
PERSONAL NOTES

Linear Algebra

Hanfeng Zhai

Disclaimer: These notes are intended solely for personal reference
and study purposes. They represent my own understanding of the
course material and may contain errors or inaccuracies. The content
presented here should not be considered as an authoritative source,
and reliance solely on these materials is not recommended. If you
notice any materials that potentially infringe upon the copyright of
others, please contact me at hz253@cornell.edu so that appropri-
ate action can be taken. Your feedback is greatly appreciated.

2023

ME300A HW#1
Hanfeng Zhai (hzhai@stanford.edu) October 7, 2023

Problem 1. Decide whether each of the following statements is true or false. If true, then

prove it; otherwise, provide a counterexample.

(a) If AB = I, then A = I.

Solution. Counterexample: B = A�1. ⇤

(b) If AB = 0, then A or B is a zero matrix.

Solution. Counterexample:

A =


a a
a a

�
, B =


b �b
�b b

�
(1)

where a and b are non-zero scalars. ⇤

(c) If AB and BA are defined, then both A and B must be square.

Solution. Counterexample: A is a 2 ⇥ 3 matrix, and B is a 3 ⇥ 2 matrix. More
generally, A is a m⇥ n matrix, and B is a n⇥m matrix. ⇤

(d) If AB and BA are defined, then both AB and BA are necessarily square.

Solution. Assume A is a m ⇥ n matrix, and B is a n ⇥ m matrix. Since both AB
and BA are defined, assume AB = A, and BA = B, then A has dimension n ⇥ n,
and B has dimension m⇥m. Assume A and B can be generalized to two second-order
tensors, using indicial notation:

AijBji = Aii, i 2 [1,m], j 2 [i, n]

BjiAij = Bjj, i 2 [1,m], j 2 [i, n]
(2)

Hence, both AB and BA are necessarily square. ⇤

(e) If A is invertible, then (A�1)T = (AT)�1.

Solution. If A is invertible, then (A�1)T =
�
AT

��1
. We further get (A�1)T AT = I,

then we finally get: �
A�1A

�T
= I (3)

then the relation (A�1)T = (AT)�1 is established. ⇤

1

Problem 2. Suppose A and B are n⇥n symmetric matrices; that is, A = AT
and B = BT

.

Decide whether each of the following matrices is symmetric. If it is, prove it; otherwise,

provide a counterexample.

(a) A2
� B2.

Solution.

(A2
� B2)T = ((AA)� (BB))T

= (AA)T � (BB)T

= ATAT
� BTBT

= (AA)� (BB)

= A2
� B2

(4)

⇤

(b) (A+B)(A� B).
Solution.

[(A+B)(A� B)]T = (A� B)T(A+B)T

= (AT
� BT)(AT +BT)

= (A� B)(A+B)

(5)

A counterexample would be A =


2 1
1 3

�
, B =


7 5
5 6

�
, then (A � B)(A + B) =


�69 �66
�54 �51

�
, and (A + B)(A � B) =


�69 �54
�66 �51

�
, where (A � B)(A + B) 6= (A +

B)(A� B). ⇤

(c) ABAB.
Solution.

[ABAB]T = (AB)T(AB)T

= BTATBTAT

= BABA

(6)

Using the same counterexample from (b), we get ABAB =


713 672
924 881

�
, and BABA =


713 924
672 881

�
. It is found that ABAB 6= BABA, hence the statement is wrong. ⇤

(d) ABA.
Solution.

[ABA]T = (A)T(AB)T

= ATBTAT

= ABA

(7)

The statement is true. ⇤

2

Problem 3. A square matrix A is called right stochastic if the elements in each row have a

unit sum. That is, a given n⇥ n matrix A is right stochastic if

nX

j=1

aij = 1,

, for each 1  i  n. Suppose A and B are n ⇥ n right stochastic matrices. Show that AB
is right stochastic.

Solution. Assuming both A and B are right stochastic, by expanding AB we get

AB =

2

664

1st termz }| {
a11b11 + a12b12 + ...+ a1nb1n,

2nd termz }| {
a11b21 + ...+ a1nb2n,

nth termz }| {
a11bn1 + ...+ a1nbnn| {z }

1st row
1st termz }| {
nX

j=1

a2jb1j,

2nd termz }| {
nX

j=1

a2jb2j,

nth termz }| {
nX

j=1

a2jbnj

| {z }
2nd row

...

1st termz }| {
nX

j=1

aijb1j,

2nd termz }| {
nX

j=1

aijb2j,

nth termz }| {
nX

j=1

aijbnj

| {z }
ith row

...

1st termz }| {
nX

j=1

anjb1j,

2nd termz }| {
nX

j=1

anjb2j,

nth termz }| {
nX

j=1

anjbnj

| {z }
nth row

3

775

(8)
Since both A and B are right stochastic, we know

Pn
j=1 aij = 1 and

Pn
j=1 bij = 1,

therefore
Pn

j=1

Pn
j=1 aijbij = (ai1 + ai2 + ...+ aij)| {z }

⌘1

(bi1 + bi2 + ...+ bij)| {z }
⌘1

= 1. Hence AB is

right stochastic. ⇤

3

Problem 4. Consider the system of equations Ax = b, with

A =

2

664

1 1 1 1
�1 0 2 3
3 4 4 5

4 + ✏ 5 4 5

3

775 , and b =

2

664

10
17
43

46 + ✏

3

775

(a) Show that if ✏ 6= 0, the correct solution is x1 = 1, x2 = 2, x3 = 3, and x4 = 4. In
addition, show that if ✏ = 0, the vector x⇤ = [1 2 3 4]T is still a solution (but not the
only one). Find a linear relationship between the rows of A in this case.

Solution. We can first solve for x by doing the inverse of A:

A�1 =
1

✏

2

664

1 1
2 �

3
2 1

�(✏+ 1) �
✏+1
2

✏+3
2 �1

6✏� 1 ✏�1
2

�3(✏�1)
2 �1

�(4✏� 1) 1
2

2✏�3
2 1

3

775 (9)

we then get:

x = A�1b

=

2

664

1
✏ (✏+ 46)� 1

✏46
1
2✏ [43(✏+ 3)� 37(✏+ 1)]� 1

✏ (✏+ 46)
10
✏ (6✏� 1)� 56

✏ (✏� 1)� 1
✏ (✏+ 46)

43
2✏ (2✏� 3)� 10

✏ (4✏� 1) + 17
2✏ +

1
✏ (✏+ 46)

3

775 =

2

664

1
2
3
4

3

775
(10)

If ✏ = 0, substitute it back to Eq. (10) we can still get x =

2

664

1
2
3
4

3

775. Hence, x = x⇤ is still

one of the solutions.

However, when ✏ = 0 the equation to be solved becomes
2

664

1 1 1 1
�1 0 2 3
3 4 4 5
4 5 4 5

3

775

2

664

x1

x2

x3

x4

3

775 =

2

664

10
17
43
46

3

775 (11)

in which the rank of the matrix A1 is 3, indicating that the system is underdetermined,
where the system possesses an infinite set of solutions.

We may further identify a linear relationship between the rows of A. Assuming the
first three rows possess constants ↵, �, �, and the linear combination of the first three
rows is the fourth row. We can then obtain a new linear system to be solved:

2

664

1 �1 3
1 0 4
1 2 4
1 3 5

3

775

2

4
↵
�
�

3

5 =

2

664

4
5
4
5

3

775 (12)

1obtained using MATLAB rank

4

We can then solve to get ↵ = �2, � = �1, � = 3. We can further contend that the
linear combination takes the form

�2

2

664

1
1
1
1

3

775� 1

2

664

�1
0
2
3

3

775+ 31

2

664

3
4
4
5

3

775 =

2

664

4
5
4
5

3

775 (13)

⇤
(b) Use MATLAB to solve the system for ✏ = 10�k and k = 1, 2, ..., 15. Plot the error in

the numerical solution, given as the norm kxnumerical�xexactk, and discuss the accuracy
of your results.

Solution. To solve this problem, I wrote the following MATLAB codes:

err = [];
for k=1:1:15

eps = 10^(k);
A = [1,1,1,1;-1,0,2,3;3,4,4,5;4+eps ,5,4,5]
b = [10 ,17 ,43 ,46+ eps]’
x = A\b;
x_bench = [1;2;3;4];
err_x = norm(x-x_bench);
err(k)= err_x;

end

By plotting the kxnumerical � xexactk (named “Norm”) versus the k value, Fig. 1 is
plotted on a log scale for the norm.

Figure 1: Norm-k curve for comparing the numerical and analytical solutions.

One deduces that with an increasing k value, the norm increases exponentially (realized
by the “pseudo-linear” trend on the log scale). With an increasing k value, ✏ decreases
in an exponential fashion, leading to the A matrix approximating the ✏ = 0 scenario.
We already know that when ✏ = 0 matrix A is not fully ranked, leading to non-unique
solutions. This explains when k increases, one observes an increasing error in the
exponential fashion. ⇤

5

Problem 5. Consider 3 rectangular matrices

A 2 Rm⇥n, B 2 Rn⇥k, C 2 Rk⇥l

(a) What is the computational cost of computing (AB)C?
Solution. The computational burden is

m⇥ k ⇥ (2n� 1) +m⇥ l ⇥ (2k � 1) (14)

The computational complexity of this operation is then eitherO(mnk) orO(mlk),
which are both O(n3).⇤

(b) What is the computational cost of computing A(BC)?
Solution. The computational burden is

n⇥ l ⇥ (2k � 1) +m⇥ l ⇥ (2n� 1) (15)

The computational complexity of this operation is then eitherO(mnk) orO(mlk),
which are both O(n3).⇤

(c) Which method would you use to calculate the product of 3 matrices to minimize
the computational cost?

Solution. One may realize the order of computational complexity for the two
methods:

1. O ((AB)C) = O (mnk) or O (mlk).

2. O (A(BC)) = O (nlk) or O (mln)

Among the dimensions m,n, l,& k, if the smallest value is

m : O (ABC)min = O (nlk), I would pick the method A(BC).

n : O (ABC)min = O (mlk), I would pick the method (AB)C.

l : O (ABC)min = O (mnk), I would pick the method (AB)C.

k : O (ABC)min = O (mln), I would pick the method A(BC).

⇤

6

Problem 6. A closed economic model involves a society in which all the goods and services

produced by members of the society are consumed by those members. No goods or services

are imported from without and none are exported. Such a system involves N members, each

of whom produces goods or services and charges for their use. The problem is to determine

the prices each member should charge for their labor so that everyone breaks even after one

year. For simplicity, we assume each member produces one unit per year.

Consider a simple closed system limited to a farmer, a carpenter, and a weaver so that

N = 3. Let p1 denote the farmer’s annual income (that is, the price she charges for her unit

of food), let p2 denote the carpenter’s annual income, and let p3 denote the weaver’s. On

an annual basis, the farmer and the carpenter consume 35% each of the available food, while

the weaver consumes the remaining 30%. In addition, the carpenter uses 20% of the wood

products he makes, while the farmer uses 35%, and the weaver uses the remaining 45%. The

farmer uses 45% of the weaver’s clothing, the carpenter uses 30%, and the weaver himself

consumes the remaining 25%.

(a) Write down the break-even equations for the farmer, the carpenter, and the weaver.
Solution. We can first tabulate the consumption for farmer, carpenter, and weaver:

food [%] wood [%] clothing [%]
farmer 35 35 45

carpenter 35 20 30
weaver 30 45 25

We can then write out the equation sets for money balance for farmer, carpenter, and
weaver:

farmer : 0.65p1 � 0.35p2 � 0.45p3 = 0

carpenter : � 0.35p1 + 0.8p2 � 0.3p3 = 0

weaver : � 0.3p1 � 0.45p2 + 0.75p3 = 0

(16)

⇤

(b) Express your system of break-even equations as a homogeneous matrix equation and
solve it using MATLAB to find the break-even prices p1, p2, p3.
Solution.

We can then solve for the linear equation

2

4
0.65 �0.35 �0.45
�0.35 0.8 �0.3
�0.3 �0.45 0.75

3

5

2

4
p1
p2
p3

3

5 =

2

4
0
0
0

3

5. The

solution for p is then

2

4
0.6586
0.4993
0.5630

3

52. ⇤

2found through using the MATLAB null() function.

7

ME300A HW#2
Hanfeng Zhai (hzhai@stanford.edu) October 21, 2023

Problem 1. Determine which of the following sets are vector spaces. If you think a set is a

vector space, prove it. If not, identify at least one vector space property that fails to hold.

Recall that to prove a set is a vector space, it is su�cient to show it is a subspace of a

known vector space.
NoteIn this problem, I will consider the vectors symbolized as u, v, w1 in vector space V .

1. The set of all 2⇥ 2 matrices A = [aij] with a11 = �a22 under standard matrix addition

and scalar multiplication.

Solution. The set is a vector space. To prove it is a subspace of a known vector space,
we recall the definition of a subspace:

• The zero vector is contained in the set V .

• u+ v 2 V .

• v 2 R, c 2 R ! cv 2 R.

Assuming there are two matrices in the defined set, AI , AII
2 VA. One may test the

definitions respectively.

• The zero matrix A0 =


0 0
0 0

�
2 VA. It can be deduced that the first definition

holds.

• A? = AI + AII =


aI11 aI12
aI21 �aI11

�
+


aII11 aII12
aII21 �aII11

�
=


aI11 + aII11 aI11 + aII12
aI11 + aII21 �aI11 � aII11

�
. Note

that for A? the defined property of the set also holds, i.e., a?11 = �a?22. Hence, the
second definition holds.

• A† = cAI =


caI11 caI12
caI21 �caI11

�
. For the matrix A†, the vector set property preserves,

i.e. a†11 = �a†22. Hence, the third definition holds.

Since the three definitions of a subspace to a known vector space hold, it is hence
proven that the A is a vector space.⇤

2. The set of all 3⇥3 upper triangular matrices under standard matrix addition and scalar

multiplication.

Solution. This set is a vector space. Recall the definitions of a subspace to a
known vector space from #1. We can first represent the set as M , where M =2

4
m11 m12 m13

0 m22 m23

0 0 m33

3

5. We hence test the definitions of the vector space based on the

subspace definition:

1stand for the more precise presentation as ~u, ~v, ~w

1

• The zero matrix

2

4
0 0 0
0 0 0
0 0 0

3

5 agrees with the definition. Hence the first definition

holds.

• The matrix addition M? = M I +M II =

2

4
mI

11 mI
12 mI

13

0 mI
22 mI

23

0 0 mI
33

3

5+

2

4
mII

11 mII
12 mII

13

0 mII
22 mII

23

0 0 mII
33

3

5

=

2

4
mI

11 +mII
11 mI

12 +mII
12 mI

13 +mII
13

0 mI
22 +mII

22 mI
23 +mII

23

0 0 mI
33 +mII

33

3

5 The new matrix M? also agrees with the

property of the upper triangular matrix. Hence definition 2 still holds.

• For scalar multiplication, M † = cM =

2

4
cm11 cm12 cm13

0 cm22 cm23

0 0 cm33

3

5. The new matrix

still preserves the property of the upper triangular matrix, therefore the third
definition of vector set still holds.

One can then conclude that the 3⇥ 3 upper triangular matrix preserves the properties
of being a subspace to a known vector space. ⇤

3. The set of all 3⇥ 3 lower triangular matrices of the form

2

4
1 0 0
a 1 0
b c 1

3

5

under standard matrix addition and scalar multiplication.

Solution. This is false. Considering the axiom Cu 2 V 2. If C is a non-one value,
definition 1 is to be failed to hold:

Cu = C

2

4
1 0 0
a 1 0
b c 1

3

5 =

2

4
C 0 0
a C 0
b c C

3

5

which violates the axiom of the original set. A simple counterexample could be when
C = 5:

Cu =

2

4
5 0 0
a 5 0
b c 5

3

5

Hence, this is not a vector space, as it fails to hold to the property of Cu 2 V , where
V stands for the vector space. ⇤

4. The set of all solutions to the linear system Ax = b, under standard vector addition

and scalar multiplication.

2where C stands for a random constant.

2

Solution. This is false. Assuming the matrix A is invertible, one can represent the
solution of the linear system as V : x = A�1b as the vector set. Now, consider the
definition used in #3:

x0 = Cx = CA�1b

According to the definition of a vector space, it should be obeyed that x0
2 V . However,

substituting x0 one gets:
Ax0 = ACA�1b

= CAA�1b

= Cb 6= b, (when C 6= 1)

Hence, the axiom of Cu 2 V is violated, this is not a vector space. ⇤

5. The set of all degree 2 polynomials under standard polynomial addition and scalar

multiplication.

Solution. The set can be represented in the form {ax2 + bx+ c | x 2 R}. We consider
the axiom of u+ v 2 V . Assuming there are two vector sets written as:

a1x
2 + b1x+ c1, a2x

2 + b2x+ c2, with x 2 R

If a1 = �a2, meanwhile b1 6= �b2, the new system under addition will be

(b1 � b2)x+ (c1 � c2)

which violates the definition of the degree 2 polynomial, i.e., u+ v /2 V . What’s more,
if a1 = �a2 and b1 6= �b2, the new system is

c1 � c2

which is just a constant, also does not agree with the degree 2 polynomial, i.e., u+ v /2
V . Hence, this is not a vector space, from the previous two counterexamples.

⇤

3

Problem 2. 1. Show that the matrix

A =


0 1
1 1

�

has no LU decomposition by writing out the equations corresponding to

A =


l11 0
l21 l22

� 
u11 u12

0 u22

�
,

and showing that the system has no solution.

Solution. One can first try to apply LU decomposition to the matrix A:

L =


1 0

1

�
, U =


0 1
1 1

�

By conducting row operations with multiplying factors, one tries to construct an up-
dated U as an upper triangular matrix. Assuming the multiplying factor is �:

L =


1 0
� 1

�
, U =


0 1
1 1� �

�

It can be seen that u21 = 1 is independent of the value of �, hence on cannot construct
a upper triangular matrix for U , since the lower triangular part of U is a constant 1
independent of the row operation multiplier.

We can then proceed to further show the given system has no solution

A =


l11 0
l21 l22

� 
u11 u12

0 u22

�

=


l11u11 l11u12

l21u11 l21u12 + l22u22

�

To establish A, the relation l11u11 = 0 has to be satisfied. Hence one obtains either
l11 = 0 or u11 = 0.

If l11 = 0, then l11u12 = 0 6= 1, violating the original value in A. Hence, l11 = 0 is not
a solution to this linear system.

If u11 = 0, then l21u11 = 0 6= 1, violating the original value in A. Hence, u11 = 0 is not
a solution to this linear system.

Hence, A =


l11 0
l21 l22

� 
u11 u12

0 u22

�
has no solution. ⇤

2. Reverse the order of the rows of A and show that the resulting matrix does have an LU

decomposition.

Solution. After reversing the order, the new A is

A =


1 1
0 1

�

4

which is an upper triangular matrix. One can then further apply the LU decompostion:

L =


1 0

1

�
, U =


1 1
0 1

�

Since U is already an upper triangular matrix, it is intuitive that L = I establishes the
LU relationship.

L =


1 0
0 1

�
, U =


1 1
0 1

�

and hence the given statement is proved.

One may also prove this statement in the way provided in #1:

A =


l11 0
l21 l22

� 
u11 u12

0 u22

�

=


l11u11 l11u12

l21u11 l21u12 + l22u22

�
⌘


1 1
0 1

�

From l21u11 = 0 we know that either l21 = 0 or u11 = 0. Since l11u11 = 1, indicating
that u11 6= 0, therefore it has to be satisfied that l21 = 0.

Based upon this, we can further establish the relationship:

l11u11 = 1

l11u12 = 1

l22u22 = 1

It can be deduced that this system is solvable. One of the possible solutions is

l11 = l22 = u11 = u12 = u22 = 1

The statement is hence proved. ⇤

5

Problem 3. We say an n⇥ n matrix A is strictly diagonally dominant (SDD) if

|ai,i| >
X

j 6=i

|ai,j|

for each i = 1, . . . , n.
Show that if A is SDD, it is also invertible.

Hint: Recall that A is invertible if and only if the linear system Ax = 0 has no non-trivial

solutions.

Solution.

Based on the hint, we can first write out a N -dimensional linear system:

A~x = 0
2

6664

a11 a12 a13 ... a1n
a21 a22 ... a2n

...
an1 an2 ... ann

3

7775

2

6664

x1

x2
...
xn

3

7775
= 0

2

6664

a11x1 + a12x2 + ...+ a1nxn

a21x1 + a22x2 + ...+ a2nxn
...

an1x1 + an2x2 + ...+ annxn

3

7775
= 0

2

6664

Pn
j=1 a1jxjPn
j=1 a2jxj

...Pn
j=1 anjxj

3

7775
= 0

Since we already assumed A is SDD, and based on the definition |ai,i| >
P

j 6=i |ai,j| it can
be deduced that it is required for aii 6= 0 to satisfy the SDD condition. The linear system
can be further written in the form

2

6666664

a11x1 +
Pn

j=2 a1jxj

a22x2 +
Pn|n 6=2

j=1 a2jxj

a33x3 +
Pn|n 6=3

j=1 a3jxj
...

annxn +
Pn�1

j=1 anjxj

3

7777775
=

2

666664

0
0
0
...
0

3

777775

This will lead to

a11x1 = �

nX

j=2

a1jxj

a22x2 = �

n|n 6=2X

j=1

a2jxj

...

6

annxn = �

n�1X

j=1

anjxj

And further

|a11x1| =

�����

nX

j=2

a1jxj

�����

|a22x2| =

������

n|n 6=2X

j=1

a2jxj

������

...

|annxn| =

�����

n�1X

j=1

anjxj

�����

(1)

Or in the simplified form:

|aiixi| =

�����
X

i 6=j

aijxj

�����

Based on the definition of SDD, we can further derive that:

|aii| >
X

i 6=j

|aij| �

�����
X

i 6=j

aij

�����

Hence, in order to satisfy |aiixi| =
���
P

i 6=j aijxj

��� under the condition of |aii| >
���
P

i 6=j aij
���, is

to let xk = 0. In other words, the solution vector ~x has to be

~x =

2

6664

0
0
...
0

3

7775

Under this scenario, the linear system Ax = 0 has non non-trivial solutions. Hence, if A is
SDD, it is also invertible. The statement is proven.

However, in this problem, based on the fact that |ai,i| >
P

j 6=i |ai,j| we already know
that the summation of the row3 shall not be zero. So Equation (1) may not be fully needed
to complete the proof. Because based on the fact that row summation shall not be zero

discerns that the solution to

2

6664

a11x1 +
Pn

j=2 a1jxj

a22x2 +
Pn|n 6=2

j=1 a2jxj
...

annxn +
Pn�1

j=1 anjxj

3

7775
=

2

6664

0
0
...
0

3

7775
should be ~x = 0. Hence, both

ways complete the proof. ⇤

3for any given row

7

Problem 4. 1. Compute an LU decomposition of the tridiagonal matrix A by hand, with

A =

2

664

2 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 2

3

775 .

Now let b =
⇥
1 1 1 1

⇤T
and use your computed LU factors to solve the system

Ax = b (by hand).

Solution. Given A, Computing the LU decomposition by hand one obtains the
following steps:

L =

2

664

1 0 0 0
1 0 0

1 0
1

3

775 , U =

2

664

2 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 2

3

775

=) L =

2

664

1 0 0 0
�1/2 1 0 0

1 0
1

3

775 , U =

2

664

2 �1 0 0
0 3/2 �1 0
0 �1 2 �1
0 0 �1 2

3

775

=) L =

2

664

1 0 0 0
�1/2 1 0 0
0 �2/3 1 0

1

3

775 , U =

2

664

2 �1 0 0
0 3/2 �1 0
0 0 4/3 �1
0 0 �1 2

3

775

=) L =

2

664

1 0 0 0
�1/2 1 0 0
0 �2/3 1 0
0 0 �3/4 1

3

775 , U =

2

664

2 �1 0 0
0 3/2 �1 0
0 0 4/3 �1
0 0 0 5/4

3

775

Verifying the results one may get:

LU =

2

664

2 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 2

3

775 = A

Using the LU factor to solve Ax = b:

Ax = b
2

664

1 0 0 0
�1/2 1 0 0
0 �2/3 1 0
0 0 �3/4 1

3

775

2

664

2 �1 0 0
0 3/2 �1 0
0 0 4/3 �1
0 0 0 5/4

3

775

2

664

x1

x2

x3

x4

3

775 =

2

664

1
1
1
1

3

775

8

Decomposing to Ly = b, one solves
2

664

1 0 0 0
�1/2 1 0 0
0 �2/3 1 0
0 0 �3/4 1

3

775

2

664

y1
y2
y3
y4

3

775 =

2

664

1
1
1
1

3

775

!

8
>>><

>>>:

y1 = 1

�
1
2y1 + y2 = 1

�
2
3y2 + y3 = 1

�
3
4y3 + y4 = 1

!

8
>>><

>>>:

y1 = 1

y2 =
3
2

y3 = 2

y4 =
5
2

One can then solve for Ux = y:
2

664

2 �1 0 0
0 3/2 �1 0
0 0 4/3 �1
0 0 0 5/4

3

775

2

664

x1

x2

x3

x4

3

775 =

2

664

1
3/2
2
5/2

3

775

!

8
>>><

>>>:

2x1 � x2 = 1
3
2x2 � x3 =

3
2

4
3x3 � x4 = 2
5
4x4 =

5
2

!

8
>>><

>>>:

x1 = 2

x2 = 3

x3 = 3

x4 = 2

The solution vector ~x =

2

664

2
3
3
2

3

775 is obtained. ⇤

2. Using MATLAB, implement the LU decomposition algorithm specialized for tridiagonal

matrices. Your code should be able to factor any tridiagonal matrix. Comment on how

the computational cost of your algorithm scales with the size of your matrix.

Solution. I wrote the following MATLAB function to obtain the LU decomposition
for matrix A:

1 function [L,U] = hw2_q4(A)
2 n = rank(A);
3 L=eye(n);U=A;
4 for i=2:n-1
5 for j=1:n-2
6 if i>j
7 L(i,j)=U(i,j)/U(i-1,j);
8 end
9 if i==j+1

10 U(i,j+1)= U(i,j+1) - (U(i,j)*U(i-1,j+1)/U(i-1,j));
11 end
12 if isnan(L(i,j)) || isnan(U(i,j))
13 L(i,j) = 0;U(i,j) = 0;
14 end

9

15 end
16 end
17

18 L(n,n-1) = U(n,n-1)/U(n-1,n-1);
19 U(n,n) = U(n,n) - (L(n,n-1)/L(n-1,n-1)) * U(n-1,n);
20

21 for i=2:n
22 for j=1:n-1
23 if i>j
24 U(i,j)=0;
25 end
26 end
27 end
28 fprintf ("========================")
29 end

To implement this function, I wrote the following codes:

1 %%
2 clear;clc
3 A = [1 -8 0 0; 2 -2 -7 0; 0 7 3 -6; 0 0 8 -7];
4 [L_test ,U_test] = hw2_q4(A);
5 err1 = A-L_test*U_test
6 %%
7 clear;
8 A = [9 2 0 0 0; 3 5 -2 0 0; 0 2 8 -6 0;0 0 3 9 -7; 0 0 0 1 5];
9 [L_test ,U_test] = hw2_q4(A);

10 err2 = A-L_test*U_test
11 %%
12 clear;
13 A = [9 2 0 0 0 0; 3 5 -2 0 0 0; 0 2 8 -6 0 0;0 0 3 9 -7 0; 0 0 0 1 5

0; 0 0 0 0 3 2];
14 [L_test ,U_test] = hw2_q4(A);
15 err3 = A-L_test*U_test

and the corresponding three errors are shown as:

1 ========================
2 err1 =
3

4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8

9 ========================
10 err2 =
11

12 1.0e-15 *
13

14 0 0 0 0 0
15 0 0 0 0 0
16 0 0 0 0 0
17 0 0 0 0 0
18 0 0 0 0.1110 0

10

19

20 ========================
21 err3 =
22

23 1.0e-15 *
24

25 0 0 0 0 0 0
26 0 0 0 0 0 0
27 0 0 0 0 0 0
28 0 0 0 0 0 0
29 0 0 0 0.1110 0 0
30 0 0 0 0 0.4441 0

Indicating the algorithm works, with acceptable errors (< 10�15).

In my code implementation, I used two “for” loops to assign the updated values to
matrices L and U . Assume the dimension of the matrix is d. Hence, my algorithm
scales the square relationship to the matrix size, i.e. O(d2).4 However, based on Prof.
Gerristen’s note, I realize this LU decomposition can also be achieved in just one for
loop, in that case, the computational complexity is O(d). Hence, my algorithm is
definitely not the most e�cient way to conduct LU decomposition for a given A, but it
can achieve the objective with acceptable accuracy. In my algorithm implementation,
for example, when the matrix size increases from 4 to 5, the computational burden
increases scaling is approximately 25

16 .⇤

4because after expansion the lower-order terms of d can be ignored, hence the overall computational
complexity is still d.

11

Problem 5. We are interested in solving the 1D heat equation numerically. In 1D, the heat

equation has the form

d2T

dx2
= f(x), for 0  x  1,

with x denoting the distance along a rod with constant thermal conductivity, T denoting the

temperature of the rod, and f denoting the distributed heat source.

Discretize the equation using the second-order central finite di↵erence scheme on a uni-

form grid with spacing h = 1/N (see Section 1.7 in Prof. Gerritsen’s note for a derivation).

Consider the source term f(x) = �10 sin
�
3⇡x
2

�
and fix the boundary conditions T (0) = 0

and T (1) = 2.

1. Verify that

Texact(x) =

✓
2 +

40

9⇡2

◆
x+

40

9⇡2
sin

✓
3⇡x

2

◆

is the exact solution to the heat equation with the given source term and boundary

conditions.

Solution. Solving the heat equation using the given source term and boundary con-
ditions, one has

T =

Z Z
f(x)dxdx

=

Z Z 
�10 sin

✓
3⇡x

2

◆�
dxdx

=

Z 
20

3⇡
cos

✓
3⇡x

2

◆
+ c

�
dx

=
40

9⇡2
sin

✓
3⇡x

2

◆
+ cx

SUbstituting the boundary conditions T (0) = 0 and T (1) = 2, one has

�
40

9⇡2
+ c = 2

c = 2 +
40

9⇡2

One hence obtain the analytical solution:

T (x) =

✓
2 +

40

9⇡2

◆
x+

40

9⇡2
sin

✓
3⇡x

2

◆

The solved T matched with the exact solution Texact. The given relationship is hence
proved. ⇤

2. Use your specialized tridiagonal LU implementation from Problem 4 to obtain a numer-

ical approximation for Tj = T (jh), j = 1, . . . , N � 1, for N = 10, 20, 40, 80, 160. Plot

all your approximations together with the exact solution on the same set of axes. Com-

ment on the relationship between N and the approximation error kTnumerical � Texactk.

12

Solution. Using the second-order central-di↵erence scheme, we have

d2T (xi)

dx2
⇡

Ti+1 � 2Ti + Ti�1

h2

Referring to section 1.7 in Prof. Gerritsen’s note, by plugging in the approximation,
one has

Ti+1 � 2Ti + Ti�1 = h2fi

Given the boundary conditions, T (0) = 0 and T (1) = 2, one can reformulate the finite
di↵erence approximation scheme into A~T = ~c, where the matrix can be expanded as

A =

2

6666666664

�2 1
1 �2 1

1 �2 1
...
1 �2 1

1 �2 1
1 �2 1

3

7777777775

, ~T =

2

6666666664

T1

T2

T3
...

TN�3

TN�2

TN�1

3

7777777775

, ~c =

2

6666666664

h2f1
h2f2
h2f3
...

h2fN�3

h2fN�2

h2fN�1 � 2

3

7777777775

Using the LU decomposition obtained from Q4, we can rewrite the system into

⇥
L
⇤ ⇥
U
⇤

2

664

T1

T2

...
TN

3

775 =

2

664

h2f1
h2f2
...

h2fN�1 � 2

3

775

Based on this simple formulation, we can write a MATLAB function to obtain the
numerical solution ~T given di↵erent grid size N :

1 function [T_vec , T_exact , error] = hw2_q5(N)
2 x = 0:1/(N-1):1;%define grid
3 f = -10*sin ((3*pi*x)/2);%define source term
4 h = 1/N;
5 T_vec = ones(N,1);
6 c_vec = h^2*f’;
7 c_vec(end) = c_vec(end) -2;
8 for i = 1:N-1
9 for j = i:N-1

10 if i==j
11 A(i,j)=-2;
12 A(i,j+1)=1;
13 A(i+1,j)=1;
14 end
15 end
16 end
17 A(N,N)=-2;
18 [L,U]= hw2_q4(A);
19 y_vec = L\c_vec;
20 T_vec = U\y_vec;% numerically approximated

13

Figure 1: Numerical approximation solutions comparison.

21 %% exact solution
22 T_exact = (2 + (40/(9* pi^2)))*x + (40/(9* pi^2))*sin((3*pi*x)/2);
23 error = norm(T_vec -T_exact);
24 end

One obtains Figure 1 by plotting the numerically approximated solutions with the
exact solution. For a better understanding of the approximation error, we also plot the
norms kTnuemrical�Texactk in Figure 2, by recalling the MATLAB “norm()” function5.
It is observed that the norm decreases in an exponential fashion.

Theoretically, with more data points corresponding to the increasing grid number, one
may expect the cumulative L2 norm to increase as the evaluated data points increase.
But simultaneously the error between the exact solution and the approximations also
decreases. Figure 1 shows that the decreasing trend of the di↵erence between the
approximation and the exact solution plays a dominant role for the L2 norm whereas
the increasing data point e↵ect is hence relatively low.

⇤

5which is the Euclidean norm, or also known as the L2 norm

14

Figure 2: The norm for the central di↵erence scheme with di↵erent N .

15

ME300A HW#3
Hanfeng Zhai (hzhai@stanford.edu) November 7, 2023

Problem 1. This problem explores issues that arise when computing the QR factorization
numerically. In lecture we explained how to use the Gram-Schmidt procedure to construct an
orthonormal basis of the column space of a given matrix. The problem is that, in numerical
computations, the vectors produced by the Gram-Schmidt recipe gradually lose orthogonality.
See this for yourself !

(a) Let M denote the n⇥ n Hilbert matrix, with entries mij =
1

i+j�1 . Set n = 15 and use

the Gram-Schmidt procedure to find Q =
⇥
q1 · · · qn

⇤
.

The theory tells us Q should be orthogonal so that QT
Q = I. Test this by computing

norm(Q’ * Q - eye(15)). Report the norm you found and briefly comment on your
result: does this computation agree with the theory we discussed?

Note: The built-in qr function in MATLAB performs more sophisticated calculations,
so you will have to implement your own Gram-Schmidt routine.

Solution.

In this problem, I have two approaches that give me slightly di↵erent results. The
second one reports slightly more accurate QT

Q results but does not follow the standard
solution procedure. I will report both of them here.

For my first approach, I follow the standard textbook formula, containing codes as
follows

1 M = zeros (15, 15);

2 for i = 1:15

3 for j = 1:15

4 M(i, j) = 1 / (i + j - 1);

5 end

6 end

7 for j = 1:15

8 v = M(:,j);

9 for i = 1:j-1

10 R(i,j) = Q(:,i)’*M(:,j);

11 v= v-R(i,j)*Q(:,i);

12 end

13 R(j,j) = norm(v);

14 Q(:,j)=v/R(j,j);

15 end

16 norm = norm(Q’ * Q - eye (15));

By using this code, the reported Q and Q
T
Q are shown in the following figure.

1

It can be observed that the error starts to propagate after column 7, and the reported
Q

T
Q is very inaccurate. In this case, the reported norm (norm = norm(Q’ * Q -

eye(15))) is 7.9351. And obviously, this does not agree with the theory we discussed.

Following this result, I was not satisfied with the accuracy. There is another approach
that does not follow the standard procedure: instead of using the MATLAB multi-
plication “*”, I used the dot product “dot()”, and surprisingly the results improved
quite a bit! Hence I also report that approach here. My MATLAB codes write:

1 clc;clear;close all

2 M = zeros (15, 15);

3 for i = 1:15

4 for j = 1:15

5 M(i, j) = 1 / (i + j - 1);

6 end

7 end

8

9 Q = zeros (15, 15);

10 for i = 1:15

11 v = M(:, i);

12 for j = 1:i - 1

13 v = v - Q(:, j) * dot(Q(:, j), v);

14 end

15 Q(:, i) = v / norm(v); sum(Q(:, i));

16 end

17 norm = norm(Q’ * Q - eye (15));

Using this code one can also plot the matrices for both M , Q, and Q
T
Q, shown as

follows:

2

It can be seen that this approach indeed improves the accuracy, even though it does
not follow the standard solution procedure. The calculated corresponding norm is
0.9961, indicating there are some system-related numerical errors involved during the
QR decomposition process, but it gives the generally accurate Q matrix.

In short, the first method reported follows the standard QR decomposition, yet reports
a pretty high norm. The second method is more of a personal way to tweak for more
accurate results. Both methods are not accurate based on the evaluated norms. ⇤

Householder matrices arose as a solution to this problem. The Householder reflection Hv

is defined by

Hv = In �
2

vTv
vv

T
.

We now turn to studying some properties of Hv. These will help us understand how to use
Householder reflections to develop a numerically stable QR factorization.

(b) Show that Hv is symmetric and orthogonal.

Solution. In this problem, one needs to prove
(
H

T
v = Hv

HvH
T
v = I

(1)

One can begin with writing out HT
v :

H
T
v =

✓
In �

2

vTv
vv

T

◆T

= I
T
n �

✓
2

vTv
vv

T

◆T

= I
T
n � (vvT)T

✓
2

vTv

◆T

= In � 2vvT
1

vTv

= In �
2

vTv
vv

T = Hv

(2)

3

The matrix Hv is hence proved to be symmetric. To show they are orthogonal, we can
then expand H

T
v Hv:

H
T
v Hv =

✓
In � vv

T 2

vTv

◆✓
In �

2

vTv
vv

T

◆

=

✓
In � vv

T 2

vTv

◆2

= In � 4
vv

T

vTv
+ 4

vv
T
vv

T

vTvvTv

= In � 4
vv

T

vTv
+

4vvT

vTv

= In � 4
vv

T

vTv
+ 4

vv
T

vTv

= In

(3)

The matrix Hv are hence probed to be orthogonal. ⇤

(c) Show that Hvv = �v. Also show that if w is orthogonal to v, then Hvw = w.

Solution. First, to show Hvv = �v, we begin with expanding Hv:

Hvv =

✓
In �

2

vTv
vv

T

◆
v

= v � 2

vTv
vv

T
v

= v � 2v

= �v

(4)

Now, take the assumption of w is orthogonal to v, we know that ~w
T
~v = 0. We can

further expand Hvw = w:

Hvw =

✓
In �

2

vTv
vv

T

◆
w

= w � 2

vTv
vv

T
w

(5)

Since we already know that ~vT ~w = ~w
T
~v = 0. We further expand Eqn. 5:

Hvw = w (6)

The statement is hence proved. ⇤

(d) Now suppose u and w are vectors such that kuk = kwk. Show that Hu�wu = w.

Hint: Write u = 1
2

�
(u� w) + (u + w)

�
, show that (u� w)T(u + w) = 0, and consider

your previous results.

4

Solution. Based on the hint, we may begin with trying to prove

(u� w)T(u+ w) = 0 (7)

Since kuk = kwk, we may further expand the (u� w)T(u+ w):

(u� w)T(u+ w) = u
T
u+ u

T
w � w

T
u� w

T
w (8)

One may assume the contact angle u and w is ✓. Hence:

u
T
w = kukkwk cos ✓

w
T
u = kwkkuk cos ✓

(9)

We may substitute back to the previous equation, getting:

u
T
u+ u

T
w � w

T
u� w

T
w = kukkuk � kwkkwk| {z }

=0

+ kukkwk cos ✓ � kwkkuk cos ✓| {z }
=0

= 0

(10)

This equation is hence proved.

Based on the results in (c), one has

Hu�w(u� w) = w � u

Hu�wu�Hu�ww = w � u

Hu�wu = Hu�ww| {z }
expand

+w � u
(11)

By expanding the marked term we have:

Hu�ww =

✓
In �

2

(u� w)T(u� w)
(u� w)(u� w)T

◆
w

= w � 2
uu

T
w � uw

T
w � wu

T
w + ww

T
w

uTu� uTw � wTu+ wTw

=
wu

T
u� wu

T
w � ww

T
u+ ww

T
w � 2(uuT

w � uw
T
w � wu

T
w + ww

T
w)

uTu� uTw � wTu+ wTw

=
wu

T(u+ w)� ww
T(u+ w)� 2uuT

w + 2uwT
w

uTu� uTw � wTu+ wTw

=
(wuT � ww

T)(u+ w) + 2(uwT � uu
T)w

uTu� uTw � wTu+ wTw

=

=0z }| {
w(uT � w

T)(u+ w)+2u(wT � u
T)w

(u� w)T(u� w)
(12)

5

Now, we may substitute Eqn. (12) back to Eqn. (11):

Hu�ww =
2u(wT � u

T)w + (w � u)(uT � w
T)(u� w)

(u� w)T(u� w)

=
(2uwT � 2uuT)w + (wuT � ww

T � uu
T + uw

T)(u� w)

(u� w)T(u� w)

=
uw

T(w + u)� uu
T(w + u) + wu

T(u� w) + ww
T(w � u)

(u� w)T(u� w)

=
(uwT � uu

T)(u+ w) + (wuT � ww
T)(u� w)

(u� w)T(u� w)

=

=0z }| {
u(w � u)T(u+ w)+w(u� w)T(u� w)

(u� w)T(u� w)

= w

(13)

The statement is hence proved. ⇤

(e) Consider the matrix

A =

2

4
2 3
�2 4
1 5

3

5 .

Much like an elementary row matrix, Hv can be used to zero out elements in a column
of A when v is chosen appropriately.

Let a1 denote the first column of A. Find a vector v 2 R3 such that

Hva1 = ka1k e1,

where e1 =
⇥
1 0 0

⇤T
. Report v and also the product HvA.

Hint: Consider the result of part (d).

Solution. Taking the hint, since in (d) the vector is formulated as v = u � w. Here,
we take a similar approach by setting v = a1 � ka1ke1. To verify this, the equation
writes:

Ha1�ka1ke1a1 = ka1ke1

In �
2(a1 � ka1ke1)(a1 � ka1ke1)T

(a1 � ka1ke1)T(a1 � ka1ke1)
a1 = ka1ke1

In �
2(a1 � ka1ke1)(aT1 � ka1keT1)
(aT1 � ka1keT1)(a1 � ka1ke1)

=
ka1ke1
a1

(14)

By expanding the left-hand side one has:

In �
2(a1aT1 � a1ka1keT1 � ka1ke1aT1 + ka1k2e1eT1)
a
T
1 a1 � a

T
1 ka1ke1 � ka1keT1 a1 � ka1k2eT1 e1

=
ka1ke1
a1

(15)

The equation is hence established. Therefore the vector v = a1 � ka1ke1 satisfy the
condition. ⇤

6

(f) The result of (e) suggests how to compute Q using Householder reflections: at the
kth step, choose vk appropriately to zero out the kth column of A below the diagonal.
Applying the corresponding Householder reflections successively, we obtain an upper
triangular matrix R:

Hvn�1 · · ·Hv1A = R.

Thus we obtain A = QR by setting Q = Hv1 · · ·Hvn, since each reflection is symmetric
and orthogonal.

Implement this procedure in MATLAB. Obtain an orthonormal basis for the column
space of the Hilbert matrix M and report norm(Q’ * Q - eye(15)) in this case.

Solution. Given the provided instructions, we can write the new QR decomposition
for M (by setting the Hilbert matrix, i.e., MATLAB hilb(), from the instructions):

1 n = 15;

2 M = hilb(n);

3

4 Q = eye(n);

5 for k = 1:n-1

6 x = M(k:n, k);

7 v = x;

8 v(1) = v(1) + sign(x(1)) * norm(x); % Choose appropriate v_k

9 v = v / norm(v);

10

11 H = eye(n);

12 H(k:n, k:n) = H(k:n, k:n) - 2 * (v * v’);

13 M = H * M;

14 Q = Q * H’;

15 end

16

17 R = M;

18 norm = norm(Q’ * Q - eye (15));

The reported norm(Q’ * Q - eye(15)) is 1.76⇥ 10�15. It can be deduced from both
the error and the matrix visualization that QR decomposition using this method is
much more accurate than that of what I wrote in (a).

The reported Q matrix (orthonormal basis) is

7

1 Q =

2

3 Columns 1 through 9

4

5 -0.7954 0.5546 0.2297 -0.0792 0.0242 -0.0067

-0.0017 0.0004 -0.0001

6 -0.3977 -0.2187 -0.6290 0.5333 -0.3040 0.1364

0.0511 -0.0165 0.0046

7 -0.2651 -0.3111 -0.3205 -0.2271 0.5476 -0.5031

-0.3141 0.1517 -0.0597

8 -0.1989 -0.3077 -0.0918 -0.3926 0.2201 0.2673

0.5198 -0.4617 0.2826

9 -0.1591 -0.2858 0.0454 -0.3396 -0.1129 0.3963

0.0830 0.3566 -0.5090

10 -0.1326 -0.2618 0.1263 -0.2297 -0.2787 0.1933

-0.2967 0.3137 0.1231

11 -0.1136 -0.2396 0.1739 -0.1176 -0.3139 -0.0501

-0.3355 -0.0828 0.3840

12 -0.0994 -0.2200 0.2017 -0.0197 -0.2717 -0.2186

-0.1631 -0.3184 0.1061

13 -0.0884 -0.2029 0.2173 0.0611 -0.1898 -0.2898

0.0588 -0.2820 -0.2343

14 -0.0795 -0.1880 0.2253 0.1260 -0.0916 -0.2762

0.2276 -0.0734 -0.3245

15 -0.0723 -0.1750 0.2285 0.1774 0.0097 -0.1994

0.2969 0.1615 -0.1435

16 -0.0663 -0.1636 0.2285 0.2178 0.1072 -0.0799

0.2566 0.3033 0.1497

17 -0.0612 -0.1535 0.2265 0.2493 0.1974 0.0656

0.1154 0.2778 0.3381

18 -0.0568 -0.1446 0.2232 0.2738 0.2787 0.2246

-0.1097 0.0507 0.2234

19 -0.0530 -0.1366 0.2191 0.2926 0.3511 0.3884

-0.3998 -0.3833 -0.3410

20

21 Columns 10 through 15

22

23 0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000

24 -0.0011 0.0002 -0.0000 0.0000 -0.0000 -0.0000

25 0.0196 -0.0054 0.0012 -0.0002 0.0001 -0.0000

26 -0.1323 0.0492 -0.0147 0.0032 -0.0017 0.0002

27 0.3966 -0.2163 0.0882 -0.0258 0.0128 -0.0027

28 -0.4602 0.4651 -0.2878 0.1197 -0.0528 0.0204

29 -0.0776 -0.3698 0.4896 -0.3334 0.1229 -0.0944

30 0.3556 -0.2028 -0.2952 0.5367 -0.1393 0.2786

31 0.2195 0.3114 -0.2549 -0.3844 0.0119 -0.5330

32 -0.1676 0.2644 0.3097 -0.1715 0.0852 0.6434

33 -0.3404 -0.1724 0.2439 0.5353 0.1649 -0.4324

34 -0.1386 -0.3546 -0.2809 -0.2937 -0.5970 0.0672

35 0.2403 0.0015 -0.2866 -0.0971 0.6684 0.1226

36 0.3653 0.4372 0.4263 0.1560 -0.3460 -0.0899

37 -0.2792 -0.2077 -0.1388 -0.0449 0.0706 0.0200

⇤

8

Problem 2. (Spanning set, basis.) Consider the following vectors in R3:

~v1 =

2

4
1
2
1

3

5 , ~v2 =

2

4
0
1
0

3

5 , ~v3 =

2

4
3
5
4

3

5 , ~v4 =

2

4
4
0
4

3

5 , and ~v5 =

2

4
0
2
1

3

5 .

(a) Is this a spanning set for R3? Why?

Solution. For this problem, we can construct a matrix containing the vector sets:

V =

2

66664

1 2 1
0 1 0
3 5 4
4 0 4
0 2 1

3

77775
(16)

By conducting the Gaussian elimination (or using rref in MATLAB) one can obtain
its reduced echelon form:

Vr =

2

66664

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

3

77775
(17)

One can clearly observe from the reduced echelon form that the rank of the matrix is
3. Hence, it spans R3.⇤

(b) Prove that v1, . . . , v5 are linearly dependent. Reduce the list to a basis of R3 by removing
redundant vectors.

Solution. To the prove the five vectors are linearly dependent, we may construct the

a constant vector ~↵ =

2

66664

↵1

↵2

↵3

↵4

↵5

3

77775
such that

↵1 ~v1 + ↵2 ~v2 + ↵3 ~v3 + ↵4 ~v4 + ↵5 ~v5 = 0 (18)

or in the matrix form

V~↵ = 0 =)

2

4
1 0 3 4 0
2 1 5 0 2
1 0 4 4 1

3

5

2

66664

↵1

↵2

↵3

↵4

↵5

3

77775
= 0 (19)

It can be seen that there are only three constraints yet five unknowns. Hence, there
will be infinitely amount of solutions exist. Therefore, the five vectors are linearly
dependent.

9

To reduce the list to R3 basis, we can calculate the reduced echelon form of this
coe�cient matrix:

Vr =

2

4
1 0 0 4 �3
0 1 0 �8 3
0 0 1 0 1

3

5 (20)

It can be deduced from Vr that only the first three column vectors are linearly inde-
pendent. Hence, the reduced list writes:

8
<

:

2

4
1
2
1

3

5 ,

2

4
0
1
0

3

5 ,

2

4
3
5
4

3

5

9
=

; (21)

⇤

(c) Express one of the redundant vectors as a linear combination of the basis you found in
(b).

Solution. It can be identified that the fourth vector can be written as the linear
combination of the basis in the form of

4

2

4
1
2
1

3

5� 8

2

4
0
1
0

3

5+ 0

2

4
3
5
4

3

5 =

2

4
4
0
4

3

5 (22)

⇤

10

Problem 3. (Column space, row space, null space.) Consider the following matrix A.

A =

2

664

3 4 �1 15 12
2 2 4 �10 �12
1 1 2 �5 3
�2 �3 3 �20 �18

3

775

(a) Find the condition(s) on an arbitrary vector ~b such that A~x = ~b has at least one
solution. Is the solution unique? Why?

Solution. We can first calculate the reduced echelon form of A:

Ar =

2

664

1 0 9 �35 0
0 1 �7 30 0
0 0 0 0 1
0 0 0 0 0

3

775 (23)

It can be observed that A is not fully ranked. Hence, in order for A~x = ~b to have at
least one solution, ~b has to lie in the column space of A. The solution is not unique,
since A is not full-ranked. There will be an infinite set of solutions.

Here, one also needs to identify the linear combination between the row spaces of A:
↵1 ~a1 + ↵2 ~a2 + ↵3 ~a3 + ↵4 ~a4 = 0. One can then solve that

8
>>><

>>>:

↵1 = �2

↵2 = 1

↵3 = 0

↵4 = 2

(24)

So the relationship for vector b is �2b1 + b2 � 2b4 = 0 ⇤

(b) Find the rank of A and provide a basis for the row space of A.

Solution. Based on the reduced echelon form given in (a), one knows the rank is 3.
From the reduced echelon form, we can also identify the basis for the row space as the
first three row-vectors:

Brow =

8
>>>><

>>>>:

2

66664

3
4
�1
15
12

3

77775
,

2

66664

2
2
4

�10
�12

3

77775
,

2

66664

1
1
2
�5
3

3

77775

9
>>>>=

>>>>;

(25)

⇤

(c) Find a basis for the null space of A. What is its dimension?

11

Solution. From the reduced echelon form, we can write out the null space (solutions
for A~x = 0)as the form of linear combinations of xi:

x1 + 9x3 � 35x4 = 0

x2 � 7x3 + 30x4 = 0

x5 = 0

(26)

one further deduce:
x1 = 35x4 � 9x3

x2 = 7x3 � 30x4
(27)

One can then write out the form of the basis by setting x3 ! t and x4 ! s:

x1 = �9t+ 35s

x2 = 7t� 30s

x3 = t

x4 = s

x5 = 0

(28)

The basis can then be expanded in the form of
2

66664

�9
7
1
0
0

3

77775
t+

2

66664

35
�30
0
1
0

3

77775
s (29)

Or in the form of a set

Bnull =

8
>>>><

>>>>:

2

66664

�9
7
1
0
0

3

77775
,

2

66664

35
�30
0
1
0

3

77775

9
>>>>=

>>>>;

(30)

where the vectors in the nullspace of A are linear combinations of the two vectors. ⇤

(d) Verify that every vector in N (A) is orthogonal to every vector in row(A).

Solution. To verify this, we can begin with constructing two matrices, one consists of
the basis and the general form of their linear combinations (denoted as NB), and the
other consists of the row vectors in A. Once the multiplication result is a zero matrix,
one can hence prove that all the vectors in N (A) are orthogonal to every vector in
row(A). One hence write out the two matrices NT

BA
T:

2

4
�9 7 1 0 0
35 �30 0 1 0

35s� 9t 7t� 30s t s 0

3

5

2

66664

3 2 1 �2
4 2 1 �3
�1 4 2 3
15 �10 �5 �20
12 �12 3 �18

3

77775
=

2

4
0 0 0 0
0 0 0 0
0 0 0 0

3

5 (31)

12

This verifies that every vector in N (A) is orthogonal to every vector in row(A). One
can also verify it using MATLAB:

1 syms t s

2

3 b1 = [-9 7 1 0 0]’;

4 b2 = [35 -30 0 1 0]’;

5 B_null = [b1, b2, b1*t+b2*s];

6

7 A = [3 4 -1 15 12;...

8 2 2 4 -10 -12;...

9 1 1 2 -5 3;...

10 -2 -3 3 -20 -18];

11 A_row = A’;

12 B_null ’* A_row

and the corresponding output is

1 ans =

2

3 [0, 0, 0, 0]

4 [0, 0, 0, 0]

5 [0, 0, 0, 0]

⇤

(e) Find the dimension and basis for the column space of A.

Solution. Recall the reduced echelon form of A we find in (a):

Ar =

2

664

1 0 9 �35 0
0 1 �7 30 0
0 0 0 0 1
0 0 0 0 0

3

775 (32)

One can determine the basis for the column space of A:

Bcol =

8
>><

>>:

2

664

3
2
1
�2

3

775 ,

2

664

4
2
1
�3

3

775 ,

2

664

12
�12
3

�18

3

775

9
>>=

>>;
(33)

The dimension is then 3. ⇤

13

Problem 4. (Properties of Determinants.)

(a) Prove that the determinant of an orthogonal matrix is either +1 or �1.

Solution. One begins with defining an orthogonal matrix Q, preserving the property:

Q
T
Q = QQ

T = I (34)

Using the property of determinants we have

det (QT
Q) = det (QT) det (Q)

= det (I) = 1
(35)

One further writes:
[det (Q)]2 = 1 (36)

We can then conclude that
det (Q) = ±1 (37)

The statement is hence proved. ⇤

(b) Suppose L is an n⇥ n lower triangular matrix. Show that det(L) is the product of the
diagonal entries of L; that is, prove that

det(L) = `11 · · · `nn.

Solution. One way to prove this is to expand the terms in L:

L =

2

666664

`11 0 0 ... 0
`21 `22 0 ... 0
`31 `32 `33 ... 0
...

. . .
...

`n1 `n2 ... `nn

3

777775
(38)

By computing the determinant one has

det (L) = `11 det (L22)

= `11 det (`22 det (L33))

= `11 det (`22 det (`33 det (L44)))

= `11 det (`22 det (`33 det (...`n�2n�2 det (Ln�1n�1))))

= `11 det

✓
`22 det

✓
`33 det

✓
...`n�2n�2

����
`n�1n�1 0
`nn�1 `nn

����

◆◆◆
(39)

By expanding the terms step by step, one can further deduce that

det (L) = `11`22...`n�1n�1`nn (40)

The statement is hence proved. ⇤

14

(c) Prove that det(A�1) =
1

det(A)
.

Solution. Given the fact that
AA

�1 = I (41)

Using the property of determinants one have

det (A) det (A�1) = det (AA�1)

= det (I) = 1
(42)

Hence, it can be easily seen that

det (A�1) =
1

det (A)
(43)

The statement is hence proved. ⇤

(d) Let

A =

2

4
1 �1 0
3 1 2
2 4 3

3

5 .

Compute det(A) and determine the number of solutions to Ax = 0.
Solution. Calculating the determinant one has

det (A) = 1

����
1 2
4 3

����� (�1)

����
3 2
2 3

����+ 0

= (3� 8) + (9� 4)

= �5 + 5

= 0

(44)

Since the determinant is zero, one deduces that there will be an infinite number of
solutions for A~x = 0. ⇤

15

Problem 5. (Ohm’s Law.)
Suppose we have two nodes connected by a wire with resistance R, measured in ohms.

Ohm’s law states that the current Iij, measured in amperes, traveling from node i to node j

is

Iij =
Vi � Vj

R

with Vi and Vj denoting the potential at nodes i and j, both measured in volts. Notice that
current is a signed quantity, which means it can be either positive or negative, so it indicates
the direction of flow. Consider the following circuit.

R1

R
2R

3

R6

R
4

R5

I1 I2

I3

I4 I5

Suppose we know the resistance in each of the 6 wires is R = 1 and that the potential at
node i is some constant Vi.

(a) Let Ii denote the current at node i. Recalling Kircho↵ ’s principle, which states that
Ii is the sum of all currents entering or leaving node i, express each Ii as a linear
combination of the voltages Vj.

Solution. One can first write out the matrix I:

I =

2

666664

0 V1�V2
R1

V1�V3
R3

V1�V4
R6

0
V2�V1
R1

0 V2�V3
R2

0 0
V3�V1
R3

V3�V2
R3

0 V3�V4
R4

0
V4�V1
R6

0 V4�V3
R4

0 V4�V5
R5

0 0 0 V5�V4
R5

0

3

777775
(45)

By substituting R = 1 one can then write out the forms for each row of I:

I1 = 3V1 � V2 � V3 � V4

I2 = 2V2 � V1 � V3

I3 = 3V3 � V2 � V1 � V4

I4 = 3V4 � V3 � V1 � V5

I5 = V5 � V4

(46)

16

⇤

(b) Set up a linear system from (a) as a single matrix equation. That is, find a matrix A

such that I = AV.

Solution. From (a), one can write out the coe�cient matrix A:

A =

2

66664

3 �1 �1 �1 0
�1 2 �1 0 0
�1 �1 3 �1 0
�1 0 �1 3 �1
0 0 0 �1 1

3

77775
(47)

By multiplying the vector ~V one can verify that this coe�cient matrix satisfy the
condtion

~I = A~V (48)

⇤

(c) Show that the matrix you found in (b) is singular by computing its determinant. Then
find a basis for its nullspace. You may use MATLAB.

Solution. To show this matrix is singular, one can calculate the determinant of A in
MATLAB:

1 >> A = [3 -1 -1 -1 0; -1 2 -1 0 0; -1 -1 3 -1 0; -1 0 -1 3 -1; 0 0 0

-1 1];

2 >> det(A)

3 ans =

4

5 0

To find a basis for its nullspace, one can also calculate the nullspace using MATLAB:

1 null(A)

2

3 ans =

4

5 0.4472

6 0.4472

7 0.4472

8 0.4472

9 0.4472

We then know that the nullspace is non-zero, and the basis can be written as the form

Bnull =

8
>>>><

>>>>:

2

66664

1
1
1
1
1

3

77775

9
>>>>=

>>>>;

(49)

.

⇤

17

(d) Finally, describe the set of current vectors I for which the linear system you wrote
down in (b) is consistent. That is, find a condition on I for which your linear system
always has a solution.

Solution. By calculating the rank (rank(A)) we know the rank of A is 4. Hence, the
row vectors of A are linearly dependent. From (c) we already know the basis of the
nullspace as a “ones-vector”. Hence, we know that the linear combination of the row
vectors of A with a coe�cient of 1 should be a zero vector, i.e. ~A1+ ~A2+ ~A3+ ~A4+ ~A5 =
~0.1

Based on this, in order for ~I = A~V to always have a solution, the vector ~I also needs
to satisfy the linear combination relationship:

I1 + I2 + I3 + I4 + I5 = 0 (50)

⇤

1 ~Ai denotes the row vectors of A

18

ME300A HW#4
Hanfeng Zhai (hzhai@stanford.edu) December 1, 2023

Problem 1. One of your friends has invented a new iterative scheme for solving the system
of equations A~x = ~b for real n ⇥ n matrices A. The scheme is given by

~x(k+1) = (I + �A)~x(k) � �~b, with � > 0. (1)

(a) Show that if this scheme converges, it converges to the desired solution of the system
of equations. In other words, your friend seems to be on to something.

Solution. One can rewrite the update scheme:

~x(k+1) � ~x(k) = (1 + �A)~x(k) � �~b � ~x(k)

= �A~x(k) � �~b

= �(A~x(k) �~b)

(2)

Here, we assume that when k ! 1, the system converges to the correct solution. Since
the iteration scheme is proposed to solve the linear system A~x = ~b, one can write out

lim
k!1

(A~x(k) �~b) = 0 (3)

Therefore, one knows

lim
k!1

�
~xk+1 � ~x(k)

�
= lim

k!1

⇣
�

⇣
A~x(k) �~b

⌘⌘

= � lim
k!1

⇣
A~x(k) �~b

⌘

= 0

(4)

Indicating the algorithm converges.

⇤

(b) Derive an equation for the error ~e(k) = ~x(k) � ~x⇤, where ~x⇤ is the exact solution, for
each iteration step k.

Solution. We write:
~x(k+1)

~x(k)
= (I + �A) � �~b

~x(k)

~x(k+1) + �~b

~x(k)
= I + �A

(5)

We then have
e(k+1)

e(k)
=

~x(k) � ~x⇤

~x(k�1) � ~x⇤

=
~x(k�1) � ~x⇤ + �(A~x(k�1) �~b)

~x(k�1) � ~x⇤

= 1 + �
A~x(k�1) �~b

~x(k�1) � ~x⇤

(6)

1

Since we know that ~x⇤ is the exact solution, we know ~x⇤ = A�1~b. We can substitute
the relation back and get:

e(k+1)

e(k)
= 1 + �

A~x(k�1) �~b

~x(k�1) � A�1~b

= 1 + �
A

⇣
~x(k�1) � A�1~b

⌘

~x(k�1) � A�1~b
= 1 + �A

(7)

Hence, we can write out the general form of e(k):

e(k) = (I + �A)e(k�1)

= (I + �A)ke(0)
(8)

where e(0) = x(0) � x⇤.

If A is not guaranteed to be non-singular (or A�1 is not guaranteed to exist), then the
general form of the error is

e(k) = (I + �A)~x(k�1) � (~x⇤ +~b)

= (I + �A)k~x(0) � (~x⇤ +~b)
(9)

which is the general form of the error. ⇤
(c) Does the scheme work for non–singular matrices? Explain.

Solution. This iteration scheme does not necessarily work for all non-singular matrices.

Taking the previously derived expression for the error:

e(k) = e(k�1) + �Ae(k�1)

e(k) � e(k�1) = �Ae(k�1)
(10)

The success of the iteration scheme for non-singular matrices depends on the choice of
the parameter � and the spectral radius of I + �A.

For the scheme to converge, the spectral radius of the iteration matrix ⇢(I +�A) must
be less than 1. However, here there is no guarantee that the spectral radius will be
smaller than 1.

If one were to dig deeper into the convergence of this iteration scheme, one can write
out the norm (one may assume an L2 norm) for the error at kth from (k�1)th iteration:

��~ek
�� /

��~ek�1
�� = k(I + �A)k (11)

where its spectral radius writes:

⇢ (I + �A) = ⇢

0

BBB@

2

6664

1 0 0 ... 0
0 1 0 ... 0

...
0 0 0 ... 1

3

7775
+ �

2

6664

a11 a12 ... a1n

a21 a22 ... a2n
...

an1 an2 ... ann

3

7775

1

CCCA
(12)

⇤

2

Problem 2. Many modern machine learning models rely on Deep Neural Networks (DNNs)
to fit complex functions defined by real-world data sets. In practice, thousands of weights
parametrize a DNN and we “train” a model by finding “optimal” values for the model pa-
rameters. The “optimal” parameter values are determined by minimizing the model error as
measured by a given loss function.

The following example will motivate the usefulness of neural networks in data fitting.
Consider the following data set.

x(1) x(2) x(3) x(4)

x1 0 0 1 1
x2 0 1 0 1
x3 1 1 1 1

yT 0 1 1 0

The data in Table 2 represents a sample of m = 4 input-output pairs (x(k), yk), k =
1, . . . , m, corresponding to the function f : {0, 1}3 ! {0, 1} defined by

f(x) =

(
0, if x1 + x2 + x3 is odd,

1, if x1 + x2 + x3 is even.

Each x(k) belongs to R3 and each yk is a scalar. The domain {0, 1}3 of f is the subset of
vectors in R3 such that each component is either 0 or 1.

We would like to “learn” f using the sample data in Table 2. In other words, we aim
to fit a model g, parametrized by some weights w, to the data in Table 2 by minimizing a
given loss function using gradient descent. Once we have trained our model g, we hope to
use optimal parameters ~w⇤ to mimic f , so that

g(x; ~w⇤) ⇡ f(x)

for x 2 {0, 1}3.

(a) We begin by fitting a linear model. Let g : R3 ! R denote the function defined by

g(x; w) = w1x1 + w2x2 + w3x3 = wTx.

In this case, we package the model weights w1, w2, w3 in a single vector

w =

2

4
w1

w2

w3

3

5 .

We seek parameter values w1, w2, w3 minimizing the mean squared error J(w), defined
by

J(w) =
1

2m

mX

k=1

�
g(x(k); w) � yk

�2
.

3

(i) Compute rwJ(w), the gradient of J with respect to w.

Solution. One may begin with expanding all the terms in J(w):

J(w) =
1

8

⇣
w1x

(1)
1 + w2x

(1)
2 + w3x

(1)
3 � y1

⌘2

+
⇣
w1x

(2)
1 + w2x

(2)
2 + w3x

(2)
3 � y2

⌘2

+
⇣
w1x

(3)
1 + w2x

(3)
2 + w3x

(3)
3 � y3

⌘2

+
⇣
w1x

(4)
1 + w2x

(4)
2 + w3x

(4)
3 � y4

⌘2
�

(13)

To compute the gradient of J(w), one computes the partial derivatives of J w.r.t.
w1, w2 and w3, respectively:

@J

@w1
=

1

m

mX

k=1

�
g(x(k); w) � yk

� @g(x(k); w)

@w1

@J

@w2
=

1

m

mX

k=1

�
g(x(k); w) � yk

� @g(x(k); w)

@w2

@J

@w3
=

1

m

mX

k=1

�
g(x(k); w) � yk

� @g(x(k); w)

@w3

(14)

By further derivation:

@J

@w1
=

1

m

mX

k=1

x(k)
1

⇣
w1x

(k)
1 + w2x

(k)
2 + w3x

(k)
3 � yk

⌘

@J

@w2
=

1

m

mX

k=1

x(k)
2

⇣
w1x

(k)
1 + w2x

(k)
2 + w3x

(k)
3 � yk

⌘

@J

@w3
=

1

m

mX

k=1

x(k)
3

⇣
w1x

(k)
1 + w2x

(k)
2 + w3x

(k)
3 � yk

⌘

(15)

By reorganizing the terms we get the general formula of the gradient based on
the given form of J(w):

�wJ =

2

6664

1
m

Pm
k=1 x(k)

1

⇣
w1x

(k)
1 + w2x

(k)
2 + w3x

(k)
3 � yk

⌘

1
m

Pm
k=1 x(k)

2

⇣
w1x

(k)
1 + w2x

(k)
2 + w3x

(k)
3 � yk

⌘

1
m

Pm
k=1 x(k)

3

⇣
w1x

(k)
1 + w2x

(k)
2 + w3x

(k)
3 � yk

⌘

3

7775
(16)

for the given input-output pairs (xk, yk). ⇤
(ii) Use the data points (x(k), yk), k = 1, 2, 3, 4, given in Table 2 and implement the

gradient descent method to find w minimizing the mean squared error J(w).

4

Compute and report the optimal ~w⇤.

Use a constant learning rate (step size) of 0.1 and perform at least 1500 iterations
of gradient descent. Initialize each model parameter as a uniformly distributed
random number in the interval (0, 1). In MATLAB, you may initialize w using
w = rand(3, 1).

Include any relevant code.

Solution. Given the instructions, we use gradient descent with a constant learn-
ing rate of 0.1 for 1500 iterations.

The relevant codes are attached herein:

1 clear; clc

2 %%

3 w = [w1; w2; w3];

4 x1_data = [0 0 1 1]’;

5 x2_data = [0 1 0 1]’;

6 x3_data = [1 1 1 1]’;

7 y_data = [0 1 1 0]’;

8 X = [x1_data ,x2_data ,x3_data];

9

10 J = .5*mse(X*w, y_data);

11 dJ = [diff(J,w1);diff(J,w2);diff(J,w3)];

12 alpha = 0.1;

13

14 %% ii

15 i=1;

16 w = rand(3, 1);

17 while i <=1500

18 dJw = subs(dJ ,{w1 ,w2 ,w3},{w(1),w(2),w(3)});

19 dJw = round(dJw *1000) /1000;

20 w = w-alpha*dJw;

21 i = i+1;

22 end

We obtain ~w⇤ =

2

4
0.0030
0.0030
0.4965

3

5. If we were to apply the solution scheme for 5000

iterations, we get ~w⇤ =

2

4
0.0028
0.0028
0.4968

3

5, which is very similar to what we get for 1500

iterations. ⇤
(iii) In this case, since g is a linear model, we may solve for the optimal weights

analytically.

Obtain the optimal parameter values by solving the normal equations to verify the
correctness of your gradient descent implementation. Include any relevant code.

Solution. Recall the normal equation for the least square method for a linear
system X ~w = ~y:

~w =
�
XTX

��1
XT~y (17)

5

One can solve it analytically by expanding the terms:

~w =

0

BB@

2

4
0 0 1 1
0 1 0 1
1 1 1 1

3

5

2

664

0 0 1
0 1 1
1 0 1
1 1 1

3

775

1

CCA

�1 2

4
0 0 1 1
0 1 0 1
1 1 1 1

3

5

2

664

0
1
1
0

3

775

=

2

4
1 0 �1

2
0 1 �1

2
�1

2 �1
2

3
4

3

5

2

4
0 0 1 1
0 1 0 1
1 1 1 1

3

5

2

664

0
1
1
0

3

775

=

2

4
0
0
1
2

3

5

(18)

One can also generate the following MATLAB codes to compute the analytical
solution for ~w⇤:

1 %% iii

2 X = [0 0 1; 0 1 1; 1 0 1; 1 1 1];

3 y = [0;1;1;0];

4 w_anal = inv(X’*X)*X’*y;

and obtain the corresponding solution ~w⇤ =

2

4
0
0

0.5

3

5. One then deduces that the

numerical solution obtained from gradient descent is accurate as it is close to the
analytical solution. ⇤

(iv) Use the optimal parameters ~w⇤ obtained in (ii) to evaluate g(x(1); ~w⇤).

Since we are fitting data sampled from the function f , we hope to obtain f(x(1)) =
0. However, you will find that our linear model is inadequate.

Solution. Using the numerical linear model with the approximation results of
1500 iterations, we compute f(x(1)):

f
�
x(1)

�
⇡ g

�
x(1); w⇤�

= w1 · 0 + w2 · 0 + w3 · 1

= 0.4965

(19)

Since we know that in the real data f
�
x(1)

�
= 0. We therefore know that the

fitted data is inaccurate, and hence our linear model is inadequate. ⇤

(b) We now consider a non-linear model g. We begin with a few definitions.

Let � : R ! R denote the sigmoid function, defined by

�(x) =
1

1 + e�x
.

6

Let h denote the so-called number of hidden units and let ⌫ : Rh ! Rh denote the
vectorization of �, defined by

⌫(z) =

2

6664

�(z1)
�(z2)

...
�(zh)

3

7775
.

Let g : R3 ! R denote the fully connected two-layer feed-forward neural network defined
by

g(x; ↵, W) = �
�
↵T⌫(Wx)

�
. (20)

This model is parametrized by the weights ↵j, for j = 1, . . . , h, and wij, for i = 1, . . . , h
and j = 1, 2, 3. Also known as a Multi-Layer Perceptron (MLP) head with a single
hidden layer, the network defined by g is illustrated in the Figure in case h = 4.

This model is parametrized by the weights ↵j, for j = 1, . . . , h, and wij,
for i = 1, . . . , h and j = 1, 2, 3. Also known as a Multi-Layer Percep-
tron (MLP) head with a single hidden layer, the network defined by g is
illustrated in Figure 1 in case h = 4.

Figure 1: Schematic of a MLP with a single hidden layer of dimension h = 4.

In this case, it will be convenient to package the model parameters in a
1 ⇥ h row vector

↵T =
⇥
↵1 ↵2 · · · ↵h

⇤

and an h ⇥ 3 matrix

W =

2

6664

w11 w12 w13

w21 w22 w23
...

...
...

wh1 wh2 wh3

3

7775
.

We will fit g to the data in Table 1 using the loss function L(↵T , W)
defined by

L(↵T , W) =
mX

k=1

�
g(x(k); ↵T , W) � yk

�2
.

We will use gradient descent to find optimal parameter values. In order
to implement the gradient descent method, it will be convenient to pack-
age the partial derivatives of the loss function with respect to our model

In this case, it will be convenient to package the model parameters in a 1⇥h row vector

↵T =
⇥
↵1 ↵2 · · · ↵h

⇤

and an h ⇥ 3 matrix

W =

2

6664

w11 w12 w13

w21 w22 w23
...

...
...

wh1 wh2 wh3

3

7775
.

We will fit g to the data in Table 2 using the loss function L(↵T, W) defined by

L(↵T, W) =
mX

k=1

�
g(x(k); ↵T, W) � yk

�2
.

7

We will use gradient descent to find optimal parameter values. In order to implement
the gradient descent method, it will be convenient to package the partial derivatives of
the loss function with respect to our model parameters into the two gradients

r↵L(↵T, W) =
⇥

@L
@↵1

· · · @L
@↵h

⇤
, and

rW L(↵T, W) =

2

64

@L
@w11

@L
@w12

@L
@w13

...
...

...
@L

@wh1

@L
@wh2

@L
@wh3

3

75 .

Given these gradients, we will update our model parameters ↵(n) and W (n) at the nth
step of the gradient descent algorithm using

(↵(n+1))T (↵(n))T �r↵L
�
(↵(n))T, W (n)

�
,

W (n+1) W (n) �rW L
�
(↵(n))T, W (n)

�
.

(21)

We now turn to computing these gradients.

(i) Begin by showing that �0(x) = �(x)(1� �(x)).

Solution. To show the given expression, we begin with expanding the terms in
�0(x) (LHS):

�0(x) =
d

dx

1

1 + e�x

=
e�x

(1 + e�x)2

=
1

1 + e�x
· e�x

1 + e�x

=
1

1 + e�x
· 1 + e�x � 1

1 + e�x

=
1

1 + e�x

✓
1� 1

1 + e�x

◆

(22)

which can be rearranged as the original form of the RHS:

�0(x) = �(x) (1� �(x)) (23)

The statement is hence proved. ⇤
(ii) Next, let y denote a given vector in Rh and compute

@

@↵j

⇥
�(↵Ty)

⇤
=

@

@↵j
[�(↵1y1 + · · · + ↵hyh)]

for each j = 1, . . . , h.

8

Let �(x; W) : R3 ! Rh denote the output of the first layer of our neural network,
defined by the composition

�(x; W) = ⌫(Wx).

We will use the shorthand �(k) = �(x(k); W), and as usual we denote the jth component

of the h ⇥ 1 vector �(k) by �(k)
j .

Solution. We may begin by expanding the general form of the LHS:

@

@↵j

⇥
�(↵Ty)

⇤
=

@

@↵j

2

6664
�

0

BBB@
⇥
↵1 ↵2 ... ↵h

⇤

2

6664

y1

y2
...
yh

3

7775

1

CCCA

3

7775

=
@

@↵j


1

1 + e�(↵1y1+↵2y2+...+↵hyh)

�

=
@

@↵j


1

1 + e�
Ph

i=1 ↵iyi

�

=

2

66666666664

y1
e�

Ph
i=1 ↵iyi

✓
1+e�

Ph
i=1 ↵iyi

◆2

y2
e�

Ph
i=1 ↵iyi

✓
1+e�

Ph
i=1 ↵iyi

◆2

...

yh
e�

Ph
i=1 ↵iyi

✓
1+e�

Ph
i=1 ↵iyi

◆2

3

77777777775

(24)

The general form can be written as

@

@↵j

⇥
�(↵Ty)

⇤
= yj

e�
Ph

j=1 ↵jyj

⇣
1 + e�

Ph
j=1 ↵iyi

⌘2 (25)

Since we know from the previous proof that

e�
Ph

j=1 ↵jyj

⇣
1 + e�

Ph
j=1 ↵iyi

⌘2 = �0

hX

j=1

↵iyi

!
(26)

Hence, one can write out the general form of the partial derivative:

@

@↵j

⇥
�(↵Ty)

⇤
= yj�

0

hX

j=1

↵iyi

!

(27)

It can be further expanded as

@

@↵j

⇥
�(↵Ty)

⇤
= �

�
↵Ty

� �
1 � �

�
↵Ty

��
yj (28)

⇤

9

(iii) Use the chain rule to show that

@L

@↵j
= 2

mX

k=1

�
g(x(k); ↵T, W) � yk

�
�0 �↵T�(k)

�
�(k)

j .

Solution. We may begin by writing out the general form of L:

L =
mX

k=1

�
g(x(k); ↵T, W) � yk

�2

=
mX

k=1

h
�

⇣
↵i�

⇣
Wx(k)

i

⌘⌘
� yk

i2
(29)

Using the chain rule, we can rewrite the loss function as

@L

@↵j
=

@L

@g

@g

@↵j
(30)

We may get some intuition by expanding the general form of g:

g =
1

1 + e

�↵T

2

666666664

�(Wx(k)
1)

�(Wx(k)
2)

...

�(Wx(k)
h)

3

777777775

(31)

Or simply

g =
1

1 + e
�↵T

⇣
Wx

(k)
j

⌘ (32)

By computing the partial derivative of g one gets:

@g

@↵j
=

�(�1)e
�↵T�

⇣
Wx

(k)
j

⌘

(1 + e
�↵T�

⇣
Wx

(k)
j

⌘

)2

�
⇣
Wx(k)

j

⌘

=
�

⇣
Wx(k)

j

⌘
e
�↵T�

⇣
Wx

(k)
j

⌘

✓
1 + e

�↵T�
⇣
Wx

(k)
j

⌘◆2

= �
⇣
Wx(k)

j

⌘
�0(�↵T�

⇣
Wx(k)

j

⌘

= �0(↵T�(k))�(k)
j

(33)

10

One can also expand the form of @L
@g :

@L

@g
=

@ (
Pm

k=1(gk � yk)2)

@gk

= 2
mX

k=1

(gk � yk)

= 2
mX

k=1

�
g(x(k); ↵T, W) � yk

�

(34)

Applying the chain rule and concatenate the two terms one has:

@L

@↵j
=

@L

@g

@g

@↵j

= 2
mX

k=1

�
g(x(k); ↵T, W) � yk

�
�0 �↵T�(k)

�
�(k)

j

(35)

The statement is hence proved. ⇤
Keeping (iii) in mind, notice that the 1⇥h gradient r↵L(↵T, W) can be written as the
vector-matrix product

r↵L(↵T, W) = 2
�
(~g � yT) ? vT

�
�T,

where ~g denotes the 1 ⇥ m row vector

~g =
⇥
g(x(1); ↵T, W) · · · g(x(m); ↵T, W)

⇤
,

vT is an appropriately defined 1 ⇥ m row vector, and � denotes the h ⇥ m matrix

� = [�(x(1); W), . . . , �(x(m); W)]

= [�(1), . . . , �(m)].

Here ? denotes the element-wise vector product, so that for any 1 ⇥ h row vectors a
and b, the product a ? b is again a 1 ⇥ h row vector with

(a ? b)j = ajbj.

(iv) Next, use the chain rule to compute @L
@wij

.

The calculation in part (ii) will serve as a motivating blueprint.

Solution. Using the chain rule, we can write

@L

@wij
=

@L

@g

@g

@�

@�

@wij
(36)

11

We first expand the last term @�
@wij

:

@�

@wij
=

@

2

6666666664

�

✓
w11 ...
... wij

�
x(k)

1

◆

�

✓
w11 ...
... wij

�
x(k)

2

◆

...

�

✓
w11 ...
... wij

�
x(k)

h

◆

3

7777777775

@wij

(37)

Or in the general form:
@�

@wij
= �0

⇣
wijx

(k)
j

⌘
x(k)

j (38)

One can then deal with the second term in the chain rule expansion:

@g

@�
=

@
⇥
�
�
↵T⌫(Wx)

�⇤

@ [⌫(Wx)]

=
@
h

1

1+e�↵T⌫(Wx)

i

@ [⌫(Wx)]

=
�(�↵T)e�↵T(⌫(Wx))

�
1 + e�↵T(⌫(Wx))

�2

= ↵T�0
⇣
�↵T⌫

⇣
Wx(k)

j

⌘⌘

(39)

The first term in the chain rule can be obtained by recalling the previous question:

@L

@g
= 2

mX

k=1

⇣
g
⇣
x(k)

j ; ↵T, W
⌘

� yk

⌘
(40)

By concatenating the three terms back into the chain rule we have

@L

@wij
= 2

mX

k=1

⇣
g
⇣
x(k)

j ; ↵T, W
⌘

� yk

⌘
↵j�

0
⇣
�↵T⌫

⇣
Wx(k)

j

⌘⌘
�0
⇣
wijx

(k)
j

⌘
x(k)

j

= 2
mX

k=1

⇣
g
⇣
x(k)

j ; ↵T, W
⌘

� yk

⌘
↵j�

0
⇣
�↵T�(k)

j

⌘
�0
⇣
wijx

(k)
j

⌘
x(k)

j

(41)

Specifically for our case, with 4 hidden layers and 4 data sets with three fitting
parameters, the model can be written as:

@L

@wij
=

4X

k=1

2
�
g(k) � yk

�
�0

4X

i=1

↵i�
⇣
N (k)

i

⌘!
↵i�

0
⇣
wi1x

(k)
1 + wi2x

(k)
2 + wi3x

(k)
3

⌘
x(k)

j

(42)
⇤

12

(v) For ease of implementation, we write the h⇥3 gradient rW L(↵T, W) as a matrix-
matrix product.

In particular, find h ⇥ m matrices S and P such that

rW L(↵T, W) = 2(S ? P)XT,

where X denotes the 3 ⇥ m matrix of data points:

X =
⇥
x(1) · · · x(m)

⇤
.

Here S ? P denotes the element-wise product of S and P , so that

(S ? P)ij = sijpij.

Hint: The matrix P can be expressed as an outer product.

Solution.

Given that rW L(↵T, W) can be written as a matrix-matrix product 2(S ? P)XT,
where S is an h ⇥ m matrix, P is an h ⇥ m matrix, X is a 3 ⇥ m matrix of the
data table.

Following our previous solution, recall @L
@w :

@L

@wij
= 2

mX

k=1

⇣
g

⇣
x(k)

j ; ↵T, W
⌘

� yk

⌘
↵j�

0
⇣
�↵T�(k)

j

⌘
�0

⇣
wijx

(k)
j

⌘
x(k)

j (43)

From the hint, by observing the other terms one may see the “outer product”:

pij = ↵j

mX

k=1

(gk � yk)�
0 �Wx(k)

�
(44)

where the multiplication between (gk � yk) and �0(Wx(k)) are per element-wised.
Or one may also write out the general form for P :

P = ↵T ((~g � ~y) �0(WX)) (45)

where X stores all the ~xs: X = [~x(1), ~x(2), ~x(3), ~x(4)].

And the form for S:
S = �0 �↵T�0 �↵T�

��
(46)

Note that this is not the only way to construct S and P . ⇤
(vi) Implement the gradient descent method to fit your neural network g to the data

in Table 2.

Use h = 4 hidden units and perform at least 1500 iterations of gradient descent,
updating your model parameters at each step as described by (21). Initialize each
parameter by independently drawing a uniformly distributed random number in

13

the interval (0, 1). In MATLAB, you may initialize your parameters using
alpha = rand(1, h); W = rand(h, 3);

Report optimal values for the model parameters. Report your fitted model’s output
for each data point in Table 2.

Include a convergence plot graphing the total loss as a function of iteration number,
and include all relevant code.

Solution.

Given the hints and previous derivations, I wrote the following codes:

1 clear;clc

2

3 x1_data = [0 0 1 1]’;

4 x2_data = [0 1 0 1]’;

5 x3_data = [1 1 1 1]’;

6 y_data = [0 1 1 0]’;y = y_data;

7 X = [x1_data ,x2_data ,x3_data]’;

8

9 h = 4; alpha = rand(1, h); W = rand(h, 3);

10 %Define helper functions

11 sigmoid = @(x) 1./(1 + exp(-x));

12 dsigmoid = @(s) s .* (1 - s);

13 one_layer = @(X, W) sigmoid(W * X);

14 nn = @(X, alpha , W) one_layer(one_layer(X, W), alpha);

15 phi = @(i) sigmoid(W*X(:,i));

16 Phi = [phi (1),phi (2),phi(3),phi(4)];

17 %% NN iterations

18

19 y = y_data;y = y’;

20 fprintf("------------------------")

21 for iter = 1:5000

22 g = nn(X, alpha , W);

23

24 phi = one_layer(X,W);

25 dL_dalpha = 2*(g - y) .* dsigmoid(g) * phi;

26

27 S = dsigmoid(one_layer(X,W));

28 P = alpha ’ * (g - y) .* dsigmoid(g);

29 dL_dW = 2 * S.*P*X’;

30 fprintf ("**********************");fprintf (" Iteration %d",

iter);fprintf ("**********************\n")

31

32 W = W - dL_dW;

33 alpha = alpha - dL_dalpha;

34

35

36 Loss(iter) = mse(nn(X, alpha , W),y);

37 end

38 y_pred = nn(X, alpha , W);

And after 5000 iterations, we get the output (the prediction) as

1 >> y_pred

2

14

3 y_pred =

4

5 0.0069 0.9892 0.9922 0.0092

The convergence plot is attached in the following figure (loss was plotted in the
log scale). It can be clearly observed that the loss decreases and converges to a very
low value (⇠ 10�4). And the corresponding output 0.0069 0.9892 0.9922 0.0092
is very close to the given training data y = [0 1 1 0]T. Hence, the neural net-
work worked well to converge to the desired value.

Note also this is not the only way to make the NN work. If one were to strictly
stick with the hint, we may also construct two MATLAB functions “grad1()”,
“grad2()” as follows:

1 function dL_dW = grad1(X, y, alpha , W)

2 % Helper functions

3 sigmoid = @(X) 1./(1 + exp(-X));

4 dsigmoid = @(s) s .* (1 - s);

5 one_layer = @(X, W) sigmoid(W * X);

6

7 nn = @(X, alpha , W) one_layer(one_layer(X, W), alpha);

8 nn2 = @(alpha , Phi) one_layer(one_layer(Phi), alpha);

9 g = nn(X, alpha , W);

10 S = dsigmoid(one_layer(X,W));

11 P = alpha ’ * (g - y) .* dsigmoid(g);

12 dL_dW = 2 * S.*P*X’;

13 end

1 function dL_dalpha = grad2(Phi , y, alpha)

2 dsigmoid2 = @(s) s .* (1 - s);

3 sigmoid = @(X) 1./(1 + exp(-X));

4 one_layer = @(X, W) sigmoid(W * X);

5 one_layer2 = @(Phi) sigmoid(Phi);

15

6 Phi_func = @(Phi) one_layer2(Phi);

7 nn2 = @(alpha , Phi) one_layer(sigmoid(Phi), alpha);

8

9 g = nn2(alpha , Phi);

10 dL_dalpha = 2*(g - y) .* dsigmoid2(g) * Phi;

11 end

Surprisingly, using this method, for 5000 iterations, I got an extremely accurate
result:

1 >> y_pred

2

3 y_pred =

4

5 0.0000 1.0000 1.0000 0.0000

Using this method, the corresponding loss evolution is plotted as follows:

One observes that the loss drops to ⇠ 10�12, which is extremely small. So it is
found that using this “function-based” approach, the approximation accuracy has
been significantly improved.

Here, the loss is plotted using the MATLAB mse(·) function, which is not directly
using the loss L we defined in the instruction. One may also directly plot the
corresponding convergence of loss L as follows (this is a di↵erent attempt with a
di↵erent set of randomized initialization), which should show the same trend:

16

Both the “mse” loss and the defined L show the same converging trend. The
corresponding reported optimal weights W and ↵ are

1 >> W

2

3 W =

4

5 5.0344 3.9085 -6.9991

6 -2.6231 2.1599 -0.8294

7 6.7636 7.3798 -3.0521

8 -3.2643 3.3287 2.3026

9

10 >> alpha

11

12 alpha =

13

14 -8.0477 5.2885 7.8228 -7.2177

⇤
(vii) Using the optimal parameter values obtained in (vi), evaluate your neural network

g(x; ↵T, W) at the point x(1) = [0, 0, 1]T.

Report your model’s prediction and compare it with your result from part (a)(iv).

Solution.

Based on the given output I printed (from Method 1) from the last sub-question,
we know the corresponding evaluated y1 is 0.0069, which is very close to 0. If
one uses the prediction from my reported second method, the prediction is y1 =
0.0000, which indicates that with 4-digit precision the prediction is basically the
same as the training data. This result is significantly more accurate than the pure
linear model prediction from (a)(iv).

Here, we may have some additional discussions for the neural network implemen-
tation. Using the function approach (“grad1(·)” and “grad2(·)”), the numerical
accuracy is higher. If one directly computes the @L

@W and @L
@↵ in the same MATLAB

script, the numerical accuracy is reported lower. ⇤

17

Implementation hints:

• Built-in functions in MATLAB are vectorized, which means, for instance, that the
MATLAB command exp(ones(4,2)) applies the exp function to each component
of the array ones(4,2).

• In MATLAB, you may perform component-wise array products and quotients by
prefixing the appropriate operator with a period. For instance, the command
v .* w computes the component-wise product of the arrays v and w.

• The following MATLAB code might be useful. Aside from the helper functions be-
low, all that is needed to implement gradient descent are methods grad1(X, y, alpha, W)
and grad2(Phi, y, alpha) that can evaluate the relevant derivatives. Each of
these can be implemented with less than 7 lines of code!

1 %Initialize parameters
2 h = 4; alpha = rand(1, h); W = rand(h, 3);
3

4 %Define helper functions
5 sigmoid = @(x) 1./(1 + exp(-x));
6

7 dsigmoid = @(s) s .* (1 - s);
8

9 one_layer = @(X, W) sigmoid(W * X);
10

11 nn = @(X, alpha , W) one_layer(one_layer(X, W), alpha);

18

Problem 3. (a) Compute the eigenvalues and eigenvectors of the following matrix:

A =

2

4
�1 3 1
�1 3 1
�3 3 3

3

5

Solution. We begin with calculating the eigenvalues:

det(A � �I) = 0
������

�1 � � 3 1
�1 3 � � 1
�3 3 3 � �

������
= 0

(�1 � �)

����
3 � � 1

3 3 � �

���� � 3

����
�1 1
�3 3 � �

���� +

����
�1 3 � �
�3 3

���� = 0

(47)

Expanding the equation one has

�(1 + �)(3 � �)2 + 6(3 � �) + 3(1 + �) � 12 = 0 (48)

Solving the equation one gets 8
><

>:

�1 = 0

�2 = 2

�3 = 3

(49)

One can solve for the eigenvectors for the di↵erent eigenvalues respectively.

For �1 = 0, we have 2

4
�1 3 1
�1 3 1
�3 3 3

3

5

2

4
v1

v2

v3

3

5 = 0 (50)

We can then solve the systems of equations:
8
><

>:

3v2 � v1 + v3 = 0

3v2 � v1 + v3 = 0

3v2 � 3v1 + 3v3 = 0

!
(

v1 = v3

v2 = 0
(51)

One then get the first eigenvector:

~V1 =

2

4
1
0
1

3

5 (52)

Here, the normalized form of the eigenvector ~V1 should be

~V1 =

2

4
1/

p
2

0
1/

p
2

3

5 (53)

19

For �2 = 2, we have 2

4
�3 3 1
�1 1 1
�3 3 1

3

5

2

4
v1

v2

v3

3

5 = 0 (54)

We can then solve the systems of equations:
8
><

>:

3v2 � 3v1 + v3 = 0

v2 � v1 + v3 = 0

3v2 � 3v1 + v3 = 0

!
(

v1 = v2

v3 = 0
(55)

One then get the second eigenvector:

~V2 =

2

4
1
1
0

3

5 (56)

Here, the normalized form of the eigenvector ~V2 should be

~V2 =

2

4
1/

p
2

1/
p

2
0

3

5 (57)

For �3 = 3, we have 2

4
�4 3 1
�1 0 1
�3 3 0

3

5

2

4
v1

v2

v3

3

5 = 0 (58)

We can then solve the systems of equations:
8
><

>:

3v2 � 4v1 + v3 = 0

v3 � v1 = 0

3v2 � 3v1 = 0

!
(

v1 = v2

v1 = v3
(59)

One then get the third eigenvector:

~V3 =

2

4
1
1
1

3

5 (60)

Here, the normalized form of the eigenvector ~V3 should be

~V3 =

2

4
1/

p
3

1/
p

3
1/

p
3

3

5 (61)

The three eigenvalues �1, �2, �3, and three eigenvectors ~V1, ~V2, ~V3 are then obtained.

20

We may also represent them in the form of a spanning set, denoted as V:

V =

8
<

:

2

4
1/

p
2

0
1/

p
2

3

5 ,

2

4
1/

p
2

1/
p

2
0

3

5 ,

2

4
1/

p
3

1/
p

3
1/

p
3

3

5

9
=

; (62)

⇤

(b) Prove that if a symmetric matrix A has n distinct eigenvalues, then the corresponding
eigenvectors are orthogonal to each other.

Solution. Since we know that A is symmetric, and A has n distinct eigenvalues, it is
then known that one can apply the canonical decomposition for A1:

A = Y ⇤Y �1 (63)

where ⇤ stores all the eigenvalues. We then know the matrix Y stores all the vectors.
Since it is known that by definition for the canonical decomposition, the columns in Y
are orthogonal. Hence the statement is proven.

One may also prove this statement without thinking about the canonical decompo-
sition. Let’s denote the symmetric matrix A with distinct eigenvalues as A and its
corresponding eigenvectors as v1, v2, . . . , vn corresponding to eigenvalues �1, �2, . . . , �n.

By definition, the eigenvalues and eigenvectors for A are given by:

A~vi = �i~vi (64)

Now, let’s consider two distinct eigenvectors ~vi and ~vj corresponding to eigenvalues �i

and �j where i 6= j. We want to prove that ~vi and ~vj are orthogonal. In other words,
we want to show that ~vT

i ~vj = 0.

From the definition in Equation (64), we know that

(A � �i)~vi = 0 (65)

We can multiply Equation (65) by ~vj:

~vT
j A~vi � ~vT

j �i~vi = 0 (66)

Since we know that AT is a symmetric matrix, we know:

~vT
j AT~vi � ~vT

j �i~vi = 0

(A~vj)
T~vi � �i~v

T
j ~vi = 0

(67)

Since we also know that (by definition) A~vj = �j~vj, Equation (67) can be further
written as

�j~v
T
j ~vi � �i~v

T
j ~vi = 0

(�j � �i)~v
T
j ~vi = 0

(68)

1or in other words, the canonical decomposition exists

21

Since we already assumed that A has n distinct eigenvalues, we know that �j 6= �i, or
(�j � �i) 6= 0. Hence, the only way to establish Equation (68) is

~vT
j ~vi = 0 (69)

Hence, in this sense, we also proved that the eigenvectors of A have to be orthogonal
to each other. ⇤

(c) Suppose that P is any invertible n⇥n matrix. Show that A and P�1AP have the same
eigenvalues.

Solution. Taking the previous assumption that A is symmetric and assume A has
canonical decomposition: A = Y ⇤Y �1. We may define that B = P�1AP . One can
then expand B in terms of the canonical decomposition of A:

B = P�1Y ⇤Y �1P (70)

where ⇤ stores all the eigenvalues of A. One can further write this relation as

B =
�
P�1Y

�
⇤

�
P�1Y

��1
(71)

where we may define X = P�1Y , such that B = X⇤X�1.

Since vectors in Y are A’s eigenvectors, we know

(A � �)~yi = 0, ~yi 2 Y (72)

or further:
(A � ⇤)Y = ~0 (73)

Since � is a diagonal matrix, we know

⇤Y = Y ⇤ (74)

We can therefore rewrite Equation (73):

AY = Y ⇤ (75)

From AY = Y ⇤ we can write:

P�1AY = P�1Y ⇤

! P�1APP�1Y = P�1Y ⇤

BP�1Y = P�1Y ⇤

BX = X⇤

(76)

We therefore know X = P�1Y stores the eigenvector of B.

From (A � ⇤)Y = 0 we know it is satisfied that

�
PBP�1 � ⇤

�
Y = 0 (77)

22

Therefore, B and A share the same eigenvalues stored in matrix ⇤, with eigenvectors
P�1Y for B. But note that this is only a partial proof, as (1) we shall not assume A
is diagonalizable as it is not provided in the instructions, and (2) the diagonalizable A
case may not be able to generalize to all cases.

One may also prove this without using the canonical decomposition (or a more general
proof). From the definition, we may begin with

A~vi = �i~vi (78)

One can further write:
P�1A~vi = P�1�i~vi (79)

or can also be written in the form:
�
P�1A

�
~vi = �iP

�1~vi (80)

Here, we may define that P�1~vi = ~wi (from this we also know that ~vi = P ~wi). Equation
(80) can be further rewritten as

P�1AP ~wi = �i ~wi (81)

We may interpret this equation from the geometric perspective, where the projection
of matrix P�1AP on vector ~wi is the same as the scalar multiplication by �i on vector
~wi. In other words, it writes:

�
P�1AP � �i

�
~wi = 0 (82)

where from this we know the vector ~wi is in the nullspace of matrix P�1AP . So ~wi is
an eigenvector of P�1AP . Therefore, if we write C = P�1AP , the equation

(C � �i) ~wi = 0 (83)

says that �i is the eigenvalue of C. Hence, C and A have the same eigenvalues. We
can then say P�1AP has the same eigenvalues as A. The statement is hence proved.

⇤

(d) If D is a diagonal matrix, what are the eigenvalues of D?

Solution. The eigenvalues would be the diagonal elements of D.

One can expand the characteristic equation to see this:

det(D � ⇤) = 0

!

�����������

d11 � �1 0 0 ... 0
0 d22 � �2 0 ... 0

d33 � �3
...

dnn � �n

�����������

= 0

nY

i

(dii � �i) = 0

(84)

23

We therefore know that 8
>>>>>><

>>>>>>:

�1 = d11

�2 = d22

�3 = d33

...

�n = dnn

(85)

So it is easy to see that the eigenvalues would be the diagonal elements, i.e., �i = dii.
⇤

(e) Consider the di↵erential equation
dx

dt
= Ax.

Show that if x(0) is an eigenvector of A with eigenvalue �, then

x(t) = e�tx(0)

is a solution to the di↵erential equation.

Solution. We may begin the proof by substituting x(t) = e�tx(0) back to the ODE:

d~x

dt
=

d

dt

�
e�t~x(0)

�

d~x

dt
= �e�t~x(0) + e�t d~x(0)

dt
= A~x

(86)

Since x(0) is an eigenvector of A, we know

A~x(0) = �~x(0) (87)

Substitute this back to Equation (86) one has

�e�t~x(0) + e�t d~x(0)

dt
= �e�t~x(0) (88)

Since x(0) is not a function of time, we know d~x(0)
dt = 0, therefore:

�e�t~x(0) = �e�t~x(0) (89)

The relationship is hence established. Hence, one knows that ~x(t) = e�t~x(0) is a
solution to the given ODE.

The statement is hence proved. ⇤

24

ME300A HW#5
Hanfeng Zhai (hzhai@stanford.edu) December 9, 2023

Problem 1. (Population Dynamics.) There are many di↵erent manners through which we
can model population dynamics, but many of the models we use involve a system of ordinary
di↵erential equations. Let’s start with a simple model.

dP1

dt
= �0.8P1 + 0.4P2

dP2

dt
= �0.4P1 + 0.2P2

We start with a linear model for population dynamics, where P1 represents the population
of pandas (in thousands) and P2 represents the population of bamboo caterpillars (in mil-
lions). The amount of bamboo eaten by pandas leads to them being heavy competitors within
themselves as well as bamboo caterpillars for food. Caterpillars support their own population
growth since they do not eat so much, but pandas will sometimes benefit from their population
growth as an alternative food source.

1. Write this linear system of di↵erential equations as a matrix equation

d~P

dt
= A~P ,

where ~P = [P1 P2]T . Identify the set of values for which the populations will be

unchanging (i.e., fixed points, where d~P
dt = 0). What is the relationship between these

values and the matrix A?

Solution. One can rewrite this linear system as

�0.8 0.4
�0.4 0.2

� 
P1

P2

�
=


dP1
dt

dP2
dt

�
(1)

To find the fixed point, one needs to solve:

�0.8 0.4
�0.4 0.2

� 
P1

P2

�
=


0
0

�
(2)

Solving this linear system we have

2P1 = P2 (3)

This indicates the general solution for the fixed point can be represented as

~P =


1
2

�
t, t = const. (4)

One can then substitute this back to the original matrix-vector multiplication and
obtain the solution. Hence, vector P is a basis of the nullspace for matrix A. ⇤

1

2. Decouple (or diagonalize) A to write a general solution for ~P (t) with initial condition
~P (0). Is there a stable coexistence of a particular proportion of pandas and bamboo
caterpillars? In other words, what happens to P1(t) and P2(t) as t ! 1?

Hint: Recall that diagonalization allows us to express e
At as Xe

⇤t
X

�1.

Solution. The general solution writes

~P = e
At ~P (0)

= Xe
⇤t

X
�1 ~P (0)

!

P1

P2

�
=


x11 x12

x21 x22

�
e
⇤t


x11 x12

x21 x22

��1 
P1(0)
P2(0)

� (5)

To obtain X and ⇤, one can solve for the eigenvectors and eigenvalues of A. For �1 = 0,
one get the eigenvector

~v1 =


1
2

�
(6)

For �1 = �3
5 , one get the eigenvector

~v2 =


2
1

�
(7)

One can then use the normalized eigenvectors as a vector set:

V =

⇢
1p
5


1
2

�
,

1p
5


2
1

��
(8)

One can also write the eigenvalue matrix ⇤:

⇤ =


0 0
0 �3

5

�
(9)

Based on ⇤ and X (from V), A
(t) can be represented as

A
(t) =

"
4 e�

3 t
5

3 � 1
3

2
3 � 2 e�

3 t
5

3
2 e�

3 t
5

3 � 2
3

4
3 � e�

3 t
5

3

#
(10)

When t ! 1, A
(t) writes:

lim
t!1

A
(t) =

1

3


�1 2
�2 4

�
(11)

It can be observed that P1(t) and P2(t) agree with the general solution for the linear

system of d~P
dt =


0
0

�
. Here, if one were to determine the stable coexistence, we can

substitute the initial condition back to the equation:

P1

P2

�
= Xe

⇤t
X

�1


P1(0)
P2(0)

�

= lim
t!1

A
(t)


P1(0)
P2(0)

� (12)

2

=
1

3


�1 2
�2 4

� 
P1(0)
P2(0)

�

Since under the stable coexistence, the population of pandas and bamboo caterpillars
should all be positive.

Hence, we can proceed with the equation

�P1(0) + 2P2(0) > 0

! 2P2(0) > P1(0)
(13)

Which is the condition for the stable coexistence to exist for the equation. To be more
precious (to answer the “in other words” in the instruction), both P1(t) and P2(t) are
nonzero when t ! 1 with the given initial condition.

⇤

This linear model was helpful for the first approach to modeling competitive species. Still,
it would be nice if we could also model the e↵ects of the limiting factor, the available bamboo.
We adapt our model to include a new variable, B, which represents the bamboo population
(in millions), and formulate a nonlinear system of equations. We generalize the previ-

ous equation to include nonlinearity with d~P
dt = ~f(~P). Note: we have normalized all

quantities so that reasonable populations should be O(1).

dP1

dt
= �0.8P1 + 0.4P2 + 0.1P1B

dP2

dt
= �0.4P1 + 0.2P2 + 0.01P2B

3

dB

dt
= 1 � 0.1P1 � 0.3P2 � 0.25B

1. Write your own Newton-Raphson method in MATLAB to identify a positive fixed point
(with elements all O(1)) for this system of equations and submit your code. Recall that
for a multi-dimensional system, Newton-Raphson will generalize from 1D to multiple
dimensions as:

~x
(n+1) = ~x

(n) � J(~x(n))�1 ~f(~x(n))

where J(~x(n)) is the Jacobian evaluated at ~x = ~x
(n). Note that J(~x(n)) will vary for

each iteration, but you can calculate a formula for the Jacobian. Rather than construct

the inverse of J(~
x(n)), we can save time by solving the linear system at every iteration:

J(~x(n))(~x(n+1) � ~x
(n)) = �~f(~x(n))

Feel free to use MATLAB’s backslash \ operator to solve this linear system.

Solution. Based on the nonlinear system:

~f =
d~P

dt
!

8
><

>:

f1 = dP1
dt

f2 = dP2
dt

f3 = dP3
dt

(14)

3

with a solution vector ~x =

2

4
P1

P2

B

3

5 One can thence expand the terms for the Jacobian:

J =

2

4
�0.8 + 0.1B 0.4 0.1P1

�0.4 0.2 + 0.01B3 0.03P2B
2

�0.1 �0.3 �0.25

3

5 (15)

One can further expand the provided iteration scheme:

J(~x(n))
�
�~x

(n)
�

| {z }
~x(n+1)�~x(n)

= �~f(~x(n)) (16)

And the target solution can then be obtained via solving the linear system
�
�~x

(n)
�

= �J
�1 ~f (17)

Based on this simple formulation, one writes the following code, with a random initial

vector ~x0 as ~x0 =

2

4
0.1
0.1
0.1

3

5:

1 x0 = [.1; .1; .1];
2 tolerance = 1e-10;
3 max_iter = 100;
4 iteration = 0;
5 while iteration < max_iter
6 f_x = system_equations(x0);
7

8 if norm(f_x) < tolerance
9 fixed_point = x0;

10 disp(’Converged to a fixed point:’);
11 disp(fixed_point);
12 return;
13 end
14 J_x = jacobian_matrix(x0);
15 delta_x = J_x \ (-f_x);
16 x0 = x0 + delta_x;
17 iteration = iteration + 1;
18 end

With the corresponding functions write

1 function f_x = system_equations(x)
2 f_x = [
3 -0.8*x(1) + 0.4*x(2) + 0.1*x(1)*x(3);
4 -0.4*x(1) + 0.2*x(2) + 0.01*x(2)*x(3) ^3;
5 1 - 0.1*x(1) - 0.3*x(2) - 0.25*x(3)
6];
7 end

and

4

1 function J_x = jacobian_matrix(x)
2 J_x = [
3 -0.8 + 0.1*x(3), 0.4, 0.1*x(1);
4 -0.4, 0.2 + 0.01*x(3)^3, 0.01*x(2) *3*x(3) ^2;
5 -0.1, -0.3, -0.25
6];
7 end

And we get the converged solution from Newton-Raphson:

1 Converged to a fixed point:
2 1.6854
3 3.9836
4 -1.4544

However, one should notice that here there is a negative fixed-point scenario, which
should not be expected, considering we should not have a negative value of bam-
boo population. Hence, we can change the initial point and re-converge the iteration

scheme. If one were to pick the initial point of ~x0 =

2

4
1
2
2

3

5, we converge to the fixed

point:

~Pfp =

2

4
0.9749
1.5122
1.7954

3

5 (18)

which is in some sense correct. Because the bamboo population is positive (nonzero and
not negative), with coexisting panda and caterpillar populations positive. Note that

by testing a few other initial points verified the converged fixed point, e.g., ~v0 =

2

4
1
3
2

3

5,

~v0 =

2

4
5
1
2

3

5, ~v0 =

2

4
1.2
5
1

3

5, ...

We can then verify the accuracy of the convergence. Taking the

2

4
1
2
2

3

5 as the initial

point, we have

1 >> verify_fp = system_equations(fixed_point)
2

3 verify_fp =
4

5 1.0e-13 *
6

7 -0.8576
8 0.3132
9 0

indicating that the iteration indeed converges within the error tolerance. ⇤

5

2. Near the fixed point, we can approximate the behavior of the nonlinear system as some-
thing that looks like:

d~P

dt
= J(~Pfp)~P

where J(~Pfp) is the Jacobian evaluated at the fixed point ~Pfp. J(~Pfp) is then a constant
coe�cient matrix, meaning we have a linear system of di↵erential equations. Our
situation is the same as the one we had in part (a), so we can decouple our system
near this fixed point.
Using MATLAB, identify the eigenvalues for this system. What do the real parts of
the eigenvalues imply about the stability of the fixed point for long times?

Solution. Using MATLAB, one can evaluate the Jacobian at the fixed point to get
J(~Pfp):

1 >> J_fp = jacobian_matrix(fixed_point)
2

3 J_fp =
4

5 -0.6205 0.4000 0.0975
6 -0.4000 0.2579 0.1462
7 -0.1000 -0.3000 -0.2500

One can then get the eigenvector and eigenvalues of this coe�cient matrix:

1 >> [v,d] = eig(J_fp)
2

3 v =
4

5 -0.5109 + 0.0000i 0.1677 + 0.2761i 0.1677 - 0.2761i
6 -0.1305 + 0.0000i 0.2705 + 0.4199i 0.2705 - 0.4199i
7 -0.8497 + 0.0000i -0.8038 + 0.0000i -0.8038 + 0.0000i
8

9

10 d =
11

12 -0.3562 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
13 0.0000 + 0.0000i -0.1282 + 0.1911i 0.0000 + 0.0000i
14 0.0000 + 0.0000i 0.0000 + 0.0000i -0.1282 - 0.1911i

One can then get the real parts of the eigenvalues:

�1 = �0.3562

�2 = �0.1282

�3 = �0.1282

(19)

We observe that all the real parts of the eigenvalues are negative. Since limt!1 e
at = 0,

implies the eigenvalues goes to zero. Hence, we can say this iteration scheme is stable.
⇤

6

Problem 2. (PageRank for Wikipedia.) In this question, we’ll have a closer look at the
PageRank algorithm. This algorithm famously invented for the Google search engine, is
based on the idea that the most important websites will have many important websites linking
to them. Here we will try applying the same algorithm to a data set of Wikipedia articles
and the links between them.

The PageRank algorithm can be formulated as a linear system:

~x = ↵P~x + (1 � ↵)~v

where the vector ~x describes the relative importance of a page, the “PageRank.” The PageR-
ank matrix P describes the linking structure between pages; in particular, Pij can be thought
of as the probability that page j links to page i when an outgoing link of j is taken at random.
In other words, each column of P represents a probability vector describing the probability of
transitioning from one page to all others. The vector ~v ascribes a base level of importance
to all pages, and ↵ is a positive scalar parameter that determines the amount of importance
that propagates through links in the page network.

To simplify our problem, we will set ↵ = 1, so we are left with an eigenvalue equation for
P , i.e. ~x = P~x. The data set for this problem is sampled from a snapshot of English-language
Wikipedia articles in 2023. Altogether the smaller data set we will work with contains the
linking relationships between 105 of the webpages of Wikipedia.

To start, we will use an example 6 node case, with graph as in Fig. 1 and corresponding
pagerank matrix:

1

2

3
4

5

6

Figure 1: Directed graph for six webpages.

P =

2

6666664

0 0 0.25 0 0.333 0
0.5 0 0.25 0 0 0.5
0 0.5 0 0.5 0.333 0

0.5 0 0.25 0 0 0
0 0 0 0 0 0.5
0 0.5 0.25 0.5 0.333 0

3

7777775

(a) Write your own MATLAB function that implements the Power Method to
determine the largest eigenvalue and eigenvector of any given PageRank
matrix and submit your code. Using your favorite (nonzero) initial vector,
apply it to the given PageRank matrix associated with the graph. What
is the PageRank vector?

(b) For your Power Method function, plot the error norm against the iteration
number on a semilogy plot.
Recall that the rate of convergence of the Power Method algorithm scales
as |�2/�1|k, where k is the iteration. Based on the slope of your error
norm, what do you expect the magnitude of the next largest eigenvalue
to be? Compare your prediction to the actual second largest eigenvalue
in magnitude of P using the eig function.

(c) We have provided two files, a sparse PageRank matrix for 100, 000 articles
in Pagerank Transition.mat and the names that correspond to each page
in Wikipedia Article Names.mat. Use your algorithm to calculate the

Figure 1: Directed graph for six webpages.

P =

2

6666664

0 0 0.25 0 0.333 0
0.5 0 0.25 0 0 0.5
0 0.5 0 0.5 0.333 0

0.5 0 0.25 0 0 0
0 0 0 0 0 0.5
0 0.5 0.25 0.5 0.333 0

3

7777775

1. Write your own MATLAB function that implements the Power Method to determine
the largest eigenvalue and eigenvector of any given PageRank matrix and submit your

7

code. Using your favorite (nonzero) initial vector, apply it to the given PageRank
matrix associated with the graph. What is the PageRank vector?

Solution. Based on the given iteration scheme, one can write the following MATLAB
codes:

1 clc;clear
2 %%
3 P = [0 0 .25 0 .333 0;...
4 .5 0 .25 0 0 .5;...
5 0 .5 0 .5 .333 0;...
6 .5 0 .25 0 0 0;...
7 0 0 0 0 0 .5;...
8 0 .5 .25 .5 .333 0];
9 %%

10 x_0 = [1 0 0 0 0]’;
11 [D,k] = powermeth(P)

With the function writes:

1 function [v,d,err] = powermeth(A)
2 k = 1; %initialize counter
3 [n, n] = size(A);
4 v = randn(n, 1); % initialize with a random vector
5 v = v / norm(v);
6 d = v’*A*v;
7 tol = 1e-15;
8 max_iter = 10000;
9 while k<max_iter

10

11 v = A*v / norm(A*v);
12 d_new = v’*A*v;
13 err(k) = norm(d_new - d)/norm(d);
14 if(norm(d_new - d)/norm(d) < tol)
15 v = v / norm(v);
16 d = d_new;
17 break
18 end
19 d = d_new;
20 k = k+1;
21

22 end
23 end

In this implementation, my “favorite” initial vector is a randomized 1 ⇥ 6 vector:

~x0 =

2

6666664

0.1001
�0.5445
0.3035

�0.6003
0.4900
0.7394

3

7777775
, and the iteration returned PageRank vector is ~v =

2

6666664

0.2134
0.5142
0.4656
0.2231
0.2911
0.5821

3

7777775
. Since

the initial vectors are randomized each time, the algorithms converge to the same
vector, verifying the correctness of the algorithm. ⇤

8

2. For your Power Method function, plot the error norm against the iteration number on
a semilogy plot.
Recall that the rate of convergence of the Power Method algorithm scales as |�2/�1|k,
where k is the iteration. Based on the slope of your error norm, what do you expect the
magnitude of the next largest eigenvalue to be? Compare your prediction to the actual
second largest eigenvalue in the magnitude of P using the eig function.

Solution.

By plotting using the “semilogy” we get the following figure:

The curve fitting procedure is shown as follows:

Based on the curve fit, one can solve this equation using a few lines of code:

1 syms lam2
2 eqn = abs(lam2 /1)^2 == 0.41;
3 soln = solve(eqn , lam2); round(soln ,3)

and obtain

9

1 ans =
2

3 0.64

Using the eig function, one obtains the magnitude of the second largest eigenvalues of
P is 0.6624. It can then be deduced that our solution is 0.64 and the actual value is
0.6624, which is pretty close. The di↵erence (⇠ 0.0224) is likely to be caused by the
numerical precision of the computer. ⇤

3. We have provided two files, a sparse PageRank matrix for 100, 000 articles in Pagerank
Transition.mat and the names that correspond to each page in Wikipedia Article
Names.mat. Use your algorithm to calculate the PageRank vector, and provide us
with the top 10 Wikipedia articles and their corresponding PageRanks. Hint: Use both
return values from the sort algorithm to retrieve both large values and corresponding
indices.

Solution. Using the provided data file, we use the power method and use the following
codes:

1 clc;clear
2 load(’Wikipedia_Article_Names.mat’);
3 load(’Pagerank_Transition.mat’);
4 [v_trans ,d_trans ,err_trans] = powermeth(Transition_Probability_Matrix

);
5 [sorted_ranks , indices] = sort(v_trans , ’descend ’);
6 top_10_indices = indices (1:10);
7 top_10_names = Article_Names(top_10_indices);
8 top_10_ranks = sorted_ranks (1:10);

The obtained top 10 articles are

1 >> top_10_names ’
2

3 ans =
4

5 10x1 cell array
6

7 {’World War II’ }
8 {’United States ’ }
9 {’Latin’ }

10 {’Catholic Church ’}
11 {’United Kingdom ’ }
12 {’World War I’ }
13 {’India’ }
14 {’France ’ }
15 {’China’ }
16 {’Soviet Union ’ }

Their corresponding PageRanks are

1 >> top_10_ranks
2

3 top_10_ranks =
4

10

5 0.1905
6 0.1669
7 0.1411
8 0.1136
9 0.1123

10 0.1100
11 0.0908
12 0.0907
13 0.0893
14 0.0814

⇤

4. Once again, plot the error norm against the iteration number to get a look at the
convergence rate.

Solution. By plotting the convergence plot with semilogy method we generate the
following figure:

Using a similar approach, one can also calculate the convergence rate by fitting the
curve shown in the following figure. It can also be observed that in my implementation
there are some “fluctuations” in the converging process. I attribute this “convergence
fluctuation” to the numerical error caused by MATLAB.

Based on the set tolerance for this problem 10�15, the power method converge to this
tolerance after ⇠ 200 iterations.

⇤

11

12

