PERSONAL NOTES

LINEAR ALGEBRA

Hanfeng Zhai

Disclaimer: These notes are intended solely for personal reference
and study purposes. They represent my own understanding of the
course material and may contain errors or inaccuracies. The content
presented here should not be considered as an authoritative source,
and reliance solely on these materials is not recommended. If you
notice any materials that potentially infringe upon the copyright of
others, please contact me at hz253@cornell.edu so that appropri-
ate action can be taken. Your feedback is greatly appreciated.
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ME300A HW#1
Hanfeng Zhai (hzhai@stanford.edu) October 7, 2023

Problem 1. Decide whether each of the following statements is true or false. If true, then
prove it; otherwise, provide a counterexample.

()

(b)

If AB=1,then A=1.
Solution. Counterexample: B = A~1. [J
If AB =0, then A or B is a zero matrix.

Solution. Counterexample:

where a and b are non-zero scalars. U

If AB and BA are defined, then both A and B must be square.

Solution.  Counterexample: A is a 2 x 3 matrix, and B is a 3 x 2 matrix. More
generally, A is a m X n matrix, and B is a n X m matrix. [J

If AB and BA are defined, then both AB and BA are necessarily square.

Solution. Assume A is a m X n matrix, and B is a n X m matrix. Since both AB
and BA are defined, assume AB = A, and BA = B, then A has dimension n X n,
and B has dimension m x m. Assume A and B can be generalized to two second-order
tensors, using indicial notation:

Aiiji — Aii, 1€ [1,m],j € [Z,TL]

2
BjiAij = Bjj, i€[l,m],je€li,n] @)

Hence, both AB and BA are necessarily square. [
If A is invertible, then (A™!)T = (AT)~L.

Solution. If A is invertible, then (A=1)" = (AT)_I. We further get (A=)" AT =1,
then we finally get:
(A1A)" =1 (3)

then the relation (A™1)T = (AT)~! is established. OJ



Problem 2. Suppose A and B are n x n symmetric matrices; that is, A = AT and B = BT .
Decide whether each of the following matrices is symmetric. If it is, prove it; otherwise,

provide a counterexample.

(a) A? — B2
Solution.
(A* = B*)T = ((AA) — (BB))"
— (A4)T = (BB)T
=ATAT - B'BT
= (AA) — (BB)
_ 42 2
O

(b) (A+ B)(A— B).
Solution.

(A+B)(A-B)]" =(4A—-B)"(4+B)T
— (AT—BT)(AT—l—BT)
= (A— B)(A+ B)

A counterexample would be A = 2 1], B = r 5}, then (A — B)(A + B)

13 5 6

(5)

{iﬁi :2?] and (A+ B)(A - B) = [:22 :gﬂ , where (A — B)(A+ B) # (A +
B)(A-B). O
(c) ABAB.
Solution.
[ABAB]" = (AB)T(AB)T
=BTATBTAT (6)
— BABA

713 672

Using the same counterexample from (b), we get ABAB = [92 4 881

E;g g;ﬂ . It is found that ABAB # BABA, hence the statement is wrong. [
(d) ABA.
Solution.
[ABA]" = (A)T(AB)T
= ATBTAT
= ABA

The statement is true. O

}, and BABA =



Problem 3. A square matriz A is called right stochastic if the elements in each row have a
unit sum. That is, a given n X n matriz A is right stochastic if

n
E aij = 1,
Jj=1

, for each 1 <1 <n. Suppose A and B are n X n right stochastic matrices. Show that AB
18 Tight stochastic.

Solution. Assuming both A and B are right stochastic, by expanding AB we get
[ 15t term ond erm nth term 7
7 Y 7 -\ Y 7 -\

911511 + ai2bio + ... + a1pbipn,  a11bor + .. 4 aipboy, a11bp1 + ...+ alnbn’@
"
15t row
15t term 2nd term nth term
—— — —
n n n
E az;by;, E azibaj, E a2;bn;
Jj=1 Jj=1 Jj=1
~ S/
2nd row
15% term 2nd term nth term
n n n
E aijbij, g aijbaj, E ijbn;
j:l ]:1 j:l
A ~ 7
ith row
15 term 2nd term nth term
—_— —Ne | P
n n n
g anjblja E anjb2ja § anjbnj
j=1 j=1 j=1
N ~~ S
| nth row

Since both A and B are right stochastic, we know > 7  a;; = 1 and 37 by = 1,

(8)

therefore Z;;l Z?Zl aiibij = (@i + aip+ ... + aij) (ba + big + ... +b;;) = L. Hence AB is

right stochastic. [

~
=1

~
=1



Problem 4. Consider the system of equations Ax = b, with

1 111 10
1 0 2 3 17
A=\ 3 44 5 adb=] 4
A+€¢ 5 4 5 46 + €

(a) Show that if € # 0, the correct solution is 1 = 1, 22 = 2, 23 = 3, and 24 = 4. In
addition, show that if € = 0, the vector z* = [1 2 3 4]T is still a solution (but not the
only one). Find a linear relationship between the rows of A in this case.

Solution. We can first solve for by doing the inverse of A:

1 2 —3 1
P —(e+1) —<t <2 ] ©)
e| 6e—1 gt BEU g
—(4e—1) 2 25
we then get:
r=A"1b

L [43(e +3) — 37(e + 1)] — (e +46) (10)
- D6e—1)—B(e—1) — L(e+46)

23(2e — 3) — 10(4e — 1) + 1T + L(e + 46)

=W N =

Le + 46) — 146 ]

If € = 0, substitute it back to Eq. (10) we can still get x = . Hence, z = x* is still

1
2
3
4
one of the solutions.

However, when ¢ = 0 the equation to be solved becomes

111 17 [= 10
—1 0 2 3| |z| |17
3 4 4 5| |zs| |43 (11)
4 5 4 5| |y 46

in which the rank of the matrix A® is 3, indicating that the system is underdetermined,
where the system possesses an infinite set of solutions.

We may further identify a linear relationship between the rows of A. Assuming the
first three rows possess constants «, 3, v, and the linear combination of the first three
rows is the fourth row. We can then obtain a new linear system to be solved:

1 —1 3 4
1 0 4 5
1o 4l [P = s (12)
1 3 5|7 5

Lobtained using MATLAB rank



We can then solve to get a = —2, § = —1, v = 3. We can further contend that the
linear combination takes the form

+31 (13)

w N O
[ N
QU > O

O

Use MATLAB to solve the system for e = 107% and k& = 1,2, ...,15. Plot the error in
the numerical solution, given as the norm ||Zumerical — Zexact ||, and discuss the accuracy
of your results.

Solution. To solve this problem, I wrote the following MATLAB codes:
err = [];
for k=1:1:15

eps = 107 (k);

A =[1,1,1,1;-1,0,2,3;3,4,4,5;4+eps,5,4,5]

b = [10,17,43,46+eps]’

x = A\b;

x_bench = [1;2;3;4];

err_x = norm(x-x_bench);

err(k)=err_x;
end

By plotting the ||Zpumerical — Texact|| (named “Norm”) versus the k value, Fig. 1 is
plotted on a log scale for the norm.

,/r)
100 - o
7
@/0
e
5 /0'
107 o
g AL
-
o
)/
1010 /@---O/
o4
(/
O
o
109 ‘
0 5 k 10 15

Figure 1: Norm-k curve for comparing the numerical and analytical solutions.

One deduces that with an increasing k value, the norm increases exponentially (realized
by the “pseudo-linear” trend on the log scale). With an increasing k value, € decreases
in an exponential fashion, leading to the A matrix approximating the e = 0 scenario.
We already know that when ¢ = 0 matrix A is not fully ranked, leading to non-unique
solutions. This explains when k increases, one observes an increasing error in the
exponential fashion. [J



Problem 5. Consider 3 rectangular matrices

(a)

Ae ]Rmxn7 B € RnXk, C e kal

What is the computational cost of computing (AB)C?
Solution. The computational burden is

mxkx2n—1)+mxlx(2k—1) (14)
The computational complexity of this operation is then either O(mnk) or O(mlk),

which are both O(n®).00

What is the computational cost of computing A(BC')?
Solution. The computational burden is

nxix(2k—1)+mx1lx(2n—1) (15)

The computational complexity of this operation is then either O(mnk) or O(mlk),
which are both O(n*).0

Which method would you use to calculate the product of 3 matrices to minimize
the computational cost?

Solution.  One may realize the order of computational complexity for the two
methods:

1. O((AB)C) = O (mnk) or O (mlk).
2. O(A(BC)) = O (nlk) or O (mlin)

Among the dimensions m,n, [, & k, if the smallest value is

m : O(ABC),,, = O (nlk), I would pick the method A(BC).

n : O(ABC) .. = O (mlk), I would pick the method (AB)C.

l - O(ABC), ., = O (mnk), I would pick the method (AB)C.

k : O(ABC),,, = O (min), I would pick the method A(BC).
O



Problem 6. A closed economic model involves a society in which all the goods and services
produced by members of the society are consumed by those members. No goods or services
are imported from without and none are exported. Such a system involves N members, each
of whom produces goods or services and charges for their use. The problem is to determine
the prices each member should charge for their labor so that everyone breaks even after one
year. For simplicity, we assume each member produces one unit per year.

Consider a simple closed system limited to a farmer, a carpenter, and a weaver so that
N = 3. Let p; denote the farmer’s annual income (that is, the price she charges for her unit
of food), let ps denote the carpenter’s annual income, and let p3 denote the weaver’s. On
an annual basis, the farmer and the carpenter consume 35% each of the available food, while
the weaver consumes the remaining 30%. In addition, the carpenter uses 20% of the wood
products he makes, while the farmer uses 35%, and the weaver uses the remaining 45%. The
farmer uses 45% of the weaver’s clothing, the carpenter uses 30%, and the weaver himself
consumes the remaining 25%.

(a) Write down the break-even equations for the farmer, the carpenter, and the weaver.
Solution. We can first tabulate the consumption for farmer, carpenter, and weaver:

food [%] wood [%] clothing [%]
farmer 35 35 45
carpenter 35 20 30
weaver 30 45 25

We can then write out the equation sets for money balance for farmer, carpenter, and

weaver:
farmer :  0.65p; — 0.35py — 0.45p3 = 0
carpenter :  — 0.35p; + 0.8py — 0.3p3 =0 (16)
weaver :  — 0.3p; — 0.45p, + 0.75p3 = 0
O

(b) Express your system of break-even equations as a homogeneous matrix equation and
solve it using MATLAB to find the break-even prices p1, ps, ps.
Solution.
0.6 —0.35 —0.45]| [p: 0
We can then solve for the linear equation [—0.35 0.8 —03 | [p2| = |0]|. The
—-0.3 —0.45 0.75 D3 0
0.6586
solution for p is then [0.4993|2. O
0.5630

2found through using the MATLAB null() function.



ME300A HW 42
Hanfeng Zhai (hzhai@stanford.edu) October 21, 2023

Problem 1. Determine which of the following sets are vector spaces. If you think a set is a
vector space, prove it. If not, identify at least one vector space property that fails to hold.

Recall that to prove a set is a vector space, it is sufficient to show it is a subspace of a
known vector space.

NoteTy) this problem, I will consider the vectors symbolized as u, v, w'

in vector space V.

1. The set of all 2 x 2 matrices A = [a;;] with a;1 = —ag under standard matriz addition
and scalar multiplication.

Solution. The set is a vector space. To prove it is a subspace of a known vector space,
we recall the definition of a subspace:

e The zero vector is contained in the set V.
eutvelV.
eveR ceR —cvelR.

Assuming there are two matrices in the defined set, A7, A”f € V4. One may test the
definitions respectively.

0 0

0 0] € V4. It can be deduced that the first definition

e The zero matrix Ay = [

holds.
o A* = Al + Al — {ai G{Q} + {aﬁ a{é} _ {@{1+CLH a{1+ag Note
= =1 I | = |1 VY Y A E
o1 any a9 an ajp + Ay ayp — an
that for A* the defined property of the set also holds, i.e., aj; = —a3,. Hence, the
second definition holds.

I I
o At =cAl = [22}1 Cgclﬁ } . For the matrix Af, the vector set property preserves,
21 —Cay

le. aL = —CL;Q. Hence, the third definition holds.

Since the three definitions of a subspace to a known vector space hold, it is hence
proven that the A is a vector space.[]

2. The set of all 3x 3 upper triangular matrices under standard matrix addition and scalar
multiplication.

Solution. This set is a vector space. Recall the definitions of a subspace to a
known vector space from #1. We can first represent the set as M, where M =
mi1 My Mi3
0  mgs moz|. We hence test the definitions of the vector space based on the
0 0 mas
subspace definition:

Istand for the more precise presentation as @, ¥, W



e The zero matrix

o OO
o O O

0
0| agrees with the definition. Hence the first definition
0

holds.
I I I IT IT IT
myy My Mg myy My My
e The matrix addition M* = M!+ MT = | 0 ml, ml| +| 0 mil mil
0 0  mi, 0 0 mit
I II I II I II
My My Mg+ My Myz + M3
= 0 mby +mil mbs +mil| The new matrix M* also agrees with the
0 0 mis +mit
property of the upper triangular matrix. Hence definition 2 still holds.
cmiyyp Cmiz CMas
e For scalar multiplication, MT = ¢M = 0  c¢mas cmss|. The new matrix

0 0 Cmss
still preserves the property of the upper triangular matrix, therefore the third
definition of vector set still holds.

One can then conclude that the 3 x 3 upper triangular matrix preserves the properties
of being a subspace to a known vector space. [

3. The set of all 3 x 3 lower triangular matrices of the form

o = O
_ o O

1
a
b

under standard matriz addition and scalar multiplication.

Solution.  This is false. Considering the axiom Cu € V2. If C is a non-one value,
definition 1 is to be failed to hold:

1 00 C 00
Cu=Cla 1 0l =1]a C O
b ¢ 1 b ¢ C

which violates the axiom of the original set. A simple counterexample could be when

C=5:
5 0 0
Cu=|a 5 0
b ¢ b
Hence, this is not a vector space, as it fails to hold to the property of Cu € V', where
V' stands for the vector space. [

4. The set of all solutions to the linear system Ax = b, under standard vector addition
and scalar multiplication.

2where C stands for a random constant.



Solution. This is false. Assuming the matrix A is invertible, one can represent the
solution of the linear system as V : x = A~!b as the vector set. Now, consider the
definition used in #3:

¥ =Cx=CA '

According to the definition of a vector space, it should be obeyed that ' € V. However,
substituting x’ one gets:

Az’ = ACA™'b
=CAA™ D
=Cb# b, (when C # 1)
Hence, the axiom of Cu € V' is violated, this is not a vector space. [
. The set of all degree 2 polynomials under standard polynomial addition and scalar

multiplication.

Solution. The set can be represented in the form {ax? + bz + ¢ | € R}. We consider
the axiom of u + v € V. Assuming there are two vector sets written as:

iz + b+, ax+ b+, withz €R
If a1 = —as, meanwhile by # —by, the new system under addition will be
(b1 — bQ)[E + (Cl — CQ)

which violates the definition of the degree 2 polynomial, i.e., u+v ¢ V. What’s more,
if a; = —ay and by # —by, the new system is

C1 — Co

which is just a constant, also does not agree with the degree 2 polynomial, i.e., u+v ¢
V. Hence, this is not a vector space, from the previous two counterexamples.

O



Problem 2. 1. Show that the matrix
0 1
a=[i

has no LU decomposition by writing out the equations corresponding to

ln O Uy U2
A=
{121 l22:| { 0 U22] ’
and showing that the system has no solution.

Solution. One can first try to apply LU decomposition to the matrix A:

10 01
e[ e
By conducting row operations with multiplying factors, one tries to construct an up-
dated U as an upper triangular matrix. Assuming the multiplying factor is A:

10 0 1
L:[)\ 1]’ U:L 1—A]

It can be seen that us; = 1 is independent of the value of A\, hence on cannot construct
a upper triangular matrix for U, since the lower triangular part of U is a constant 1
independent of the row operation multiplier.

We can then proceed to further show the given system has no solution

lhn O Uyr U2
A=
|:l21 122} [ 0 g
_ liun liiura
lorurr  laruig + logugs
To establish A, the relation l1;u;; = 0 has to be satisfied. Hence one obtains either
l11 =0or Ui = 0.

If [1; = 0, then l;;u12 = 0 # 1, violating the original value in A. Hence, [;; = 0 is not
a solution to this linear system.

If uy; = 0, then ly1uy; = 0 # 1, violating the original value in A. Hence, u1; = 0 is not
a solution to this linear system.

Hence, A = b 0 jun has no solution. [J
lor oo 0 ug

2. Reverse the order of the rows of A and show that the resulting matriz does have an LU
decomposition.

Solution. After reversing the order, the new A is
11
=l

4



which is an upper triangular matrix. One can then further apply the LU decompostion:

=[] el

Since U is already an upper triangular matrix, it is intuitive that L = I establishes the

LU relationship.
10 11
L= {O 1} , U= {0 1]

and hence the given statement is proved.

One may also prove this statement in the way provided in #1:
Iy 0] furr wig
A=
[lﬂ 122} l 0w
_ liua liuge _ 11
loyurr  lorure + loguga | — |0 1

From ly;uq; = 0 we know that either Iy = 0 or uy; = 0. Since l;;uq; = 1, indicating
that uy; # 0, therefore it has to be satisfied that l5; = 0.

Based upon this, we can further establish the relationship:

lhiun =1
liiug =1
lagugy =1

It can be deduced that this system is solvable. One of the possible solutions is
l11 = lpo = U1 = U2 = ugp = 1

The statement is hence proved. [



Problem 3. We say an n x n matriz A is strictly diagonally dominant (SDD) if
jasdl > aiyl
J#
for eacht=1,... n.
Show that if A is SDD, it is also invertible.
Hint: Recall that A is invertible if and only if the linear system Ax = 0 has no non-trivial
solutions.

Solution.
Based on the hint, we can first write out a N-dimensional linear system:
A¥ =0
ai;p Q2 @iz ... Qin T
21 29 Qon i)
=0
Ap1  Ap2 Apn In

a1, + a9 + ... + A1nTy
2171 + A22%2 + ... + Q2T

=0
Ap1T1 + ApaZo + ... + Ay
S aia;)
j=1 Q1L
D i1 A2,T;
=1 W25:Lj
. =0
S
j=1 Anj Ly |

Since we already assumed A is SDD, and based on the definition [a;;| > > ., [a;;| it can
be deduced that it is required for a; # 0 to satisfy the SDD condition. The linear system
can be further written in the form

anTy + Yy a15T; 0
n|n#2

Ay + D 5 ag;x; 0
n|n#3

assrs + 31 agw | = |0
n—1

ApnTn + Zj:l Anjxj 0]

This will lead to .
a1 r1y = — Z A1
j=2

nin#2

A9y =— — E 25T j
j=1



n—1
ALy — — E Qpjdy
j=1

And further

n
§ : a1jl;
i=2
n|n#2

|| = Q25T

J=1

|a11x1| =

n—1

E :anjxj

Jj=1

|ann$n| -

Or in the simplified form:

|aiiz;| = Zaiﬂﬁj

i#]
Based on the definition of SDD, we can further derive that:

il > " layl = > a

i#] G

, 18

Hence, in order to satisfy |a;x;| = ‘Zi# aijxj‘ under the condition of |a;| > ‘Z#]‘ oy

to let xp = 0. In other words, the solution vector Z has to be

0
. 0
T =

0

Under this scenario, the linear system Az = 0 has non non-trivial solutions. Hence, if A is
SDD, it is also invertible. The statement is proven.

However, in this problem, based on the fact that |a;;| > >, [a;;| we already know
that the summation of the row? shall not be zero. So Equation (1) may not be fully needed
to complete the proof. Because based on the fact that row summation shall not be zero

anTy+ Y05, 0y, 0
nn#2

gy + D 51 g,

0
discerns that the solution to = | .| should be ¥ = 0. Hence, both

U + 30 A 0
ways complete the proof. [

3for any given row



Problem 4. 1. Compute an LU decomposition of the tridiagonal matriz A by hand, with

2 -1 0 O
-1 2 -1 0
A= o -1 2 -1
0O 0 -1 2
Now let b = [1 11 1]T and use your computed LU factors to solve the system

Az = b (by hand).
Given A, Computing the LU decomposition by hand one obtains the

Solution.
following steps:
1000 2 -1 0 0]
1 0 0 -1 2 -1 0
L= 1 0]’ U= 0o -1 2 -1
1 0 0 -1 ]
1000 2 -1 0 0]
-1/2 1 0 0 10 3/2 -1 0
— L= tolr Y=o 212
1 0 0 -1 ]
1 0 00 2 -1 0 0]
_|-12 1 00 10 3/2 -1 0
=L=10 1o YTlo o 43 1
1 0o 0 -1 2|
1 0 0 0 2 -1 0 0]
-2 1 0 O 10 3/2 -1 0
=L=1 09 o3 1 o YTlo o 43 <1
0 0 =3/4 1 0 0 0 5/4]
Verifying the results one may get:
2 -1 0 0
-1 2 -1 0
LU=1y 4 2 | =4
0O 0 -1 2
Using the LU factor to solve Az = b:
Ax =1b
1 0 0 012 -1 0 0 T 1
~1/2 1 0 0|0 3/2 =1 0] |z |1
0o -2/3 1 0|0 0 4/3 —1| |z3| |1
0 0 =3/4 1|0 0 0 5/4| |z4 1



Decomposing to Ly = b, one solves

1 0 0 0 [»n 1
—1/2 1 0 of [l |
0 —2/3 1 0| lys| |1
0 0 =3/4 1| |y 1
y1::1 y1::1
_1 =1 =3
N gyl + Y2 BN ECE
52 tys=1 Yz = 2
—3ystys=1 Ya =3
One can then solve for Uz = y:
2 -1 0 0 T 1
0 3/2 -1 0 zo|  |3/2
0 0 4/3 —1| |x3| | 2
0 O 0 5/4| x4 5/2
21’1 — Ty = 1 T = 2
B e — 3 -3
N ixz I3 2 N i)
§I3—$4:2 I3:3
%J]4: g ZE4:2
2
The solution vector & = g is obtained. [
2

2. Using MATLAB, implement the LU decomposition algorithm specialized for tridiagonal
matrices. Your code should be able to factor any tridiagonal matriz. Comment on how
the computational cost of your algorithm scales with the size of your matrizx.

Solution. 1 wrote the following MATLAB function to obtain the LU decomposition
for matrix A:

1 function [L,U] = hw2_q4(A)
>n = rank(A);
3 L=eye(n) ;U=A;
4 for i=2:n-1
for j=1:n-2
6 if i>]
7 L(i,3j)=U(i,j)/U0(i-1,3);

8 end

9 if i==j+1

10 U(i,j+1)= U(i,j+1) - (U(i,j)r*U(i-1,j+1)/U(i-1,3));
11 end

12 if isnan(L(i,j)) || isnan(U(i, j))

1: L(i,j) = 0;U(i,j) = 0;

14 end



end
end

L(n,n-1) = U(n,n-1)/U(n-1,n-1);

U(n,n) = U(n,n) - (L(n,n-1)/L(n-1,n-1)) * U(n-1,n);

for i=2:n
for j=1:n-1

To implement this function, I wrote the following codes:

hh

clear;clc

A=1[1-800; 2 -2-70; 073

[L_test,U_test] = hw2_q4(A);
errl = A-L_test*xU_test

Dot

clear;

A=1[92000; 35 -20 0;
[L_test,U_test] = hw2_q4(A);
err2 = A-L_test*xU_test

Dot

clear;

A =1[920000; 35 -200 0;

0; 00 00 3 2];
[L_test,U_test] = hw2_q4(A);
err3 = A-L_test*xU_test

if i>j
U(i,j)=0;
end
end
7 end
fprintf ("========================
end

_6;

0 2 8

0 2 8

-6 0;0 0 3 9

0 0 8

and the corresponding three errors are shown as:

errl =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
err2 =
1.0e-15 *
0 0
0 0
0 0
0 0
0 0

O O O O O

_7;

-6 0 0;0 0 3 9

O O O O O

0 001 5];

00015



1¢

21 err3 =

22

23 1.0e-15 x*

24

25 0 0 0 0 0 0
26 0 0 0 0 0 0
27 0 0 0 0 0 0
28 0 0 0 0 0 0
29 0 0 0 0.1110 0 0
30 0 0 0 0 0.4441 0

Indicating the algorithm works, with acceptable errors (< 1071%).

In my code implementation, I used two “for” loops to assign the updated values to
matrices L and U. Assume the dimension of the matrix is d. Hence, my algorithm
scales the square relationship to the matrix size, i.e. O(d?).* However, based on Prof.
Gerristen’s note, I realize this LU decomposition can also be achieved in just one for
loop, in that case, the computational complexity is O(d). Hence, my algorithm is
definitely not the most efficient way to conduct LU decomposition for a given A, but it
can achieve the objective with acceptable accuracy. In my algorithm implementation,
for example, when the matrix size increases from 4 to 5, the computational burden
increases scaling is approximately f—g.D

4because after expansion the lower-order terms of d can be ignored, hence the overall computational
complexity is still d.

11



Problem 5. We are interested in solving the 1D heat equation numerically. In 1D, the heat

equation has the form
d*T
pro (), for0 <z <1,
with x denoting the distance along a rod with constant thermal conductivity, T denoting the
temperature of the rod, and f denoting the distributed heat source.
Discretize the equation using the second-order central finite difference scheme on a uni-
form grid with spacing h = 1/N (see Section 1.7 in Prof. Gerritsen’s note for a derivation).
Consider the source term f(z) = —10sin (2%) and fiz the boundary conditions T(0) = 0
and T'(1) = 2.

1. Verify that

4 4
Texact(T) = <2 + —O )x + —O sin (—37m)
T

15 the exact solution to the heat equation with the given source term and boundary
conditions.

Solution. Solving the heat equation using the given source term and boundary con-

ditions, one has
T://f(x)dxdx

- // [—10 sin (3%1:)1 dudx
B / 20 3mx veld
= 5. ¢ | 5 c|ldx
40 . (3mx
= 9.2 sin N +cx
SUbstituting the boundary conditions 7°(0) = 0 and 7'(1) = 2, one has
_ﬁ +c= 2

—94
c +97r2

One hence obtain the analytical solution:

40 40 3
T(x)=(24 = |z + —sin ot
92

972

The solved T" matched with the exact solution T,..... The given relationship is hence
proved. [J

2. Use your specialized tridiagonal LU implementation from Problem 4 to obtain a numer-
ical approzimation for T; = T(jh), j =1,...,N — 1, for N = 10, 20,40, 80, 160. Plot
all your approximations together with the exact solution on the same set of axes. Com-
ment on the relationship between N and the approximation error | Thumerical — Lexact |-

12



Solution. Using the second-order central-difference scheme, we have
d*T () T =214+ T
da2 h?

Referring to section 1.7 in Prof. Gerritsen’s note, by plugging in the approximation,
one has
Tiv1 — 2T+ T, = W f;

Given the boundary conditions, 7(0) = 0 and 7'(1) = 2, one can reformulate the finite
difference approximation scheme into AT = ¢, where the matrix can be expanded as

[—2 1 ] 7] h2fy
1 -2 1 T, 2 f,
1 -2 1 T h2 £,
A= , T=| : ¢= :
-2 1 Tn-3 h? fn_s
1 -2 1 Ti_s B2 fy s
1 -2 1 TN_1 hsz_l -2

Using the LU decomposition obtained from Q4, we can rewrite the system into

Based on this simple formulation, we can write a MATLAB function to obtain the

Ty h%f,

2

LA il I
Ty h?fn-1—2

numerical solution 7 given different grid size N:

1 function [T_vec,

2 X
3 £
4 h

5 T_vec =
6 c_vec =
7 c_vec(end) =
s for i = 1

16 end

T_exact, error] = hw2_q5(N
0:1/(N-1) :1;%define grid
-10*sin ((3*pi*x)/2);%define source term
1/N;
ones (N,1);
h=2xf’;
c_vec(end) -2;
:N-1
for j = i:N-1
if i==j
A(i, j)=-2;
A(i,j+1)=1;
ACi+1,j)=1;
end
end

7 A(N,N)=-2;

15 [L,Ul=hw2_q4(A);

19 y_vec =
20 T_vec =

L\c_vec;
U\y_vec;’% numerically approximated

13
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Figure 1: Numerical approximation solutions comparison.

21 %% exact solution

20 T_exact = (2 + (40/(9%pi~2)))*x + ( 40/(9%pi~2) )*sin( (3xpi*x)/2 );
23 error = norm(T_vec-T_exact);

24 end

One obtains Figure 1 by plotting the numerically approximated solutions with the
exact solution. For a better understanding of the approximation error, we also plot the
norms || Thyemrical — Tezact|| in Figure 2, by recalling the MATLAB “norm()” function®.
It is observed that the norm decreases in an exponential fashion.

Theoretically, with more data points corresponding to the increasing grid number, one
may expect the cumulative L2 norm to increase as the evaluated data points increase.
But simultaneously the error between the exact solution and the approximations also
decreases. Figure 1 shows that the decreasing trend of the difference between the
approximation and the exact solution plays a dominant role for the L.2 norm whereas
the increasing data point effect is hence relatively low.

O

Swhich is the Euclidean norm, or also known as the L2 norm

14
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ME300A HW#3
Hanfeng Zhai (hzhai@stanford.edu) November 7, 2023

Problem 1. This problem explores issues that arise when computing the QR factorization
numerically. In lecture we explained how to use the Gram-Schmidt procedure to construct an
orthonormal basis of the column space of a given matrixz. The problem is that, in numerical
computations, the vectors produced by the Gram-Schmidt recipe gradually lose orthogonality.
See this for yourself!

(a)

1
2
3
4
5

6

8

9
10
11
12
13
14
15

16

1

P Set n =15 and use

Let M denote the n x n Hilbert matriz, with entries m;; =
the Gram-Schmidt procedure to find Q = [q1 -+ qu].

The theory tells us @ should be orthogonal so that QTQ = I. Test this by computing
norm(Q’ * Q - eye(15)). Report the norm you found and briefly comment on your
result: does this computation agree with the theory we discussed?

Note: The built-in gr function in MATLAB performs more sophisticated calculations,
so you will have to implement your own Gram-Schmidt routine.

Solution.

In this problem, I have two approaches that give me slightly different results. The
second one reports slightly more accurate QT (Q results but does not follow the standard
solution procedure. I will report both of them here.

For my first approach, I follow the standard textbook formula, containing codes as
follows

M = zeros (15, 15);
for i = 1:15
for j = 1:15
M(i, j) =1/ (1 + j - 1);

end
end
7 for j = 1:15
v = M(:,3);

for i = 1:j-1
R(i,j) = QC:,1)7*M(:,3);
v= v-R(i,j)*Q(:,1i);
end
R(j,j) = norm(v);
QC:,3)=v/R(j,]);
end
norm = norm(Q’ * Q - eye(15));

By using this code, the reported @ and QTQ are shown in the following figure.



Matrix Q Matrix Q7

Q
0.9 0.9
) 0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
- 0.1 0.1
0 0
5 10 15 10 15

It can be observed that the error starts to propagate after column 7, and the reported
QTQ is very inaccurate. In this case, the reported norm (norm = norm(Q’ * Q -
eye(15)))is 7.9351. And obviously, this does not agree with the theory we discussed.

5

Following this result, I was not satisfied with the accuracy. There is another approach
that does not follow the standard procedure: instead of using the MATLAB multi-
plication “*” I used the dot product “dot()”, and surprisingly the results improved
quite a bit! Hence I also report that approach here. My MATLAB codes write:

1 clc;clear;close all

2 M = zeros (15, 15);

3 for i = 1:15

4 for j = 1:15

5 M(i, §) =1/ (1 + 3 - 1);
6 end

7 end

9 Q = zeros (15, 15);
10 for i = 1:15
11 v = M(:, i);

12 for j = 1:1 - 1

13 v =v - QC, j) *x dot(QC:, j), v);
14 end

15 QC:, i) = v / norm(v); sum(QC:, i));
16 end

17 norm = norm(Q’ * Q - eye(15));

Using this code one can also plot the matrices for both M, @, and QT(Q, shown as
follows:



Matrix @Q Matrix Q7

Q
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0 0
5 10 15 10 15

It can be seen that this approach indeed improves the accuracy, even though it does
not follow the standard solution procedure. The calculated corresponding norm is
0.9961, indicating there are some system-related numerical errors involved during the
QR decomposition process, but it gives the generally accurate () matrix.

)

Iy

6

o

5

In short, the first method reported follows the standard QR decomposition, yet reports
a pretty high norm. The second method is more of a personal way to tweak for more
accurate results. Both methods are not accurate based on the evaluated norms. [

Householder matrices arose as a solution to this problem. The Householder reflection H,
is defined by

2 T
HU:[n—m'UU.

We now turn to studying some properties of H,. These will help us understand how to use
Householder reflections to develop a numerically stable QR factorization.

(b) Show that H, is symmetric and orthogonal.

Solution. In this problem, one needs to prove

HT = H,
HHT =1

One can begin with writing out H:

vTo
1
=1, — QU’UT?
vl
2
I, — ?UUT =H,
vl



The matrix H, is hence proved to be symmetric. To show they are orthogonal, we can
then expand H, H,:

I 4UUT +4UUTUUT
" vTo vTovTo (3)
vl 4ooT
=In =4+ T
vl vTw
voT vul
=1, —4— +4-—
vTo vTo

The matrix H, are hence probed to be orthogonal. []

(¢) Show that H,v = —v. Also show that if w is orthogonal to v, then H,w = w.

Solution. First, to show H,v = —v, we begin with expanding H,:

2
H,v = (In — ?UUT> v
v

2
= — mvav (4)
=v—20v

=—v

Now, take the assumption of w is orthogonal to v, we know that @' = 0. We can
further expand H,w = w:

2
Hyw = (In — 7UUT> w
vl

2
=w — ?vaw
Vv

Since we already know that o7 = @'% = 0. We further expand Eqn. 5:
Hyaow=w (6)
The statement is hence proved. [

(d) Now suppose u and w are vectors such that |u|| = ||w||. Show that Hy,_,u = w.

Hint: Write u = ((u — w) + (u + w)), show that (u — w)"(u+w) = 0, and consider
your previous results.



Solution. Based on the hint, we may begin with trying to prove
(u—w)"(u+w) =0

Since ||ul| = ||w]|, we may further expand the (u — w)T(u + w):

(u—w)"(u+w)=vu+uw—wu—ww

One may assume the contact angle v and w is 6. Hence:

u'w = ||ull||wl| cos 0

whu = |w]|||w]| cos @

We may substitute back to the previous equation, getting:

T T

ulutulw —whu—whw = |lufJull = |lwlll|w] + [Julll|w]| cos § — [Jw]]|u]| cos®

VvV TV
=0 =0

=0

This equation is hence proved.

Based on the results in (c), one has

Hy wu—w)=w-—u
H, wu—H,_,w=w-—u
H,_wyu=H, ,w+w—u
N——

expand

By expanding the marked term we have:

N e e R

wu'w — uww — wuTw + wwTw

=w—2
wu —uTw—wTu +wTw

T T T T

WU U — WU w—wau+waw—2(uu w — uw'w — wu'w + ww

T

(10)

(11)

w)

uwtu —ulw—whu +wTw

wu' (u+w) —ww' (u+w) — 2uu’w + 2uwTw

wTu —uTw—wlu+wTw
(wu' —ww")(u+w) + 2(uw’ — uu")w
wu —uTw—wTu+wTw

=0
A

wlu" —w")(u+w) +F2u(w’ —uw
(u —w)T(u—w)




Now, we may substitute Eqn. (12) back to Eqn. (11):
2u(w’ —uNw + (w —u)(u’ —w")(u—w)
H,_,w=
(v —w)T(u —w)

Quw" = 2uu)w + (wu" —ww" —vu" +uw")(u — w)

(v = w)T(u —w)

uw’ (w+u) —uu' (w+ u) + wu' (u—w) + ww' (w— u)

(u—w)"(u—w)
C (ww" =) (u+ w) + (wu” —ww")(u— w)
(u—w)"(u—w)

(13)

=0

A\

~ ™~

Cu(w—u) (u+w) fwlu —w) (u—w)

(= w)T(u—w)

=w
The statement is hence proved. [

Consider the matriz

2 3
A= |-2 4
1 5

Much like an elementary row matrix, H, can be used to zero out elements in a column
of A when v is chosen appropriately.

Let a; denote the first column of A. Find a vector v € R3 such that
Hyay = ||a1]| e1,

where e; = [1 0 O}T. Report v and also the product H,A.
Hint: Consider the result of part (d).

Solution. Taking the hint, since in (d) the vector is formulated as v = u — w. Here,
we take a similar approach by setting v = a; — ||a;|le;. To verify this, the equation
writes:

Hay—fjasfjer a1 = [lalex

2(ay — |larller)(ar — [laxlex)T

I, — ay = ||aille
" T Tl s — e 1 (14
;2 —laaflen)(af — flaallel) _ [laflex
" (o] = lladlle]) (a1 — [lar]ler) a1
By expanding the left-hand side one has:
2(ara] — arlarfle] — [laillera] + [lai]|*ere]) _ Mlailles
I — — T T 20T - (15)
ajar — aj [larfler — [larflej ar — [las[]Pefes a1
The equation is hence established. Therefore the vector v = a; — [|a;|le; satisfy the

condition. [



(f)

The result of (e) suggests how to compute QQ using Householder reflections: at the
kth step, choose vy appropriately to zero out the kth column of A below the diagonal.
Applying the corresponding Householder reflections successively, we obtain an upper
triangular matriz R:

H, ,---H,,A=R.

Thus we obtain A = QR by setting Q = H,, --- H,,_, since each reflection is symmetric
and orthogonal.

Implement this procedure in MATLAB. Obtain an orthonormal basis for the column
space of the Hilbert matrix M and report norm(Q’ * @ - eye(15)) in this case.

Solution. Given the provided instructions, we can write the new QR decomposition
for M (by setting the Hilbert matrix, i.e., MATLAB hilb(), from the instructions):

n = 15;
M = hilb(n);

Q = eye(n);

5 for k = 1:n-1

17

18

x = M(k:n, k);

v o= X;
v(l) = v(1) + sign(x(1)) * norm(x); % Choose appropriate v_k
v = v / norm(v);
H = eye(n);
H(k:n, k:n) = H(k:n, k:n) - 2 *x (v *x v’);
M = H % M;
Q =Q * H;

end

R = M;

norm . norm(Q’ * Q - eye(15));

Matrix @ Matrix QTQ

1 1
0.9 0.9

) 0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2

4 0.1 0.1
0 0

5 10 15 5 10 15

The reported norm(Q’ * Q - eye(15)) is 1.76 x 1071, It can be deduced from both
the error and the matrix visualization that QR decomposition using this method is
much more accurate than that of what I wrote in (a).

The reported () matrix (orthonormal basis) is

7



~

10

16

Columns 1 through 9

.7954
-0.0017
L3977
0.0511
.2651
-0.3141
.1989
0.5198
.1591
0.0830
.1326
-0.2967
.1136
-0.3355
.0994
-0.1631
.0884
0.0588
.0795
0.2276
.0723
0.2969
.0663
0.2566
.0612
0.1154
.0568
-0.1097
.0530
-0.3998

Columns 10 through 15

0.0000
.0011
0.0196
.1323
0.3966
.4602
.0776
0.3556
0.2195
.1676
.3404
.1386
0.2403
0.3653
.2792

0.5546

0.0004

-0.2187
-0.0165
=0.3111

0.1517

-0.3077
-0.4617

-0.2858
0.3566

-0.2618

0.3137

-0.2396

-0.0828

-0.2200

-0.3184

-0.2029
-0.2820
-0.1880
-0.0734
-0.1750
0.1615
-0.1636
0.3033
-0.1535
0.2778
-0.1446

0.0507

-0.1366

-0.3833

-0.0000
0.0002
-0.0054
0.0492
-0.2163
0.4651
-0.3698
-0.2028
0.3114
0.2644
-0.1724
-0.3546
0.0015
0.4372
-0.2077

0.

-0.

-0.

-0.

0

2297
-0.0001
6290
0.0046
3205
-0.0597
0918
0.2826
.0454
0.5090
.1263
0.1231
.1739
0.3840
.2017
0.1061
.2173
-0.2343
.2253
-0.3245
.2285
-0.1435
.2285
0.1497
.2265
0.3381
.2232
0.2234
.2191
-0.3410

.0000
.0000
.0012
.0147
.0882
.2878
.4896
.2952
.2549
.3097
.2439
.2809
.2866
.4263
.1388

-0.

0.

-0.

-0.

-0.

-0.

-0.

-0

0792

5333

2271

3926

3396

2297

1176

.0197

.0611

.1260

L1774

.2178

.2493

.2738

.2926

.0000
.0000
.0002
.0032
.0258
.1197
.3334
.5367
.3844
.1715
.5353
.2937
.0971
.1560
. 0449

.0242

.3040

.5476

.2201

.1129

L2787

.3139

L2717

.1898

.0916

.0097

.1072

.1974

L2787

.35611

.0000
.0000
.0001
.0017
.0128
.0528
.1229
.1393
.0119
.0852
.1649
.5970
.6684
.3460
.0706

.0067

.1364

.5031

.2673

.3963

.1933

.0501

.2186

.2898

L2762

.1994

.0799

.0656

.2246

.3884

.0000
.0000
.0000
.0002
.0027
.0204
.0944
.2786
.5330
.6434
.4324
.0672
.1226
.0899
.0200



Problem 2. (Spanning set, basis.) Consider the following vectors in R3:

(a)

1 0 3 4 0
=12, wvy=|1|, wv3= |5, wvi= 0|, and v5= |2
1 0 4 4 1

Is this a spanning set for R®? Why?

Solution. For this problem, we can construct a matrix containing the vector sets:

(16)

<<

|
O = W o
N O Ot =N
— o s O =

By conducting the Gaussian elimination (or using rref in MATLAB) one can obtain
its reduced echelon form:

v, = (17)

o O O
OO = O
o= O O

000
One can clearly observe from the reduced echelon form that the rank of the matrix is
3. Hence, it spans R3.0]
Prove that vy, . .., vs are linearly dependent. Reduce the list to a basis of R® by removing
redundant vectors.

Solution. 'To the prove the five vectors are linearly dependent, we may construct the

aq
&%)
a constant vector @ = | a3 | such that
Qly
a5
107 + o3 + azv3 + ayvy + azvs = 0 (18)
or in the matrix form
€31
1 0 3 4 0f |an
Va=0 =— 215 0 2| |ag| =0 (19)
1 0 4 4 1| |oy
(875

It can be seen that there are only three constraints yet five unknowns. Hence, there
will be infinitely amount of solutions exist. Therefore, the five vectors are linearly
dependent.



To reduce the list to R? basis, we can calculate the reduced echelon form of this
coefficient matrix:

100 4 -3
V,=1010 -8 3 (20)
001 0 1

It can be deduced from V, that only the first three column vectors are linearly inde-
pendent. Hence, the reduced list writes:

1

i)
[S2RNGN]

(21)

—_
(@)
B

O

Ezxpress one of the redundant vectors as a linear combination of the basis you found in
(b).

Solution. It can be identified that the fourth vector can be written as the linear
combination of the basis in the form of

1 0 3 4
al2| =8 |1 +0 5] = |0 (22)
1 0 4 4

10



Problem 3. (Column space, row space, null space.) Consider the following matriz A.

3 4 -1 156 12
2 2 4 =10 —-12
11 2 -5 3
-2 -3 3 =20 -18

A:

(a) Find the condition(s) on an arbitrary vector b such that AT = b has at least one

solution. Is the solution unique? Why?

Solution. We can first calculate the reduced echelon form of A:

10 9 —-350
01 -7 30 0
A=100 0 0 1
00 0 0 0

It can be observed that A is not fully ranked. Hence, in order for Ax = b to have at
least one solution, b has to lie in the column space of A. The solution is not unique,

since A is not full-ranked. There will be an infinite set of solutions.

Here, one also needs to identify the linear combination between the row spaces of A:

oay + aaay + asaz + agay = 0. One can then solve that

o = —2
ag =1
az =10
oy = 2

So the relationship for vector b is —2b; + by — 2by = 0 [

(b) Find the rank of A and provide a basis for the row space of A.

Solution. Based on the reduced echelon form given in (a), one knows the rank is 3.
From the reduced echelon form, we can also identify the basis for the row space as the

first three row-vectors:

3 2 1
4 2 1
Brow=12 |=1|,| 4 |,|2
15| [—=10] [-5
120 [-12 3

O

(¢) Find a basis for the null space of A. What is its dimension?

11



Solution. From the reduced echelon form, we can write out the null space (solutions
for AZ = 0)as the form of linear combinations of x;:
T+ 9.733 - 351‘4 =0
To — Trs+ 302y =0 (26)
Ty = 0

one further deduce:
T = 35%4 — 9£L‘3

(27)
Ty = 7.1’3 — 301’4
One can then write out the form of the basis by setting z3 — t and x4 — s:
r1 = —9t + 35s
Ty = 7t — 30s
Ty =S
Ty — 0
The basis can then be expanded in the form of
-9 [ 35
7 —30
11t+]| 0 [s (29)
0 1
0 | 0
Or in the form of a set _
-9 35
7 —30
Bnull - 1 5 0 <30)
0 1
0 0

where the vectors in the nullspace of A are linear combinations of the two vectors. [

Verify that every vector in N'(A) is orthogonal to every vector in row(A).

Solution. To verify this, we can begin with constructing two matrices, one consists of
the basis and the general form of their linear combinations (denoted as Ng), and the
other consists of the row vectors in A. Once the multiplication result is a zero matrix,
one can hence prove that all the vectors in N(A) are orthogonal to every vector in
row(A). One hence write out the two matrices N AT:

3 2 1 =2

—9 7 100]|4 2 1 -3 0000
35 30 010/|-1 4 2 3|=l0000 (31)
35s—9t Tt—30s t s O| |15 —10 —5 —20 0000

12 -12 3 —18

12



This verifies that every vector in N'(A) is orthogonal to every vector in row(A). One
can also verify it using MATLAB:

syms t s

bl
b2

[-9 710 0]°;
[35 -30 0 1 0]°;

5 B_null = [bl, b2, bl*t+b2x*xs];

N R CR

5 [0, O

A= [3 4 -1 15 12;...
2 2 4 -10 -12;...
112 -5 3;...

-2 -3 3 -20 -18];

A_row = A’;

B_null’*xA_row

and the corresponding output is
ans =

[0, 0, 0, O]

[O) o) O! o]
s O’ 0]

OJ

Find the dimension and basis for the column space of A.

Solution. Recall the reduced echelon form of A we find in (a):

10 9 =350
01 -7 30 O
Ar = 00 O 0 1 (32)
00 O 0 0
One can determine the basis for the column space of A:
3 4 12
2 2 —12
Bcol — 1 9 1 ) 3 (33)
—2 -3 —18

The dimension is then 3. O

13



Problem 4. (Properties of Determinants.)

(a)

Prove that the determinant of an orthogonal matrix is either +1 or —1.

Solution. One begins with defining an orthogonal matrix @), preserving the property:
Q'Q=QQ" = (34)
Using the property of determinants we have
det (QTQ) = det det
HQTQ) = e (@)t () .
det (I) = 1
One further writes:
[det (Q)]* =1 (36)
We can then conclude that
det (Q) = £1 (37)

The statement is hence proved. [

Suppose L is an n x n lower triangular matriz. Show that det(L) is the product of the
diagonal entries of L; that is, prove that

det(L) = 611 cee Enn

Solution. One way to prove this is to expand the terms in L:
6y, 0 0 .. 0]
by lyp O 0
L= | {3 U3 0 (38)
_gnl €n2 gnn_
By computing the determinant one has
det (L) = EH det <L22)
= 611 det <€22 det (ng))
= 611 det (fgz det (633 det (L44))) (39)
= éll det (ggg det (633 det (...gn_gn_g det (Ln—ln—l))))
= Ell det 622 det 633 det ...gn_gn_g gnilnil 0
g'rm—l Enn
By expanding the terms step by step, one can further deduce that
det (L) = ell£22-~£n—1n—1£nn (40)

The statement is hence proved. [

14



B 1
~ det(A)
Solution. Given the fact that

(c) Prove that det(A™1)

AAT =1 (41)

Using the property of determinants one have

det (A)det (A7) = det (AA™Y)

42
=det (I) = (42)
Hence, it can be easily seen that
det (A1) = ! (43)
~ det (A)
The statement is hence proved. [
(d) Let
1 -1 0
A=13 1 2
2 4 3
Compute det(A) and determine the number of solutions to Ax = 0.
Solution. Calculating the determinant one has
1 2 3 2
det (A) = 1’4 3’ —(—1)‘2 3‘ +0
=(3-8)+(9—-4) (44)
=—-5+4+5
=0

Since the determinant is zero, one deduces that there will be an infinite number of
solutions for Azx = 0. O

15



Problem 5. (Ohm’s Law.)
Suppose we have two nodes connected by a wire with resistance R, measured in ohms.
Ohm’s law states that the current I;;, measured in amperes, traveling from node i to node j

s
I — Vi-V;
‘ R
with V; and V; denoting the potential at nodes i and j, both measured in volts. Notice that
current is a signed quantity, which means it can be either positive or negative, so it indicates
the direction of flow. Consider the following circuit.

Iy I I5
AVAVAY, .

<

R6§ I3

(2\,".)

<>

NV .

I R Iy

Suppose we know the resistance in each of the 6 wires is R = 1 and that the potential at
node 1 1s some constant V;.

(a) Let I; denote the current at node i. Recalling Kirchoff’s principle, which states that
I; is the sum of all currents entering or leaving node i, express each I; as a linear
combination of the voltages V;.

Solution. One can first write out the matrix I:

0 Vi-Va Vi-Vs Vi-V4 0
Ry Ry Rg
Vo—V3 0 Vo—V3 0 0
ooy, oyl
= |G Bem o g Bl (15)
vicvi g vow ) vw
Rs R T,
I 0 0 0 =t 0 |
By substituting R = 1 one can then write out the forms for each row of I:
L=3Vi-V, = V3=V,
L=2Va =V1 = V3
L=3Vi—Va—Vi—Vj (46)
Iy=3Vy—-V3=Vi = Vj
Is=V5 -V,

16



(c)

V]

O

Set up a linear system from (a) as a single matriz equation. That is, find a matriz A

such that I = AV.

Solution. From (a), one can write out the coefficient matrix A:

3 -1 -1 -1 0
-1 2 -1 0 0

A=|-1 -1 3 -1 0 (47)
-1 0 -1 3 -1
0 0 0 -1 1

By multiplying the vector V one can verify that this coefficient matrix satisfy the
condtion

[= AV (48)
O

Show that the matriz you found in (b) is singular by computing its determinant. Then
find a basis for its nullspace. You may use MATLAB.

Solution. To show this matrix is singular, one can calculate the determinant of A in
MATLAB:

> A =3 -1 -1 -1 0; -1 2 -100; -1 -13-10; -10-13-1; 000
-1 1];

>> det (A)

ans =

0

To find a basis for its nullspace, one can also calculate the nullspace using MATLAB:
null (A)

3 ans =

L4472
L4472
L4472
L4472
L4472

SO O O O O

We then know that the nullspace is non-zero, and the basis can be written as the form

Bnull = (49>

—_ = = =

17



(d) Finally, describe the set of current vectors 1 for which the linear system you wrote
down in (b) is consistent. That is, find a condition on I for which your linear system
always has a solution.

Solution. By calculating the rank (rank(A)) we know the rank of A is 4. Hence, the
row vectors of A are linearly dependent. From (c) we already know the basis of the
nullspace as a “ones-vector”. Hence, we know that the linear combination of the row
vectors of A with a coefficient of 1 should be a zero vector, i.e. ffl +ff2 —i—A}—i—fﬁ—i—A} =
0.!

Based on this, in order for [ = AV to always have a solution, the vector I also needs
to satisfy the linear combination relationship:

L+L+L+1+1=0 (50)

1/1; denotes the row vectors of A

18



ME300A HW#4
Hanfeng Zhai (hzhai@stanford.edu) December 1, 2023

Problem 1. One of your friends has invented a new iterative scheme for solving the system
of equations AZ = b for real n X n matrices A. The scheme is given by

79D — (1 + pA)Z® — gb,  with § > 0. (1)
a) Show that if this scheme converges, it converges to the desired solution of the system
9 9 Y
of equations. In other words, your friend seems to be on to something.
Solution. One can rewrite the update scheme:
FEHD 720 — (1 4 gA)F® — gb — 7
= pAZ® — gb 2)
= B(AT® — 1)

Here, we assume that when k& — oo, the system converges to the correct solution. Since
the iteration scheme is proposed to solve the linear system Az = b, one can write out

lim (A7® —b) = 0 (3)

k—o0

Therefore, one knows

b (=) - (o (427

—00

= lim (A7) ) (4)
k—o0

Indicating the algorithm converges.

OJ
(b) Derive an equation for the error €% = #*) — #* where I* is the evact solution, for

each iteration step k.

Solution. We write:

=(k+1) b
a
i = (14 84) L7
—(k+1)
T + B
- =1+p4
We then have
e(k+1) ZHR) _ p*
o) pk—1) _
CFkED 4 p(AFED b (©)
o Fl=1) _ 2%
Az _ p

L+ 6 :Z.’(k—l) — *

1



(¢)

Since we know that z* is the exact solution, we know ¥* = A~1b. We can substitute
the relation back and get:

e(k+1) Apk-1) _§
e L +Bf(k;—1) _ A1
A (fUH) . A*ll?) (7)
=1+ =
Zk=1) — A-1p
=1+pA

Hence, we can write out the general form of e(®:

e®) = (I + pA)e*Y .
:<[+6A)ke(0) ( )
where e = 20 — z*,

If A is not guaranteed to be non-singular (or A~! is not guaranteed to exist), then the
general form of the error is

e® = (I + pA)Z*Y — (7 + b)

= (I + BATO — (7 + D)

which is the general form of the error. [J

(9)

Does the scheme work for non—singular matrices? Explain.
Solution. This iteration scheme does not necessarily work for all non-singular matrices.
Taking the previously derived expression for the error:

e®) = k=1 4 g A=)

The success of the iteration scheme for non-singular matrices depends on the choice of
the parameter § and the spectral radius of I + SA.

For the scheme to converge, the spectral radius of the iteration matrix p(I + SA) must
be less than 1. However, here there is no guarantee that the spectral radius will be
smaller than 1.

If one were to dig deeper into the convergence of this iteration scheme, one can write
out the norm (one may assume an L2 norm) for the error at k" from (k—1)" iteration:

€[]/ |1e¥H]| = (2 + BA)|| (11)

where its spectral radius writes:

1 00 0 a1y Q12 AT

010 ..0 21 Q929 ... Qop
p(I+BA)=p : +8 : (12)

0 00 1 An1  Gpo e. Upn



Problem 2. Many modern machine learning models rely on Deep Neural Networks (DNNs)
to fit complex functions defined by real-world data sets. In practice, thousands of weights
parametrize a DNN and we “train” a model by finding “optimal” values for the model pa-
rameters. The “optimal” parameter values are determined by minimizing the model error as

measured by a given loss function.

The following example will motivate the usefulness

Consider the following data set.

of neural networks in data fitting.

0D O 3 R R ) B R )
x5 |1 |1 |1 |1
o [t [t Jo |

The data in Table 2 represents a sample of m = 4 input-output pairs (z® ), k =
1,...,m, corresponding to the function f :{0,1}* — {0,1} defined by

f(e) = {(1)

Zf T1+ To + X3 18 Odd,

if x1 + xo + x3 1S even.

Each ™ belongs to R® and each yy is a scalar. The domain {0,1}3 of f is the subset of
vectors in R3 such that each component is either 0 or 1.

We would like to “learn” [ using the sample data in Table 2. In other words, we aim
to fit a model g, parametrized by some weights w, to the data in Table 2 by minimizing a
given loss function using gradient descent. Once we have trained our model g, we hope to
use optimal parameters w* to mimic f, so that

for z € {0,1}>.

g(x; @)

f(z)

(a) We begin by fitting a linear model. Let g : R> — R denote the function defined by

-
g(x;w) = wiry + waxs + wars = W' .

In this case, we package the model weights wq,ws, w3 in a single vector

w =

w1
w2
w3

We seek parameter values wq, wq, w3 minimizing the mean squared error J(w), defined

by

J(w)

2

1

m

m
k=1

3

S (g™ w) — )



(i) Compute V,,J(w), the gradient of J with respect to w.
Solution. One may begin with expanding all the terms in J(w):

1 2
J(w) = g |:<’w1.1'§1) + UJQ.I’S) + wga;él) — y1>

2
+ (w xg ) + ngé ) + nggf) — y2>

2
-+ <’w1x§ ) —+ UJQZ'% ) -+ nggs) — y3>

2

To compute the gradient of J(w), one computes the partial derivatives of J w.r.t.
wy, we and ws, respectively:

oJ 1 — dg(x®);
B LS (ola®sw) — ) )

8w1 aujl
k=1
aJ 1 — Dg(x®: w
oy 20 o) ) 4
k=1
0J 1 — Dg(x®: w
N s
k=1

By further derivation:

oJ ] —
21180 (sl vl )

ow; m pt

0J 1~ iy k) (k) (k)

= Z Ty (u} —+ Wk -+ Ww3xLs = — yk) (15)
owy m pt

0 1<~ %) (k) (k)

Jws m —

By reorganizing the terms we get the general formula of the gradient based on
the given form of J(w):

(k) (k)

+ W3T3 " — Yk

AyJ = % D e m2 wlmgk) —l—ng( )+7~U xgk) Yk (16)

(k)
Zk 1£L’1 wixy 4 Wals

m k k
% Y ey xé ) wlxg ) 4 WoTy

for the given input-output pairs (z*,y). O

(i) Use the data points (v®) ), k = 1,2,3,4, given in Table 2 and implement the
gradient descent method to find w minimizing the mean squared error J(w).

4



(iii)

Compute and report the optimal *.

Use a constant learning rate (step size) of 0.1 and perform at least 1500 iterations
of gradient descent. Initialize each model parameter as a uniformly distributed
random number in the interval (0,1). In MATLAB, you may initialize w using
w= rand (3, 1).

Include any relevant code.

Solution. Given the instructions, we use gradient descent with a constant learn-
ing rate of 0.1 for 1500 iterations.

The relevant codes are attached herein:

clear; clc

it

w = [wl; w2; w3];
x1_data = [0 O 1 1]°;
x2_data = [0 1 0 1]7;
x3_data = [1 1 1 1]°;

y_data = [0 1 1 0]’;
X = [x1_data,x2_data,x3_datal;

J = .b*xmse(X*xw, y_data);
dJ = [diff(J,wl);diff(J,w2);diff(J,w3)];
alpha = 0.1;

%h ii

i=1;

s w = rand (3, 1);
7 while i<=1500

dJw = subs(dJ,{wl,w2,w3},{w(l),w(2),w(3)});
dJw = round (dJw*1000) /1000;
w = w-alpha*xdJw;

i i+1;
end
0.0030
We obtain w* = [0.0030|. If we were to apply the solution scheme for 5000
0.4965
0.0028
iterations, we get w* = [0.0028 |, which is very similar to what we get for 1500
0.4968

iterations. [

In this case, since g is a linear model, we may solve for the optimal weights
analytically.
Obtain the optimal parameter values by solving the normal equations to verify the
correctness of your gradient descent implementation. Include any relevant code.
Solution.  Recall the normal equation for the least square method for a linear
system X = i

= (XTX) Xy (17)



(i)

One can solve it analytically by expanding the terms:

-1

00118(1)} 0011?
0= 0101101 010 11

1111111 11110
- 0

_1

10%00111 (18)
=0 1 =30 10 1]
I A NI A

[0

=10

1

L2

One can also generate the following MATLAB codes to compute the analytical
solution for w*:

hh o iii

X=[001; 01 1; 10 1; 1 1 1];

y = [0;1;1;0];

w_anal = inv(X’*X)*X’*y;
0

and obtain the corresponding solution w* = | 0 |. One then deduces that the
0.5

numerical solution obtained from gradient descent is accurate as it is close to the
analytical solution. [J

Use the optimal parameters w* obtained in (ii) to evaluate g(x™);w*).

Since we are fitting data sampled from the function f, we hope to obtain f(z™M)) =
0. However, you will find that our linear model is inadequate.

Solution.  Using the numerical linear model with the approximation results of
1500 iterations, we compute f(z™M):

f (33(1)) ~g ($(1); w*)
:w10+w20—|—w31
= 0.4965

(19)

Since we know that in the real data f (ac(l)) = 0. We therefore know that the
fitted data is inaccurate, and hence our linear model is inadequate. [

(b) We now consider a non-linear model g. We begin with a few definitions.

Let 0 : R — R denote the sigmoid function, defined by




Let h denote the so-called number of hidden units and let v : R" — R" denote the
vectorization of o, defined by

o(zn)
Let g : R? — R denote the fully connected two-layer feed-forward neural network defined
by
g(z;a,W) =0 (a'v(Wa)). (20)

This model is parametrized by the weights o, for j =1,... h, and w;;, fori =1,... h
and 7 = 1,2,3. Also known as a Multi-Layer Perceptron (MLP) head with a single
hidden layer, the network defined by g is illustrated in the Figure in case h = 4.

Input Layer € R? Hidden Layer € R* Output Layer € R’

In this case, it will be convenient to package the model parameters in a 1 X h row vector
OéT: [al Qg - Oéh}

and an h X 3 matriz
W11 Wiz W13
Wo1 W22 W23

W =
Wh1 Wh2 Wh3

We will fit g to the data in Table 2 using the loss function L(a™, W) defined by

m

L™, W) =" (g(a®;a™, W) — )"

k=1



We will use gradient descent to find optimal parameter values. In order to implement
the gradient descent method, it will be convenient to package the partial derivatives of
the loss function with respect to our model parameters into the two gradients

VoL(a", W) = [8—L {%L], and

Oaq

9L oL oL
ow11 Owi2 Ow1s

T
VWL(OZ 7W) = : : :
oL oL oL
Owp1  Owpz  Owps

Given these gradients, we will update our model parameters o™ and W™ at the nth
step of the gradient descent algorithm using

(@™ (™) = VoL ((o™)T, W), (21)

We now turn to computing these gradients.

(i) Begin by showing that o' (x) = o(x)(1 — o(x)).
Solution. To show the given expression, we begin with expanding the terms in
o'(z) (LHS):

d 1

T dzlte*

e x

Trer
1 e *

l4e® l4ew
1 1l+e -1

l+e® l+e=

B 1 ] 1
Cl4e® 14 e 2

which can be rearranged as the original form of the RHS:

o'(x)

o'(x) = o(x) (1 -o(x)) (23)

The statement is hence proved. [

(ii) Next, let y denote a given vector in R" and compute

0

o [o10™)] = 5 [l ++--+ )]

80@

for each j =1,... h.



Let ¢(z; W) : R® — R denote the output of the first layer of our neural network,

defined by the composition

¢(z; W) =v(We).

We will use the shorthand ¢ = ¢(z*)
of the h x 1 vector o) by qﬁ;k)

W), and as usual we denote the jth component

Solution. We may begin by expanding the general form of the LHS:
[ Y1
0 0
D, [o(a’y)] = e |7 a1 @z yf
| Yh
0 1
a 8aj 11+ e—(a1y1t+asya+...+arys)
0 1 1
Qo |1 + e Ximy v (24)
[ e~ Xhig ey ]
. ST a—
y e Z?’:1 XiYq
= ’ (1+e* POLE aiyi) ’
y e E‘zhzl aYq
" (1+e* PO az‘yi) ’
The general form can be written as
h
o - e~ 2j=19%Yj
—— lola'y)] =y; 25
da [ ] ’ <1 + e Z?—laz‘yi>2 (25)
Since we know from the previous proof that
- Zh:1 ;Y;j h
e J
n ;=0 (Z 06i3/z'> (26)
(1 + " 2im O‘i%‘) j=1
Hence, one can write out the general form of the partial derivative:
5 h
870@ [U(QT?/)] = ?/jU, (; 041'%’) (27)
It can be further expanded as
0
o [o(aTy)] = (aTy) (1= 0 (aTy)) y; (28)
j



(i1i) Use the chain rule to show that

oL

Oa;
J k=1

Solution. We may begin by writing out the general form of L:

2

L

I
NE

(g(a™;a™, W) — yi)

(e (W) -]

Using the chain rule, we can rewrite the loss function as

k=1

I
NE

i

1

oL _oLog
da; g da;

We may get some intuition by expanding the general form of g:

—

ezl

-k
1+e U(Wxg ))
Or simply
1
9= ,
14+ e_aT (Wx§k))

By computing the partial derivative of g one gets:

- j

T (k)
o9 —(-ne (=) (k)
(9aj N (1 +€faTo(Wx§.k)>)20- <Wll§' >

10

23" (90T, W) - 1) o (aTg) 6.

(29)

(30)

(31)

(32)

(33)



One can also expand the form of g—’;:

OL (30 (gx — uk)?)

dg G
=2 (g — ) (34)

1

e
Il

(g(a™;a™, W) — yi)

Il
s

b
Il

1

Applying the chain rule and concatenate the two terms one has:

oL _oLay
da; g da;
m (35)
=23 (g(a™;a”, W) —ge) o (aT6M) ¢
k=1

The statement is hence proved. [

Keeping (ii1) in mind, notice that the 1 x h gradient V,L(a™, W) can be written as the
vector-matrixz product

VoL@, W) =2((G—y")xv") @,
where § denotes the 1 x m row vector

G=[gW;a", W) - g(z™;aT, W),

v is an appropriately defined 1 x m row vector, and ® denotes the h x m matriz

® = [p(zV; W), ..., g™ W)
= [¢W, ..., oM.

Here % denotes the element-wise vector product, so that for any 1 x h row vectors a
and b, the product a xb is again a 1 X h row vector with

(a*b)j = (ljbj.

oL
8wi]- :

The calculation in part (ii) will serve as a motivating blueprint.

(iv) Nezt, use the chain rule to compute

Solution. Using the chain rule, we can write

OL  OLdg 99
ﬁwij n 89 8¢ 8wz~j

11



We first expand the last term 22

81[)1‘]' :
o w11 xgk)
Wi
o (37)
o ( _’U)H 1 x(k))
8¢ B | e wij_ h |
811)1']' - 8wij
Or in the general form:
¢ k k
uyy = (o) 38)

One can then deal with the second term in the chain rule expansion:

99 _ d[o (aTv(Wz))]
¢ 0lv(Waz))

|:1+e*0}rl’(wx) :|
Ov(Wz)] (39)
o (_aT)e—aT(l/(Wx))

(1+ e—aT(u(Wx))f
=a'o (—ole/ (Wxgk))>

The first term in the chain rule can be obtained by recalling the previous question:
oL - k
59 = 22 (g (xg )aT, W) — yk> (40)
k=1
By concatenating the three terms back into the chain rule we have
oL
(g <x§-k); al, W) — yk) ajo’ <—OzTV (Wx§k)>) o (w,-jxg-k)> x§k)

awzj
(o (s5077) =) (- ) o

)

k=1

)

i

1

(41)
Specifically for our case, with 4 hidden layers and 4 data sets with three fitting
parameters, the model can be written as:

oL 4 k : (k) (k) (k) k) (k)

(42)

0

12



(v)

(vi)

For ease of implementation, we write the hx 3 gradient Vy L(a™, W) as a matriz-
matrix product.

In particular, find h x m matrices S and P such that
VwL(a", W) =2(S+P)XT,
where X denotes the 3 x m matriz of data points:
X = [x(l) m(m)} )
Here S P denotes the element-wise product of S and P, so that
(5% P)ij = sijpij-
Hint: The matrix P can be expressed as an outer product.

Solution.

Given that Vy L(a™, W) can be written as a matrix-matrix product 2(Sx P)XT,
where S is an h X m matrix, P is an h X m matrix, X is a 3 X m matrix of the
data table.

Following our previous solution, recall g—L:
w

oL =
D =2 Z (g <$§k), OCT, W) — yk) Oé]'O'/ (—aTgég-k)) o’ <U)U.I'§k)) xgk) (43)
g k=1

From the hint, by observing the other terms one may see the “outer product”:
pij = @ Z(ka —y)o’ (Wz) (44)
k=1

where the multiplication between (g, — i) and o' (Wxz*)) are per element-wised.
Or one may also write out the general form for P:

P=a"((F- 7)o/ (WX)) (45)

where X stores all the #s: X = [V, 22, 3 74,
And the form for S:

S=0o (a0 (a'9)) (46)
Note that this is not the only way to construct S and P. [J
Implement the gradient descent method to fit your neural network g to the data
in Table 2.

Use h = 4 hidden units and perform at least 1500 iterations of gradient descent,
updating your model parameters at each step as described by (21). Initialize each
parameter by independently drawing a uniformly distributed random number in

13



the interval (0,1). In MATLAB, you may initialize your parameters using
alpha = rand(1, h); W= rand(h, 3);

Report optimal values for the model parameters. Report your fitted model’s output
for each data point in Table 2.

Include a convergence plot graphing the total loss as a function of iteration number,
and include all relevant code.

Solution.
Given the hints and previous derivations, I wrote the following codes:

clear;clc

x1_data = [0 0 1 1]°;
x2_data = [0 1 0 1]°;
5 x3_data = [1 1 1 1]°;

¢ y_data = [0 1 1 0]’;y = y_data;
7 X = [x1_data,x2_data,x3_data]’;

oh = 4; alpha = rand(l1, h); W = rand(h, 3);

10 %#Define helper functions

11 sigmoid = @(x) 1./(1 + exp(-x));

12 dsigmoid = @(s) s .*x (1 - s);

13 one_layer = Q@(X, W) sigmoid(W * X);

1« nn = Q@(X, alpha, W) one_layer (one_layer (X, W), alpha);
15 phi = @(i) sigmoid (W*X(:,i));

16 Phi = [phi(1),phi(2),phi(3),phi(4)];

17 %% NN iterations

19y = y_data;y = y’;

20 HY RN R e ")

21 for iter = 1:5000

22 g = nn(X, alpha, W);

23

24 phi = one_layer (X,W);

25 dL_dalpha = 2%(g - y) .* dsigmoid(g) * phi;
26

27 S = dsigmoid(one_layer (X,W));

28 P alpha’ * (g - y) .*x dsigmoid(g);

29 dL_dW = 2 x S.*PxX’;

30 fprintf ("kkkxkkkkkkkkxkkkkxk*k*xx") ; fprintf ("Iteration 7%d4d",
iter) ; fprintf ("#kskkkkxkkkkkkkkxkkkxkk\n")

32 W =W - dL_dW;
33 alpha = alpha - dL_dalpha;

36 Loss(iter) = mse(nn(X, alpha, W),y);
37 end
35 y_pred = nn(X, alpha, W);

And after 5000 iterations, we get the output (the prediction) as
1 >> y_pred

2
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3
1

5

y_pred =
0.0069 0.9892 0.9922 0.0092

The convergence plot is attached in the following figure (loss was plotted in the
log scale). It can be clearly observed that the loss decreases and converges to a very
low value (~ 107*). And the corresponding output 0.0069 0.9892 0.9922 0.0092
is very close to the given training datay = [0 1 1 0]7. Hence, the neural net-
work worked well to converge to the desired value.

100

1071

1072

Loss

1073

1074

10°°

0 1000 2000 3000 4000 5000
Iterations

Note also this is not the only way to make the NN work. If one were to strictly
stick with the hint, we may also construct two MATLAB functions “grad1()”,
“grad2()” as follows:

function dL_dW = gradl(X, y, alpha, W)
% Helper functions
sigmoid = @(X) 1./(1 + exp(-X));
dsigmoid = @(s) s .* (1 - s);
one_layer = @(X, W) sigmoid(W * X);

nn = @(X, alpha, W) one_layer (one_layer (X, W), alpha);
nn2 = Q@(alpha, Phi) one_layer (one_layer (Phi), alpha);
g = nn(X, alpha, W);
S dsigmoid (one_layer (X,W));
P = alpha’ * (g - y) .* dsigmoid(g);
dL_dW = 2 *x S.*xPx*xX’;

end

function dL_dalpha = grad2(Phi, y, alpha)
dsigmoid2 = @(s) s .*x (1 - s);
sigmoid = @(X) 1./(1 + exp(-X));
one_layer = @(X, W) sigmoid (W * X);
one_layer2 = Q@(Phi) sigmoid (Phi);

15



6 Phi_func = Q@(Phi) one_layer2(Phi);
7 nn2 = Q@(alpha, Phi) one_layer(sigmoid (Phi), alpha);

9 g = nn2(alpha, Phi);
10 dL_dalpha = 2*x(g - y) .* dsigmoid2(g) * Phi;
11 end

Surprisingly, using this method, for 5000 iterations, I got an extremely accurate
result:

1 >> y_pred
3 y_pred =

0.0000 1.0000 1.0000 0.0000

Using this method, the corresponding loss evolution is plotted as follows:

10°

1072

107

106

Loss

10-8

1071

107121

1074

L L L
0 1000 2000 3000 4000 5000
Iterations

One observes that the loss drops to ~ 1072, which is extremely small. So it is
found that using this “function-based” approach, the approximation accuracy has
been significantly improved.

Here, the loss is plotted using the MATLAB mse(-) function, which is not directly
using the loss L we defined in the instruction. One may also directly plot the
corresponding convergence of loss L as follows (this is a different attempt with a
different set of randomized initialization), which should show the same trend:
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(vii)

100F ]
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10710 L |

0 1000 2000 3000 4000 5000
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Both the “mse” loss and the defined L show the same converging trend. The
corresponding reported optimal weights W and « are

>> W
W =
5.0344 3.9085 -6.9991
-2.6231 2.1599 -0.8294
6.7636 7.3798 -3.0521
-3.2643 3.3287 2.3026
>> alpha
alpha =
-8.0477 5.2885 7.8228 =7.2177
UJ

Using the optimal parameter values obtained in (vi), evaluate your neural network
g(x; ", W) at the point Y = [0,0,1]T.

Report your model’s prediction and compare it with your result from part (a)(iv).
Solution.

Based on the given output I printed (from Method 1) from the last sub-question,
we know the corresponding evaluated y; is 0.0069, which is very close to 0. If
one uses the prediction from my reported second method, the prediction is y; =
0.0000, which indicates that with 4-digit precision the prediction is basically the
same as the training data. This result is significantly more accurate than the pure
linear model prediction from (a)(iv).

Here, we may have some additional discussions for the neural network implemen-
tation. Using the function approach (“gradi(-)” and “grad2(-)”), the numerical
accuracy is higher. If one directly computes the aa_v€/ and g—i in the same MATLAB
script, the numerical accuracy is reported lower. [

17



Implementation hints:

o Built-in functions in MATLAB are vectorized, which means, for instance, that the
MATLAB command exp (ones (4,2)) applies the exp function to each component
of the array ones (4,2).

o In MATLAB, you may perform component-wise array products and quotients by
prefizing the appropriate operator with a period. For instance, the command
v . * w computes the component-wise product of the arrays v and w.

o The following MATLAB code might be useful. Aside from the helper functions be-
low, all that s needed to implement gradient descent are methods gradl (X, y, alpha, W)
and grad2(Phi, y, alpha) that can evaluate the relevant derivatives. Fach of
these can be implemented with less than 7 lines of code!

1 AInitialize parameters
h = 4; alpha = rand(1, h); W = rand(h, 3);

3
4 JDefine helper functions
5 stgmoid = @(z) 1./(1 + ezp(-z));

7 dsigmoid = @(s) s .* (1 - s);
9 one_layer = @(X, W) sigmoid (W * X);

10

11 nn = @(X, alpha, W) one_layer(one_layer (X, W), alpha);

18



Problem 3. (a) Compute the eigenvalues and eigenvectors of the following matriz:

-1 3 1
A=1]-1 3 1
-3 3 3

Solution. We begin with calculating the eigenvalues:

det(A — \I) =

1-x 3 1
13-\ 1 |=0

—3 3 3-)\

-1 1 11| -1 3-2
(_1_”‘ 3 S—A‘_?"—S 3—)\‘+‘—3 3 | =Y

Expanding the equation one has
—(14+NB=N2+6(3-N)+3(1+)N)—-12=0

Solving the equation one gets

)\120
Ao =2
A3 =3

One can solve for the eigenvectors for the different eigenvalues respectively.

For A\ = 0, we have

-1 3 1| |wn
-1 3 1 |v2| =0
-3 3 3] |vs

We can then solve the systems of equations:

3U2_U1+U3:0

V1 = U3
3vg —v1 +v3 =0 —>{
31)2—3?)1"—3’03:0

One then get the first eigenvector:

Here, the normalized form of the eigenvector V; should be
1/v/2
0

1/v2

‘/1:

19
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For \y = 2, we have

-3 3 1 (%]
—1 1 1| |w| =0 (54)
-3 3 1| |vs

We can then solve the systems of equations:

3?]2-31)1—{-7)3 =0
U1 = U2
Vg —v1 +v3 =0 —){ (55)
Va =
3vy — 30 + v3 = 0 ’
One then get the second eigenvector:
1
Vo= |1 (56)
0

Here, the normalized form of the eigenvector V, should be

1/v/2
Vo= |1/v2 (57)
0

For A3 = 3, we have

—4 3 1 (%]
—1 0 1| || =0 (58)
-3 0 U3

We can then solve the systems of equations:

3?)2—41)1—’-1)3 =0
vy =10
vy — v =0 —>{1 ? (59)
U1 = U3
3?]2 — 31}1 =0
One then get the third eigenvector:
1
Va= 11 (60)
1

Here, the normalized form of the eigenvector Vy should be

1/v3
Va=|1/V3 (61)
1/V/3

The three eigenvalues A\;, As, A3, and three eigenvectors 171, 172, 17}, are then obtained.
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(b)

We may also represent them in the form of a spanning set, denoted as V:

1/v2] [1/v/2] [1/V3
V= 0 |,[1/v2],|1/V3 (62)
1/v2 0 1/V/3

O

Prove that if a symmetric matriz A has n distinct eigenvalues, then the corresponding
ergenvectors are orthogonal to each other.

Solution. Since we know that A is symmetric, and A has n distinct eigenvalues, it is
then known that one can apply the canonical decomposition for A':

A=YAY ! (63)

where A stores all the eigenvalues. We then know the matrix Y stores all the vectors.
Since it is known that by definition for the canonical decomposition, the columns in Y
are orthogonal. Hence the statement is proven.

One may also prove this statement without thinking about the canonical decompo-
sition. Let’s denote the symmetric matrix A with distinct eigenvalues as A and its
corresponding eigenvectors as vy, va, . . ., v, corresponding to eigenvalues Ay, Ao, ..., \,.

By definition, the eigenvalues and eigenvectors for A are given by:
Av; = N0 (64)

Now, let’s consider two distinct eigenvectors v; and ¥; corresponding to eigenvalues A,
and \; where ¢ # j. We want to prove that 7; and ¥; are orthogonal. In other words,
we want to show that o] v; = 0.

From the definition in Equation (64), we know that
(A= X\ =0 (65)

We can multiply Equation (65) by v

U1 AU, — U] A\t = 0 (66)

Since we know that AT is a symmetric matrix, we know:

67
(A5, — AT, = 0 (67)
Since we also know that (by definition) Av; = \;7;, Equation (67) can be further
written as

68

1

or in other words, the canonical decomposition exists
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(¢)

Since we already assumed that A has n distinct eigenvalues, we know that \; # A;, or
(Aj — Ai) # 0. Hence, the only way to establish Equation (68) is

7T =0 (69)
Hence, in this sense, we also proved that the eigenvectors of A have to be orthogonal

to each other. [

Suppose that P is any invertible n x n matriz. Show that A and P~*AP have the same
eigenvalues.

Solution.  Taking the previous assumption that A is symmetric and assume A has
canonical decomposition: A = YAY !, We may define that B = P~!AP. One can
then expand B in terms of the canonical decomposition of A:

B=P'YAY'P (70)
where A stores all the eigenvalues of A. One can further write this relation as
B=(P'Y)A(P YY) (71)

where we may define X = P~1Y, such that B = XAX 1.

Since vectors in Y are A’s eigenvectors, we know
(A=MNy; =0, €Y (72)

or further:
(A-—A)Y =0 (73)

Since A is a diagonal matrix, we know

AY = YA (74)
We can therefore rewrite Equation (73):

AY = YA (75)

From AY = Y A we can write:

PT'AY = PT'YA
— PT'APPT'Y = PT'YA

76
BP7'Y = P7'YA (76)
BX = XA
We therefore know X = P~1Y stores the eigenvector of B.
From (A — A)Y = 0 we know it is satisfied that
(PBPT'—A)Y =0 (77)
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(d)

Therefore, B and A share the same eigenvalues stored in matrix A, with eigenvectors
P~Y for B. But note that this is only a partial proof, as (1) we shall not assume A
is diagonalizable as it is not provided in the instructions, and (2) the diagonalizable A
case may not be able to generalize to all cases.

One may also prove this without using the canonical decomposition (or a more general
proof). From the definition, we may begin with

At; = N\, (78)
One can further write:
P AT = PTI\T; (79)
or can also be written in the form:
(PTA) T, = NP0, (80)

Here, we may define that P~'%; = ; (from this we also know that @; = Pw;). Equation
(80) can be further rewritten as

We may interpret this equation from the geometric perspective, where the projection
of matrix P~'AP on vector w; is the same as the scalar multiplication by \; on vector
w;. In other words, it writes:

(PT'AP — ) @ =0 (82)

where from this we know the vector ; is in the nullspace of matrix P~*AP. So j; is
an eigenvector of P~'AP. Therefore, if we write C' = P~'AP, the equation

(C = N\)w; =0 (83)

says that \; is the eigenvalue of C'. Hence, C' and A have the same eigenvalues. We
can then say P~'AP has the same eigenvalues as A. The statement is hence proved.

O

If D is a diagonal matriz, what are the eigenvalues of D?
Solution. The eigenvalues would be the diagonal elements of D.

One can expand the characteristic equation to see this:

det(D—A)=0
diy — M\ 0 0 0
0 dgg — )\2 0 0
— d3z — A3 =0
- (84)
d'rm - )\n
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We therefore know that

'/\1 = dll

/\2 - d22

A3 = d33 (85)
\/\n - dnn

So it is easy to see that the eigenvalues would be the diagonal elements, i.e., \; = d;.
OJ

Consider the differential equation

dx
— = Azx.
ar "

Show that if x(0) is an eigenvector of A with eigenvalue A, then
z(t) = eMx(0)

1s a solution to the differential equation.

Solution. We may begin the proof by substituting z(¢) = e*z(0) back to the ODE:

= o () -
‘;—f = \eMF(0) + e”%(to) = A%
Since x(0) is an eigenvector of A, we know
AZ(0) = A\Z(0) (87)
Substitute this back to Equation (86) one has
AeMT(0) + e’\t%(f) = AeMF(0) (88)
Since z(0) is not a function of time, we know %(to) = 0, therefore:
AeME(0) = AeMZ(0) (89)
The relationship is hence established. Hence, one knows that F(t) = eMZ(0) is a

solution to the given ODE.

The statement is hence proved. [
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ME300A HW#5
Hanfeng Zhai (hzhai@stanford.edu) December 9, 2023

Problem 1. (Population Dynamics.) There are many different manners through which we
can model population dynamics, but many of the models we use involve a system of ordinary
differential equations. Let’s start with a simple model.

dP;
— = —0.8P, +04P,
o 1+ 2
dP,
— = —-04P, 0.2F
o 1+ 2

We start with a linear model for population dynamics, where Py represents the population
of pandas (in thousands) and P, represents the population of bamboo caterpillars (in mil-
lions). The amount of bamboo eaten by pandas leads to them being heavy competitors within
themselves as well as bamboo caterpillars for food. Caterpillars support their own population
growth since they do not eat so much, but pandas will sometimes benefit from their population
growth as an alternative food source.

1. Write this linear system of differential equations as a matriz equation

dP

— = AP

dt ’
where P = [P BT Identify the set of values for which the populations will be
unchanging (i.e., fized points, where % = 0). What is the relationship between these

values and the matriz A?

Solution. One can rewrite this linear system as
{—0.8 0.4} lpl} _ [%} )
—04 02| | P &2
To find the fixed point, one needs to solve:
o ol [h] =[] @
Solving this linear system we have

2P1:P2 (3)

This indicates the general solution for the fixed point can be represented as

P= E} t, t= const. (4)

One can then substitute this back to the original matrix-vector multiplication and
obtain the solution. Hence, vector P is a basis of the nullspace for matrix A. [J
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2. Decouple (or diagonalize) A to write a general solution for P(t) with initial condition

]3(0) Is there a stable coexistence of a particular proportion of pandas and bamboo
caterpillars? In other words, what happens to Py(t) and Py(t) ast — oo ?

Hint: Recall that diagonalization allows us to express et as XeM X1
Solution. The general solution writes
P = ™ P(0)
= XeMXTLP(0)

. Pl T T At [T T ' [P(0)
Py T21 T22 T21  T22 PQ(O)
To obtain X and A, one can solve for the eigenvectors and eigenvalues of A. For A\; = 0,
one get the eigenvector

. 1

U1 = (6)
For \; = —g, one get the eigenvector

— _2—

Vg = _1_ (7)

One can then use the normalized eigenvectors as a vector set:

{51 %)

One can also write the eigenvalue matrix A:
0 0
= 5 Y
Based on A and X (from V), A® can be represented as
46_% 1 2 Ze_%
AWM — 3,, 3 3 3, (10)
275 2 4 _ &5
3 3 3 3
When t — oo, A® writes:
1{-1 2
; (O—
tlg&A 3 [—2 4] )

It can be observed that P;(t) and P»(t) agree with the general solution for the linear

system of % = Here, if one were to determine the stable coexistence, we can

ol
substitute the initial condition back to the equation:

AR

P, P, (0) (12)
4w | F1(0)
:Eﬁmw&@]
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_ 1 =1 2] [P(0)

3 (=2 4] |P(0)
Since under the stable coexistence, the population of pandas and bamboo caterpillars
should all be positive.

Hence, we can proceed with the equation

—P(0) +2P»(0) >0

L 2Py(0) > Py(0) (13)

Which is the condition for the stable coexistence to exist for the equation. To be more
precious (to answer the “in other words” in the instruction), both P;(¢) and P»(t) are
nonzero when t — oo with the given initial condition.

O

This linear model was helpful for the first approach to modeling competitive species. Still,
it would be nice if we could also model the effects of the limiting factor, the available bamboo.
We adapt our model to include a new variable, B, which represents the bamboo population
(in millions), and formulate a nonlinear system of equations. We generalize the previ-
ous equation to include nonlinearity with %2 = f(P). Note: we have normalized all
quantities so that reasonable populations should be O(1).

dP,

_dtl = —0.8P, +04P, + 0.1P,B
dP.

d_; = —0.4P, +0.2P, + 0.01P,B?
dB

S =1- 0.1P, — 0.3P, — 0.25B

1. Write your own Newton-Raphson method in MATLAB to identify a positive fixed point
(with elements all O(1)) for this system of equations and submit your code. Recall that
for a multi-dimensional system, Newton-Raphson will generalize from 1D to multiple
dimensions as:

Ft) = ) (7)™

where J(Z™) is the Jacobian evaluated at ¥ = ™. Note that J(Z™) will vary for
each iteration, but you can calculate a formula for the Jacobian. Rather than construct

the inverse of J(x@)), we can save time by solving the linear system at every iteration:
J(@M) () — 72y = — f(7)

Feel free to use MATLAB’s backslash \ operator to solve this linear system.

Solution. Based on the nonlinear system:

f_ﬁ

~ dP Lo

f:%% fa= %2 (14)
f_@
3T T4t



Py

with a solution vector ¥ = | P,| One can thence expand the terms for the Jacobian:
B
—-0.84+0.1B 0.4 0.1
J = —-0.4 0.2+ 0.01B8% 0.03P,B> (15)
—0.1 —-0.3 —0.25

One can further expand the provided iteration scheme:

—

J(f(n)) (Ag—g(n)) S (f(”))

Z(n+1) _g(n)
And the target solution can then be obtained via solving the linear system

(AF™) = —J7'f

(17)

Based on this simple formulation, one writes the following code, with a random initial

0.1
vector Ty as To = |0.1
0.1

x0 = [.1; .1; .11;
tolerance = 1e-10;
max_iter = 100;
iteration = 0;
while iteration < max_iter
f_x = system_equations (x0);

if norm(f_x) < tolerance
fixed_point = x0;
disp(’Converged toya,fixed point:’);
disp(fixed_point);
return;

end

J_x = jacobian_matrix (x0);

delta_x = J_x \ (-f_x);

x0 = x0 + delta_x;

iteration = iteration + 1;

end

With the corresponding functions write

function f_x = system_equations (x)
f_x = [
-0.8*x(1) + 0.4*x(2) + 0.1%x(1)*x(3);
-0.4%xx(1) + 0.2%x(2) + 0.01*xx(2)*x(3) "3;
1 - 0.1xx(1) - 0.3*x(2) - 0.25*xx(3)
15

end

and



i function J_x = jacobian_matrix(x)

2 J.x = [

3 -0.8 + 0.1*x(3), 0.4, 0.1*x(1);

4 -0.4, 0.2 + 0.01%*x(3)°3, 0.01*xx(2)*3*x(3) "2;
5 -0.1, -0.3, -0.25

6 1

7 end

And we get the converged solution from Newton-Raphson:

1 Converged to a fixed point:
2 1.6854
3 3.9836
4 -1.4544

However, one should notice that here there is a negative fixed-point scenario, which
should not be expected, considering we should not have a negative value of bam-
boo population. Hence, we can change the initial point and re-converge the iteration

1
scheme. If one were to pick the initial point of ¥y = |2|, we converge to the fixed
2
point:
. 0.9749
Py, = [1.5122 (18)
1.7954

which is in some sense correct. Because the bamboo population is positive (nonzero and
not negative), with coexisting panda and caterpillar populations positive. Note that

1
by testing a few other initial points verified the converged fixed point, e.g., vp = | 3],
2
5 1.2
170 = |1 ) 170 - 5 )
2 1
1
We can then verify the accuracy of the convergence. Taking the [2]| as the initial
2
point, we have
1 >> verify_fp = system_equations(fixed_point)
3 verify _fp =
4
5 1.0e-13 *
6
7 -0.8576
8 0.3132
9 0

indicating that the iteration indeed converges within the error tolerance. []



2.

Near the fixed point, we can approximate the behavior of the nonlinear system as some-
thing that looks like:

dpP .
— = J(Ps,) P

where J(Pyy) is the Jacobian evaluated at the fized point Pry. J(Ppy) is then a constant
coefficient matriz, meaning we have a linear system of differential equations. Our
situation is the same as the one we had in part (a), so we can decouple our system
near this fixed point.

Using MATLAB, identify the eigenvalues for this system. What do the real parts of
the eigenvalues imply about the stability of the fixed point for long times?

Solution. Using MATLAB, one can evaluate the Jacobian at the fixed point to get
J(Ppp):

>> J_fp = jacobian_matrix(fixed_point)
J_fp =

-0.6205 0.4000 0.0975

-0.4000 0.2579 0.1462

-0.1000 -0.3000 -0.2500

One can then get the eigenvector and eigenvalues of this coefficient matrix:

>> [v,d] = eig(J_£fp)

v =
-0.5109 + 0.00001 0.1677 + 0.27611 0.1677 - 0.27611
-0.1305 + 0.00001 0.2705 + 0.41991 0.2705 - 0.41991
-0.8497 + 0.0000i -0.8038 + 0.0000i -0.8038 + 0.00001

d =

-0.3562 + 0.00001 0.0000 + 0.00001 0.0000 + 0.00001
0.0000 .00001i -0.1282 + 0.19111i 0.0000 + 0.00001
0.0000 + 0.00001i 0.0000 + 0.00001i -0.1282 - 0.19111i

+
o
o
o

One can then get the real parts of the eigenvalues:

A = —0.3562
Ay = —0.1282 (19)
A3 = —0.1282

We observe that all the real parts of the eigenvalues are negative. Since limy_,o, e = 0,

implies the eigenvalues goes to zero. Hence, we can say this iteration scheme is stable.
OJ



Problem 2. (PageRank for Wikipedia.) In this question, we’ll have a closer look at the
PageRank algorithm. This algorithm famously invented for the Google search engine, is
based on the idea that the most important websites will have many important websites linking
to them. Here we will try applying the same algorithm to a data set of Wikipedia articles
and the links between them.

The PageRank algorithm can be formulated as a linear system:

¥=aPZ+ (1—a)v

where the vector ¥ describes the relative importance of a page, the “PageRank.” The PageR-
ank matriz P describes the linking structure between pages; in particular, P;; can be thought
of as the probability that page j links to page i when an outgoing link of 7 is taken at random.
In other words, each column of P represents a probability vector describing the probability of
transitioning from one page to all others. The vector U ascribes a base level of importance
to all pages, and « is a positive scalar parameter that determines the amount of importance
that propagates through links in the page network.

To simplify our problem, we will set « = 1, so we are left with an eigenvalue equation for
P,i.e. ¥ = Px. The data set for this problem is sampled from a snapshot of English-language
Wikipedia articles in 2023. Altogether the smaller data set we will work with contains the
linking relationships between 1P of the webpages of Wikipedia.

To start, we will use an example 6 node case, with graph as in Fig. 1 and corresponding
pagerank matriz:

o1
@5

®3 ~

6

o2

Figure 1: Directed graph for six webpages.

[0 0 025 0 0333 0]
05 0 025 0 0 05
0 05 0 05 0333 0
05 0 025 0 0 0
0 0 0 0 0 05
|0 05 025 05 0333 0

1. Write your own MATLAB function that implements the Power Method to determine
the largest eigenvalue and eigenvector of any given PageRank matriz and submit your

7



code. Using your favorite (nonzero) initial vector, apply it to the given PageRank
matriz associated with the graph. What is the PageRank vector?

Solution. Based on the given iteration scheme, one can write the following MATLAB
codes:

clc;clear

Dot
P=[00 .25 0 .333 0;...
.5 0 .25 0 0 .5;...

5 0O .50 .5 .333 0;...
6 .5 0 .25 0 0 0;...
7 0 00O0O0 .5;...
8 0 .5 .25 .5 .333 0];
9 hth

10x_0=[1000 0]7;
11 [D,k] = powermeth (P)

With the function writes:

1 function [v,d,err] = powermeth (A)
2 k = 1; Y%initialize counter
[n, n] = size(A);
4 v = randn(n, 1); % initialize with a random vector
5 v = v / norm(v);
6 d = v’xA*xv;
7 tol = 1le-15;
8 max_iter = 10000;

9 while k<max_iter

11 v = A*xv / norm(A*xv) ;

12 d_new = v’*xA*xv;

13 err(k) = norm(d_new - d)/norm(d);
14 if (norm(d_new - d)/norm(d) < tol)
15 v = v / norm(v);

16 d = d_new;

17 break

18 end

19 d = d_new;

20 k = k+1;

1
22 end
3 end

In this implementation, my “favorite” initial vector is a randomized 1 x 6 vector:

[ 0.1001 ] [0.2134]
—0.5445 0.5142
- | 0.3035 : . .o 10.4656 .
To= | _g6003|" and the iteration returned PageRank vector is v = 09931 |- Since
0.4900 0.2911
0.7394 0.5821

the initial vectors are randomized each time, the algorithms converge to the same
vector, verifying the correctness of the algorithm. [J



2. For your Power Method function, plot the error norm against the iteration number on
a semilogy plot.
Recall that the rate of convergence of the Power Method algorithm scales as |Ay/A
where k is the iteration. Based on the slope of your error norm, what do you expect the
magnitude of the next largest eigenvalue to be? Compare your prediction to the actual
second largest eigenvalue in the magnitude of P using the eig function.

",

Solution.

By plotting using the “semilogy” we get the following figure:

100 -

107° 1
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10754

The curve fitting procedure is shown as follows:
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Based on the curve fit, one can solve this equation using a few lines of code:

syms lam2

1

2 eqn = abs(lam2/1) "2 == 0.41;

3 soln = solve(eqn, lam2); round(soln,3)
and obtain



ans =
0.64

Using the eig function, one obtains the magnitude of the second largest eigenvalues of
P is 0.6624. It can then be deduced that our solution is 0.64 and the actual value is
0.6624, which is pretty close. The difference (~ 0.0224) is likely to be caused by the

numerical precision of the computer. [

We have provided two files, a sparse PageRank matrix for 100,000 articles in Pagerank
_Transtition.mat and the names that correspond to each page in Wikipedia_Article
_Names.mat. Use your algorithm to calculate the PageRank vector, and provide us
with the top 10 Wikipedia articles and their corresponding PageRanks. Hint: Use both
return values from the sort algorithm to retrieve both large values and corresponding
indices.

Solution. Using the provided data file, we use the power method and use the following
codes:

1 clc;clear

load(’Wikipedia_Article_Names.mat’);

3 load (’Pagerank_Transition.mat’);

4 [v_trans,d_trans,err_trans] = powermeth(Transition_Probability_Matrix
);

[sorted_ranks, indices] = sort(v_trans, ’descend’);

6 top_10_indices = indices (1:10) ;

top_10_names = Article_Names (top_10_indices);

s top_10_ranks sorted_ranks (1:10) ;

V)

~

The obtained top 10 articles are

1 >> top_10_names’
2

3 ans =

4

5 10x1 cell array

7 {’World War II’

8 {’United States”’

9 {’Latin’

10 {’Catholic ,Church’
11 {’United Kingdom’
12 {’World War, I’

13 {’India’

14 {’France’

15 {’China’

16 {’Soviet Union’

s L = = B A S BT S SR

Their corresponding PageRanks are

1 >> top_10_ranks

2

3 top_10_ranks =

10



.1905
.1669
.1411
.1136
.1123
.1100
.0908
.0907
.0893
.0814

O OO OO OO O oo

OJ
4. Once again, plot the error morm against the iteration number to get a look at the
convergence rate.

Solution. By plotting the convergence plot with semilogy method we generate the
following figure:

10°

10° 1
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1070}

10715 |
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Using a similar approach, one can also calculate the convergence rate by fitting the
curve shown in the following figure. It can also be observed that in my implementation
there are some “fluctuations” in the converging process. I attribute this “convergence
fluctuation” to the numerical error caused by MATLAB.

Based on the set tolerance for this problem 107'°, the power method converge to this
tolerance after ~ 200 iterations.

O
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