Hence, in this sense, we also proved that the eigenvectors of A have to be orthogonal to each other.
(c) Suppose that P is any invertible $n \times n$ matrix. Show that A and $P^{-1} A P$ have the same eigenvalues.

Solution. Taking the previous assumption that A is symmetric and assume A has canonical decomposition: $A=Y \Lambda Y^{-1}$. We may define that $B=P^{-1} A P$. One can then expand B in terms of the canonical decomposition of A :

$$
\begin{equation*}
B=P^{-1} Y \Lambda Y^{-1} P \tag{70}
\end{equation*}
$$

where Λ stores all the eigenvalues of A. One can further write this relation as

$$
\begin{equation*}
B=\left(P^{-1} Y\right) \Lambda\left(P^{-1} Y\right)^{-1} \tag{71}
\end{equation*}
$$

where we may define $X=P^{-1} Y$, such that $B=X \Lambda X^{-1}$.
Since vectors in Y are A 's eigenvectors, we know

$$
\begin{equation*}
(A-\lambda) \vec{y}_{i}=0, \quad \vec{y}_{i} \in Y \tag{72}
\end{equation*}
$$

or further:

$$
\begin{equation*}
(A-\Lambda) Y=\overrightarrow{0} \tag{73}
\end{equation*}
$$

Since λ is a diagonal matrix, we know

$$
\begin{equation*}
\Lambda Y=Y \Lambda \tag{74}
\end{equation*}
$$

We can therefore rewrite Equation (73):

$$
\begin{equation*}
A Y=Y \Lambda \tag{75}
\end{equation*}
$$

From $A Y=Y \Lambda$ we can write:

$$
\begin{array}{r}
P^{-1} A Y=P^{-1} Y \Lambda \\
\rightarrow P^{-1} A P P^{-1} Y=P^{-1} Y \Lambda \\
B P^{-1} Y=P^{-1} Y \Lambda \tag{76}\\
B X=X \Lambda
\end{array}
$$

We therefore know $X=P^{-1} Y$ stores the eigenvector of B.
From $(A-\Lambda) Y=0$ we know it is satisfied that

$$
\begin{equation*}
\left(P B P^{-1}-\Lambda\right) Y=0 \tag{77}
\end{equation*}
$$

Therefore, B and A share the same eigenvalues stored in matrix Λ, with eigenvectors $P^{-1} Y$ for B. But note that this is only a partial proof, as (1) we shall not assume A is diagonalizable as it is not provided in the instructions, and (2) the diagonalizable A case may not be able to generalize to all cases.
One may also prove this without using the canonical decomposition (or a more general proof). From the definition, we may begin with

$$
\begin{equation*}
A \vec{v}_{i}=\lambda_{i} \vec{v}_{i} \tag{78}
\end{equation*}
$$

One can further write:

$$
\begin{equation*}
P^{-1} A \vec{v}_{i}=P^{-1} \lambda_{i} \vec{v}_{i} \tag{79}
\end{equation*}
$$

or can also be written in the form:

$$
\begin{equation*}
\left(P^{-1} A\right) \vec{v}_{i}=\lambda_{i} P^{-1} \vec{v}_{i} \tag{80}
\end{equation*}
$$

Here, we may define that $P^{-1} \vec{v}_{i}=\vec{w}_{i}$ (from this we also know that $\vec{v}_{i}=P \vec{w}_{i}$). Equation (80) can be further rewritten as

$$
\begin{equation*}
P^{-1} A P \vec{w}_{i}=\lambda_{i} \vec{w}_{i} \tag{81}
\end{equation*}
$$

We may interpret this equation from the geometric perspective, where the projection of matrix $P^{-1} A P$ on vector \vec{w}_{i} is the same as the scalar multiplication by λ_{i} on vector \vec{w}_{i}. In other words, it writes:

$$
\begin{equation*}
\left(P^{-1} A P-\lambda_{i}\right) \vec{w}_{i}=0 \tag{82}
\end{equation*}
$$

where from this we know the vector \vec{w}_{i} is in the nullspace of matrix $P^{-1} A P$. So \vec{w}_{i} is an eigenvector of $P^{-1} A P$. Therefore, if we write $C=P^{-1} A P$, the equation

$$
\begin{equation*}
\left(C-\lambda_{i}\right) \vec{w}_{i}=0 \tag{83}
\end{equation*}
$$

says that λ_{i} is the eigenvalue of C. Hence, C and A have the same eigenvalues. We can then say $P^{-1} A P$ has the same eigenvalues as A. The statement is hence proved.
(d) If D is a diagonal matrix, what are the eigenvalues of D ?

Solution. The eigenvalues would be the diagonal elements of D.
One can expand the characteristic equation to see this:

$$
\rightarrow\left|\right|=0
$$

We therefore know that

$$
\left\{\begin{array}{l}
\lambda_{1}=d_{11} \tag{85}\\
\lambda_{2}=d_{22} \\
\lambda_{3}=d_{33} \\
\vdots \\
\lambda_{n}=d_{n n}
\end{array}\right.
$$

So it is easy to see that the eigenvalues would be the diagonal elements, i.e., $\lambda_{i}=d_{i i}$.
(e) Consider the differential equation

$$
\frac{d x}{d t}=A x
$$

Show that if $x(0)$ is an eigenvector of A with eigenvalue λ, then

$$
x(t)=e^{\lambda t} x(0)
$$

is a solution to the differential equation.
Solution. We may begin the proof by substituting $x(t)=e^{\lambda t} x(0)$ back to the ODE:

$$
\begin{array}{r}
\frac{d \vec{x}}{d t}=\frac{d}{d t}\left(e^{\lambda t} \vec{x}(0)\right) \tag{86}\\
\frac{d \vec{x}}{d t}=\lambda e^{\lambda t} \vec{x}(0)+e^{\lambda t} \frac{d \vec{x}(0)}{d t}=A \vec{x}
\end{array}
$$

Since $x(0)$ is an eigenvector of A, we know

$$
\begin{equation*}
A \vec{x}(0)=\lambda \vec{x}(0) \tag{87}
\end{equation*}
$$

Substitute this back to Equation (86) one has

$$
\begin{equation*}
\lambda e^{\lambda t} \vec{x}(0)+e^{\lambda t} \frac{d \vec{x}(0)}{d t}=\lambda e^{\lambda t} \vec{x}(0) \tag{88}
\end{equation*}
$$

Since $x(0)$ is not a function of time, we know $\frac{d \vec{x}(0)}{d t}=0$, therefore:

$$
\begin{equation*}
\lambda e^{\lambda t} \vec{x}(0)=\lambda e^{\lambda t} \vec{x}(0) \tag{89}
\end{equation*}
$$

The relationship is hence established. Hence, one knows that $\vec{x}(t)=e^{\lambda t} \vec{x}(0)$ is a solution to the given ODE.

The statement is hence proved.

Problem 1. (Population Dynamics.) There are many different manners through which we can model population dynamics, but many of the models we use involve a system of ordinary differential equations. Let's start with a simple model.

$$
\begin{aligned}
& \frac{d P_{1}}{d t}=-0.8 P_{1}+0.4 P_{2} \\
& \frac{d P_{2}}{d t}=-0.4 P_{1}+0.2 P_{2}
\end{aligned}
$$

We start with a linear model for population dynamics, where P_{1} represents the population of pandas (in thousands) and P_{2} represents the population of bamboo caterpillars (in millions). The amount of bamboo eaten by pandas leads to them being heavy competitors within themselves as well as bamboo caterpillars for food. Caterpillars support their own population growth since they do not eat so much, but pandas will sometimes benefit from their population growth as an alternative food source.

1. Write this linear system of differential equations as a matrix equation

$$
\frac{d \vec{P}}{d t}=A \vec{P}
$$

where $\vec{P}=\left[\begin{array}{ll}P_{1} & P_{2}\end{array}\right]^{T}$. Identify the set of values for which the populations will be unchanging (i.e., fixed points, where $\frac{d \vec{P}}{d t}=0$). What is the relationship between these values and the matrix A?

Solution. One can rewrite this linear system as

$$
\left[\begin{array}{ll}
-0.8 & 0.4 \tag{1}\\
-0.4 & 0.2
\end{array}\right]\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]=\left[\begin{array}{l}
\frac{d P_{1}}{d t} \\
\frac{d P_{2}}{d t}
\end{array}\right]
$$

To find the fixed point, one needs to solve:

$$
\left[\begin{array}{ll}
-0.8 & 0.4 \tag{2}\\
-0.4 & 0.2
\end{array}\right]\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Solving this linear system we have

$$
\begin{equation*}
2 P_{1}=P_{2} \tag{3}
\end{equation*}
$$

This indicates the general solution for the fixed point can be represented as

$$
\vec{P}=\left[\begin{array}{l}
1 \tag{4}\\
2
\end{array}\right] t, \quad t=\text { const. }
$$

One can then substitute this back to the original matrix-vector multiplication and obtain the solution. Hence, vector P is a basis of the nullspace for matrix A.
2. Decouple (or diagonalize) A to write a general solution for $\vec{P}(t)$ with initial condition $\vec{P}(0)$. Is there a stable coexistence of a particular proportion of pandas and bamboo caterpillars? In other words, what happens to $P_{1}(t)$ and $P_{2}(t)$ as $t \rightarrow \infty$?
Hint: Recall that diagonalization allows us to express $e^{A t}$ as $X e^{\Lambda t} X^{-1}$.
Solution. The general solution writes

$$
\begin{align*}
\vec{P} & =e^{A t} \vec{P}(0) \\
& =X e^{\Lambda t} X^{-1} \vec{P}(0) \tag{5}\\
\rightarrow\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right] & =\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right] e^{\Lambda t}\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right]^{-1}\left[\begin{array}{l}
P_{1}(0) \\
P_{2}(0)
\end{array}\right]
\end{align*}
$$

To obtain X and Λ, one can solve for the eigenvectors and eigenvalues of A. For $\lambda_{1}=0$, one get the eigenvector

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \tag{6}\\
2
\end{array}\right]
$$

For $\lambda_{1}=-\frac{3}{5}$, one get the eigenvector

$$
\vec{v}_{2}=\left[\begin{array}{l}
2 \tag{7}\\
1
\end{array}\right]
$$

One can then use the normalized eigenvectors as a vector set:

$$
\mathbf{V}=\left\{\frac{1}{\sqrt{5}}\left[\begin{array}{l}
1 \tag{8}\\
2
\end{array}\right], \frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}
$$

One can also write the eigenvalue matrix Λ :

$$
\Lambda=\left[\begin{array}{cc}
0 & 0 \tag{9}\\
0 & -\frac{3}{5}
\end{array}\right]
$$

Based on Λ and $X($ from $\mathbf{V}), A^{(t)}$ can be represented as

$$
A^{(t)}=\left[\begin{array}{cc}
\frac{4 \mathrm{e}^{-\frac{3 t}{5}}}{3} & \frac{1}{3} \tag{10}\\
\frac{2}{3}-\frac{2 \mathrm{e}^{-\frac{3 t}{5}}}{3} \\
\frac{2 \mathrm{e}^{-\frac{3 t}{5}}}{3} & \frac{2}{3} \\
\frac{4}{3}-\frac{\mathrm{e}^{-\frac{3 t}{5}}}{3}
\end{array}\right]
$$

When $t \rightarrow \infty, A^{(t)}$ writes:

$$
\lim _{t \rightarrow \infty} A^{(t)}=\frac{1}{3}\left[\begin{array}{ll}
-1 & 2 \tag{11}\\
-2 & 4
\end{array}\right]
$$

It can be observed that $P_{1}(t)$ and $P_{2}(t)$ agree with the general solution for the linear system of $\frac{d \vec{P}}{d t}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Here, if one were to determine the stable coexistence, we can substitute the initial condition back to the equation:

$$
\begin{align*}
{\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right] } & =X e^{\Lambda t} X^{-1}\left[\begin{array}{l}
P_{1}(0) \\
P_{2}(0)
\end{array}\right] \\
& =\lim _{t \rightarrow \infty} A^{(t)}\left[\begin{array}{l}
P_{1}(0) \\
P_{2}(0)
\end{array}\right] \tag{12}
\end{align*}
$$

$$
=\frac{1}{3}\left[\begin{array}{ll}
-1 & 2 \\
-2 & 4
\end{array}\right]\left[\begin{array}{l}
P_{1}(0) \\
P_{2}(0)
\end{array}\right]
$$

Since under the stable coexistence, the population of pandas and bamboo caterpillars should all be positive.
Hence, we can proceed with the equation

$$
\begin{align*}
& -P_{1}(0)+2 P_{2}(0)>0 \tag{13}\\
& \quad \rightarrow 2 P_{2}(0)>P_{1}(0)
\end{align*}
$$

Which is the condition for the stable coexistence to exist for the equation. To be more precious (to answer the "in other words" in the instruction), both $P_{1}(t)$ and $P_{2}(t)$ are nonzero when $t \rightarrow \infty$ with the given initial condition.

This linear model was helpful for the first approach to modeling competitive species. Still, it would be nice if we could also model the effects of the limiting factor, the available bamboo. We adapt our model to include a new variable, B, which represents the bamboo population (in millions), and formulate a nonlinear system of equations. We generalize the previous equation to include nonlinearity with $\frac{d \vec{P}}{d t}=\vec{f}(\vec{P})$. Note: we have normalized all quantities so that reasonable populations should be $O(1)$.

$$
\begin{aligned}
\frac{d P_{1}}{d t} & =-0.8 P_{1}+0.4 P_{2}+0.1 P_{1} B \\
\frac{d P_{2}}{d t} & =-0.4 P_{1}+0.2 P_{2}+0.01 P_{2} B^{3} \\
\frac{d B}{d t} & =1-0.1 P_{1}-0.3 P_{2}-0.25 B
\end{aligned}
$$

1. Write your own Newton-Raphson method in MATLAB to identify a positive fixed point (with elements all $O(1)$) for this system of equations and submit your code. Recall that for a multi-dimensional system, Newton-Raphson will generalize from $1 D$ to multiple dimensions as:

$$
\vec{x}^{(n+1)}=\vec{x}^{(n)}-J\left(\vec{x}^{(n)}\right)^{-1} \vec{f}\left(\vec{x}^{(n)}\right)
$$

where $J\left(\vec{x}^{(n)}\right)$ is the Jacobian evaluated at $\vec{x}=\vec{x}^{(n)}$. Note that $J\left(\vec{x}^{(n)}\right)$ will vary for each iteration, but you can calculate a formula for the Jacobian. Rather than construct the inverse of $J\left(x^{(n)}\right)$, we can save time by solving the linear system at every iteration:

$$
J\left(\vec{x}^{(n)}\right)\left(\vec{x}^{(n+1)}-\vec{x}^{(n)}\right)=-\vec{f}\left(\vec{x}^{(n)}\right)
$$

Feel free to use MATLAB's backslash \backslash operator to solve this linear system.
Solution. Based on the nonlinear system:

$$
\vec{f}=\frac{d \vec{P}}{d t} \rightarrow\left\{\begin{array}{l}
f_{1}=\frac{d P_{1}}{d t} \tag{14}\\
f_{2}=\frac{d P_{2}}{d t} \\
f_{3}=\frac{d P_{3}}{d t}
\end{array}\right.
$$

with a solution vector $\vec{x}=\left[\begin{array}{l}P_{1} \\ P_{2} \\ B\end{array}\right]$ One can thence expand the terms for the Jacobian:

$$
J=\left[\begin{array}{ccc}
-0.8+0.1 B & 0.4 & 0.1 P_{1} \tag{15}\\
-0.4 & 0.2+0.01 B^{3} & 0.03 P_{2} B^{2} \\
-0.1 & -0.3 & -0.25
\end{array}\right]
$$

One can further expand the provided iteration scheme:

$$
\begin{equation*}
J\left(\vec{x}^{(n)}\right) \underbrace{\left(\Delta \vec{x}^{(n)}\right)}_{\vec{x}^{(n+1)}-\vec{x}^{(n)}}=-\vec{f}\left(\vec{x}^{(n)}\right) \tag{16}
\end{equation*}
$$

And the target solution can then be obtained via solving the linear system

$$
\begin{equation*}
\left(\Delta \vec{x}^{(n)}\right)=-J^{-1} \vec{f} \tag{17}
\end{equation*}
$$

Based on this simple formulation, one writes the following code, with a random initial

```
vector }\mp@subsup{\vec{x}}{0}{}\mathrm{ as }\mp@subsup{\vec{x}}{0}{}=[\begin{array}{l}{0.1}\\{0.1}\\{0.1}\end{array}]\mathrm{ :
x0 = [.1; .1; .1];
tolerance = 1e-10;
max_iter = 100;
iteration = 0;
while iteration < max_iter
    f_x = system_equations(x0);
    if norm(f_x) < tolerance
        fixed_point = x0;
        disp('Converged\lrcornertoцa\sqcupfixed\lrcornerpoint:');
        disp(fixed_point);
        return;
    end
    J_x = jacobian_matrix(x0);
    delta_x = J_x \ (-f_x);
    x0 = x0 + delta_x;
    iteration = iteration + 1;
end
```

With the corresponding functions write

```
function f_x = system_equations(x)
    f_x = [
        -0.8*x(1) + 0.4*x(2) + 0.1*x(1)*x(3);
        -0.4*x(1) + 0.2*x(2) + 0.01*x(2)*x(3)^3;
        1 - 0.1*x(1) - 0.3*x(2) - 0.25*x(3)
    ];
end
```

and

```
function J_x = jacobian_matrix(x)
    J_x = [
        -0.8 + 0.1*x(3), 0.4, 0.1*x(1);
        -0.4, 0.2 + 0.01*x(3)^3, 0.01*x(2)*3*x(3)^2;
        -0.1, -0.3, -0.25
    ];
end
```

And we get the converged solution from Newton-Raphson:

```
Converged to a fixed point:
    1.6854
    3.9836
    -1.4544
```

However, one should notice that here there is a negative fixed-point scenario, which should not be expected, considering we should not have a negative value of bamboo population. Hence, we can change the initial point and re-converge the iteration scheme. If one were to pick the initial point of $\vec{x}_{0}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$, we converge to the fixed point:

$$
\vec{P}_{f p}=\left[\begin{array}{l}
0.9749 \tag{18}\\
1.5122 \\
1.7954
\end{array}\right]
$$

which is in some sense correct. Because the bamboo population is positive (nonzero and not negative), with coexisting panda and caterpillar populations positive. Note that by testing a few other initial points verified the converged fixed point, e.g., $\vec{v}_{0}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$, $\vec{v}_{0}=\left[\begin{array}{l}5 \\ 1 \\ 2\end{array}\right], \vec{v}_{0}=\left[\begin{array}{c}1.2 \\ 5 \\ 1\end{array}\right], \ldots$
We can then verify the accuracy of the convergence. Taking the $\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$ as the initial point, we have

```
>> verify_fp = system_equations(fixed_point)
verify_fp =
    1.0e-13*
    -0.8576
        0.3132
            0
```

indicating that the iteration indeed converges within the error tolerance.
2. Near the fixed point, we can approximate the behavior of the nonlinear system as something that looks like:

$$
\frac{d \vec{P}}{d t}=J\left(\vec{P}_{f p}\right) \vec{P}
$$

where $J\left(\vec{P}_{f p}\right)$ is the Jacobian evaluated at the fixed point $\vec{P}_{f p} . J\left(\vec{P}_{f p}\right)$ is then a constant coefficient matrix, meaning we have a linear system of differential equations. Our situation is the same as the one we had in part (a), so we can decouple our system near this fixed point.
Using MATLAB, identify the eigenvalues for this system. What do the real parts of the eigenvalues imply about the stability of the fixed point for long times?
Solution. Using MATLAB, one can evaluate the Jacobian at the fixed point to get $J\left(\vec{P}_{f p}\right)$:

```
>> J_fp = jacobian_matrix(fixed_point)
J_fp =
    -0.6205 0.4000 0.0975
    -0.4000 0.2579 0.1462
    -0.1000 -0.3000 -0.2500
```

One can then get the eigenvector and eigenvalues of this coefficient matrix:

```
>> [v,d] = eig(J_fp)
v =
    -0.5109 + 0.0000i 0.1677 + 0.2761i 0.1677 - 0.2761i
    -0.1305 + 0.0000i 0.2705 + 0.4199i 0.2705 - 0.4199i
    -0.8497+0.0000i -0.8038 + 0.0000i -0.8038 + 0.0000i
d =
    -0.3562 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
    0.0000 + 0.0000i -0.1282 + 0.1911i 0.0000 + 0.0000i
    0.0000 + 0.0000i 0.0000 + 0.0000i -0.1282 - 0.1911i
```

One can then get the real parts of the eigenvalues:

$$
\begin{align*}
& \lambda_{1}=-0.3562 \\
& \lambda_{2}=-0.1282 \tag{19}\\
& \lambda_{3}=-0.1282
\end{align*}
$$

We observe that all the real parts of the eigenvalues are negative. Since $\lim _{t \rightarrow \infty} e^{a t}=0$, implies the eigenvalues goes to zero. Hence, we can say this iteration scheme is stable.

Problem 2. (PageRank for Wikipedia.) In this question, we'll have a closer look at the PageRank algorithm. This algorithm famously invented for the Google search engine, is based on the idea that the most important websites will have many important websites linking to them. Here we will try applying the same algorithm to a data set of Wikipedia articles and the links between them.

The PageRank algorithm can be formulated as a linear system:

$$
\vec{x}=\alpha P \vec{x}+(1-\alpha) \vec{v}
$$

where the vector \vec{x} describes the relative importance of a page, the "PageRank." The PageRank matrix P describes the linking structure between pages; in particular, $P_{i j}$ can be thought of as the probability that page j links to page i when an outgoing link of j is taken at random. In other words, each column of P represents a probability vector describing the probability of transitioning from one page to all others. The vector \vec{v} ascribes a base level of importance to all pages, and α is a positive scalar parameter that determines the amount of importance that propagates through links in the page network.

To simplify our problem, we will set $\alpha=1$, so we are left with an eigenvalue equation for P, i.e. $\vec{x}=P \vec{x}$. The data set for this problem is sampled from a snapshot of English-language Wikipedia articles in 2023. Altogether the smaller data set we will work with contains the linking relationships between 10^{5} of the webpages of Wikipedia.

To start, we will use an example 6 node case, with graph as in Fig. 1 and corresponding pagerank matrix:

Figure 1: Directed graph for six webpages.

$$
P=\left[\begin{array}{cccccc}
0 & 0 & 0.25 & 0 & 0.333 & 0 \\
0.5 & 0 & 0.25 & 0 & 0 & 0.5 \\
0 & 0.5 & 0 & 0.5 & 0.333 & 0 \\
0.5 & 0 & 0.25 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.5 \\
0 & 0.5 & 0.25 & 0.5 & 0.333 & 0
\end{array}\right]
$$

1. Write your own MATLAB function that implements the Power Method to determine the largest eigenvalue and eigenvector of any given PageRank matrix and submit your
code. Using your favorite (nonzero) initial vector, apply it to the given PageRank matrix associated with the graph. What is the PageRank vector?
Solution. Based on the given iteration scheme, one can write the following MATLAB codes:
```
clc;clear
%%
P = [llllll
    . 5 0 . 25 0 0 . 5; ...
    0.5 0 . 5 . 333 0;...
    . }50.25000;..
    0 0 0 0 0 . 5; ...
    0 . 5 . 25 . 5 . . 333 0];
%%
x_0 = [1 0 0 0 0}]\mp@code{';
[D,k] = powermeth(P)
```

With the function writes:

```
function [v,d,err] = powermeth(A)
    k = 1; %initialize counter
    [n, n] = size(A);
    v = randn(n, 1); % initialize with a random vector
    v = v / norm(v);
    d = v'*A*v;
    tol = 1e-15;
    max_iter = 10000;
    while k<max_iter
        v = A*v / norm(A*v);
        d_new = v'*A*v;
        err(k) = norm(d_new - d)/norm(d);
        if(norm(d_new - d)/norm(d) < tol)
            v = v / norm(v);
            d = d_new;
            break
        end
        d = d_new;
        k = k+1;
    end
end
```

In this implementation, my "favorite" initial vector is a randomized 1×6 vector:
$\vec{x}_{0}=\left[\begin{array}{c}0.1001 \\ -0.5445 \\ 0.3035 \\ -0.6003 \\ 0.4900 \\ 0.7394\end{array}\right]$, and the iteration returned PageRank vector is $\vec{v}=\left[\begin{array}{l}0.2134 \\ 0.5142 \\ 0.4656 \\ 0.2231 \\ 0.2911 \\ 0.5821\end{array}\right]$. Since
the initial vectors are randomized each time, the algorithms converge to the same vector, verifying the correctness of the algorithm.
2. For your Power Method function, plot the error norm against the iteration number on a semilogy plot.
Recall that the rate of convergence of the Power Method algorithm scales as $\left|\lambda_{2} / \lambda_{1}\right|^{k}$, where k is the iteration. Based on the slope of your error norm, what do you expect the magnitude of the next largest eigenvalue to be? Compare your prediction to the actual second largest eigenvalue in the magnitude of P using the eig function.

Solution.

By plotting using the "semilogy" we get the following figure:

The curve fitting procedure is shown as follows:

Based on the curve fit, one can solve this equation using a few lines of code:

```
syms lam2
eqn = abs(lam2/1) - 2 == 0.41;
soln = solve(eqn, lam2); round(soln,3)
```

and obtain

```
ans =
0.64
```

Using the eig function, one obtains the magnitude of the second largest eigenvalues of P is 0.6624 . It can then be deduced that our solution is 0.64 and the actual value is 0.6624 , which is pretty close. The difference (~ 0.0224) is likely to be caused by the numerical precision of the computer.
3. We have provided two files, a sparse PageRank matrix for 100, 000 articles in Pagerank _Transition.mat and the names that correspond to each page in Wikipedia_Article _Names.mat. Use your algorithm to calculate the PageRank vector, and provide us with the top 10 Wikipedia articles and their corresponding PageRanks. Hint: Use both return values from the sort algorithm to retrieve both large values and corresponding indices.

Solution. Using the provided data file, we use the power method and use the following codes:

```
clc;clear
load('Wikipedia_Article_Names.mat');
load('Pagerank_Transition.mat');
[v_trans,d_trans,err_trans] = powermeth(Transition_Probability_Matrix
    );
[sorted_ranks, indices] = sort(v_trans, 'descend');
top_10_indices = indices(1:10);
top_10_names = Article_Names(top_10_indices);
top_10_ranks = sorted_ranks(1:10);
```

The obtained top 10 articles are

```
>> top_10_names'
ans =
    10x1 cell array
    {'WorlduWaruII' }
    {'United\sqcupStates' }
    {'Latin' }
    {'CatholicuChurch'}
    {'United\sqcupKingdom' }
    {'WorlduWaruI' }
    {'India' }
    {'France' }
    {'China' }
    {'Soviet\sqcupUnion' }
```

Their corresponding PageRanks are

```
>> top_10_ranks
top_10_ranks =
```

```
0.1905
    0.1669
    0.1411
    0.1136
    0.1123
    0.1100
    0.0908
    0.0907
    0.0893
    0.0814
```

4. Once again, plot the error norm against the iteration number to get a look at the convergence rate.
Solution. By plotting the convergence plot with semilogy method we generate the following figure:

Using a similar approach, one can also calculate the convergence rate by fitting the curve shown in the following figure. It can also be observed that in my implementation there are some "fluctuations" in the converging process. I attribute this "convergence fluctuation" to the numerical error caused by MATLAB.
Based on the set tolerance for this problem 10^{-15}, the power method converge to this tolerance after ~ 200 iterations.

[^0]: ${ }^{1}$ obtained using MATLAB rank

[^1]: ${ }^{2}$ found through using the MATLAB null () function.

[^2]: ${ }^{1}$ stand for the more precise presentation as $\vec{u}, \vec{v}, \vec{w}$

[^3]: ${ }^{2}$ where \mathcal{C} stands for a random constant.

[^4]: ${ }^{3}$ for any given row

[^5]: ${ }^{4}$ because after expansion the lower-order terms of d can be ignored, hence the overall computational complexity is still d.

[^6]: ${ }^{5}$ which is the Euclidean norm, or also known as the L2 norm

[^7]: ${ }^{1} \overrightarrow{A_{i}}$ denotes the row vectors of A

[^8]: ${ }^{1}$ or in other words, the canonical decomposition exists

