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Motivation

A Simple Question: What are Good Materials?

Structures

Properties

Credit: Bauer et al. PRF, 2019Credit: UConn Today, 2018

Credit: APS 2022; Physics 15, 40

• Hard  

• High Strength 

• High Thermal 

Conductivity 

• Corrosion Resistant 

• …

• Soft 

• Breathability 

• Elasticity  

• …
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Computations



Motivation

Follow-Up Questions: How to Understand & Design Good Materials?
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Credit: Laboratory for Multiscale Mechanics Modeling, EPFL

Understand from Multiscale Theories + Simulations Designing from Multiscale based on Applications
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PART I PART II & III



Part I: Multiscale Mechanics of Graphene
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Credit: SciTechDaily.com

Multiscale Structures
Credit: Reddit.com

High Strength

Credit: Am. Chem. Soc.

Thermal Conductive

Molecular

Credit: gfycat.com

Ab initio

Continuum

Graphene

“A wonder material”

Credit: SciTechDaily.com

Flexible

http://SciTechDaily.com
http://Reddit.com
http://gfycat.com
http://SciTechDaily.com


Part I: Multiscale Mechanics of Graphene
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Question I: What’s the effect of empirical interatomic 

potentials in modeling & computations? 

Question II: Can we benchmark empirical potentials with 

machine learning potentials? If yes, what’s the differences? 

Question III: Can we verify molecular dynamics simulations 

from mechanics theory? If yes, how?

Begin the research by asking the question from the multi-scale perspective

Zhai and Yeo, International Journal of Applied Mechanics (In Press), 2023 

Zhai and Yeo, Molecular ML Conference (MIT, Cambridge, MA), 2022

https://doi.org/10.1142/S1758825123500448
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Zhai and Yeo, International Journal of Applied Mechanics (In Press), 2023 

Zhai and Yeo, Molecular ML Conference (MIT, Cambridge, MA), 2022

Question I: What’s the effect of empirical molecular potentials in modeling?

X

Y

Z

X

Y

• A three-dimensional simulation box with full 

PBC of applied strain rate ( ) loading 

implemented in LAMMPS. [1] 

• A thermal gradient was applied in the Y 

direction, including the heat source (bottom) 

and heat sink (upper side). 

• A defect (slit) is set in the center of the 

graphene layer of different lengths. [1]

109s−1

[1] Zhao and Aluru, J. Appl. Phys., 2010



Empirical Potentials 

• Optimized Tersoff potential 

• REBO 

• AIREBO 

• AIREBO-M

7/11/22, 12:49 PM NN SVG
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Zhai and Yeo, International Journal of Applied Mechanics (In Press), 2023 

Zhai and Yeo, Molecular ML Conference (MIT, Cambridge, MA), 2022

Question I: What’s the effect of empirical molecular potentials in modeling?

Characteristics 

• Weighting function for cutoff 

• Non-bonded systems 

• Physical intuition: attraction + repulsion  

• Exponential relation to interatomic radii
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Zhai and Yeo, International Journal of Applied Mechanics (In Press), 2023 

Zhai and Yeo, Molecular ML Conference (MIT, Cambridge, MA), 2022

Question I: What’s the effect of empirical molecular potentials in modeling?

Observations  

• Straining-hardening for “REBO-based” potentials 

- High strain rate loading & strong attractions 

- Transversal interatomic forces  

• No clear mechanism relating to fracture stresses & 

strains relating to temperature are observed 

comparing different potentials.

†



[2] Novikov et al., Mach. Learn.: Sci. Tech., 2020 

[3] Wen and Tadmor, npj Comp. Mat., 2020
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Zhai and Yeo, International Journal of Applied Mechanics (In Press), 2023 

Zhai and Yeo, Molecular ML Conference (MIT, Cambridge, MA), 2022

Question II: Can we benchmark empirical & ML potentials? Differences?

J. Behler M. Parrinello

of reliable

Machine-Learned Potentials 

• Theoretical Formulation  

Benchmarked ML Potentials

• Machine-Learning Interatomic Potential [2] 

Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces

Jörg Behler and Michele Parrinello

Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland
(Received 27 September 2006; published 2 April 2007)

The accurate description of chemical processes often requires the use of computationally demanding

methods like density-functional theory (DFT), making long simulations of large systems unfeasible. In

this Letter we introduce a new kind of neural-network representation of DFT potential-energy surfaces,

which provides the energy and forces as a function of all atomic positions in systems of arbitrary size and

is several orders of magnitude faster than DFT. The high accuracy of the method is demonstrated for bulk

silicon and compared with empirical potentials and DFT. The method is general and can be applied to all

types of periodic and nonperiodic systems.

DOI: 10.1103/PhysRevLett.98.146401 PACS numbers: 71.15.Pd, 61.50.Ah, 82.20.Kh

PRL 98, 146401 (2007)
P H Y S I C A L R E V I E W L E T T E R S week ending

6 APRIL 2007

are
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Zhai and Yeo, International Journal of Applied Mechanics (In Press), 2023 

Zhai and Yeo, Molecular ML Conference (MIT, Cambridge, MA), 2022

Question II: Can we benchmark empirical & ML potentials? Differences?
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Observations  

• MLIP severely underestimate the fracture 

stress compared w/ empirical potentials. 

- Long-range interactions not captured in 

the ab initio training data. 

• MLIP is incapable of simulating post-

fracture behavior. 

• MLIP does not capture the temperature 

effect in stress-strain responses.

B
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Zhai and Yeo, International Journal of Applied Mechanics (In Press), 2023 

Zhai and Yeo, Molecular ML Conference (MIT, Cambridge, MA), 2022

Question III: Can we verify MD simulations from Mechanics? If yes, how?

N. Pugno
Credit: Università di Trento and Wikipedia

R. Ruoff
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Ippolito et al., 2006 Zhao & Aluru, 2010

[4] Pugno & Ruoff, Philo. Mag., 2012

 includes molecular size effect!L0

Quantized Fracture Mechanics 

• The fracture stress derived for QFM:

Linear Elastic Fracture Mechanics 

• Relation between fracture stress & intensity factor: 

“Local Effect”
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Zhai and Yeo, International Journal of Applied Mechanics (In Press), 2023 

Zhai and Yeo, Molecular ML Conference (MIT, Cambridge, MA), 2022

Question III: Can we verify MD simulations from Mechanics? If yes, how?

Observations  Verifications 

• Molecular dynamics simulations data fitted well to QFM and the fitted  matches experimental observations. [5] 

• From both QFM & MD, one observes with smaller initial defect the fracture stress increases nonlinearly.

→

KIC

[5] Zhang et al., Nat. Comm., 2014 
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Zhai and Yeo, International Journal of Applied Mechanics (In Press), 2023 

Zhai and Yeo, Molecular ML Conference (MIT, Cambridge, MA), 2022

Question III: Can we verify MD simulations from Mechanics? If yes, how?

������ ����

��� � ������� ������ � �

A B

C D

������

A
A1

Chemo-mechanics 

• Strain-hardening for “REBO-based” 

potentials from Q. 1. 

- Larger crack vacuum area 

- “Brittle-like” fracture 

• Nonlinear fracture stress increase 

predicted from QFM 

- Transversal interatomic energy 

- Potential models characterization 

- Higher fracture strain

†
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Outline

Forward Problem Multiscale Modeling
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Outline

Forward Problem Multiscale Modeling



Part II: Designing Antibiofilm Surfaces
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Credit: Gfycat.com

Cell Scale

Biofilm

“A global crisis”

Credit: Quanta Mag.

Film Scale

http://Gfycat


Part II: Designing Antibiofilm Surfaces
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Zhai and Yeo, ACS Biomaterials Science & Engineering, 2023, 9, 1, 269–279 

Zhai, Sibley Graduate Research Symposium, 2022

Question I: How to remove biofilm  how to simulate 

biofilm formulation and removal process? 

Question II: How to automate the design process digitally?  

Question III: What’s the biomechanics behind the 

optimization and designed antimicrobial surfaces?

→

Begin the research by asking the question from the scale & design perspective

https://doi.org/10.1021/acsbiomaterials.2c01079
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Question I: How to simulate biofilm formulation and removal process?

x 

y 

z 

Zhai and Yeo, ACS Biomaterials Science & Engineering, 2023, 9, 1, 269–279 

Zhai, Sibley Graduate Research Symposium, 2022

• A cubic simulation box with sizes (LAMMPS) of 

. 

• Geometry is defined by four design variables 

, , , and . 

• Initial bacteria cells are randomly generated in a 

defined area , above the substrate . 

• Four physical scenarios are considered: pure 

growth, shear-off, vertical and lateral vibrations [6].

Lx = Ly = Lz = 4 × 10−5m

Rbottom Rtop h n

Lℬ L'

[6] Gu et al., Nat. Comm., 2020

Part II: Designing Antibiofilm Surfaces
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Question II: How to automate the design process digitally?

Zhai and Yeo, ACS Biomaterials Science & Engineering, 2023, 9, 1, 269–279 

Zhai, Sibley Graduate Research Symposium, 2022

Design Optimization 

• The design optimization problem is formulated as: 

• We employ Bayesian optimization using Gaussian 

process regression to build design space surrogates:

min y = NBC = f(x,p),

subject to xLB ≤ x ≤ xUB, 0 ≤ Ry ≤ Rx ≤
Lx

n

x = [Rx, Ry, h, n, (M,T )] , p = [α, ξ,L, T ,B]

f(x1:k) ∼ N (µ0(x1:k),Σ0(x1:k,x1:k)))

xk = xn+1 = argmax
x∈ X

Xn

A (x; (xn, yn), θm) (

A (x; (xn, yn), θm) := µn (x; (xn, yn), θm) + κσ (x; (xn, yn), θm) (

Part II: Designing Antibiofilm Surfaces

Python LAMMPS

Finalize Design

Verification

Digital Twins

High Fidelity

Simulation

Simulation
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Total Bacteria

Verification
Design Variables

Optimization

\
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Optimization

Acquisition Function

Design Space &
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Gaussian Process

Gaussian Process

Surrogate Model Physical Loading

Biofilm Growth
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Initial Setup
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Question II: How to automate the design process digitally?

Zhai and Yeo, ACS Biomaterials Science & Engineering, 2023, 9, 1, 269–279 

Zhai, Sibley Graduate Research Symposium, 2022

A B C

D E F

G

Part II: Designing Antibiofilm Surfaces
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Question III: What’s the biomechanics of the antimicrobial surfaces?

Zhai and Yeo, ACS Biomaterials Science & Engineering, 2023, 9, 1, 269–279 

Zhai, Sibley Graduate Research Symposium, 2022

Part II: Designing Antibiofilm Surfaces
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Part II: Designing Antibiofilm Surfaces
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Outline

Forward Problem Multiscale Modeling

Inverse Problem Design Optimization
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Outline

Forward Problem Multiscale Modeling

Inverse Problem Design Optimization
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Outline

Forward Problem Multiscale Modeling

Inverse Problem Design Optimization
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Part III: Benchmarking Optimization Algorithms 

Credit: CNN Credit: Forbes

Credit: Science Credit: Nature Portfolio

Credit: The New York TimesCredit: CNN

Output Properties yInput Structures X
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Part III: Benchmarking Optimization Algorithms 

Zhai, Hao, & Yeo, Unpublished, 2023.

Question I: How to design molecular materials digitally? 

Question II: How to benchmark different optimization 

methods? What’s the differences? 

Question III: What’s the extracted materials from the 

optimizations? Does they obey real-world scenarios? 

Explore Design Space

argmax
θ

y = f (xθ)

find θ = θ
∗
, where ymax = y(x∗θ )

 

 

 

A

B

C

D

E

Applications

Targeted Properties

Formulate Design Optimization Problem

Found Better Materials

Deploy

Begin the research by asking the question from the design perspective
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Part III: Benchmarking Optimization Algorithms 

Question I: How to design molecular materials digitally?
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Design Optimization 

• The design optimization problem is 

formulated as: 

• The automation is connected via MEGNet:

argmax
natom, ξn, η

J = K −EFermi,

where K,EFermi = MEGNet(GΘ),

→ G = Ω(natom, ξn, η); Θ = [natom,ξn,η ]

subject to natom ∈ [1,4] or ≡ 1, ξn ∈ [0,100], η ∈ [0,100]

(

evaluation
z }| {

MEGNet(Θn+1)← Θn+1)
| {z }

exploration

search
↵

feedback
IOA(Θn,

evaluation
z }| {

MEGNet(Θn);PIOA)
| {z }

exploitation

Zhai, Hao, & Yeo, Unpublished, 2023.
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Part III: Benchmarking Optimization Algorithms 

Question II: How to benchmark different optimization methods? Differences?

A

B

C

Observations 

• The RUN algorithm outperforms the result optimization 

methods in material count in the “target design space”. 

• GA, ACO, and DRL are generally good in single-element 

molecule design.

Zhai, Hao, & Yeo, Unpublished, 2023.
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Part III: Benchmarking Optimization Algorithms 

Question II: How to benchmark different optimization methods? Differences?

A

Observations 

• Ta is the most evaluated molecule among 12 optimization methods. 

• Design space is highly non-convex.

Zhai, Hao, & Yeo, Unpublished, 2023. C
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Part III: Benchmarking Optimization Algorithms 

Question II: How to benchmark different optimization methods? Differences?

A

B

C

Observations 

• GWO, HIWOA, ACO, and RUN stand out for 

target design space material counts. 

• DRL didn’t successful learn the policy (per se).

Zhai, Hao, & Yeo, Unpublished, 2023.

B

C
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Part III: Benchmarking Optimization Algorithms 

Question II: How to benchmark different optimization methods? Differences?

Observations 

• Cs is the most evaluated material among all the optimization methods. 

•  is the most evaluated multi-element chemical compound. 

• ACO, SA, RUN, and DRL: higher mean objective values for single-element materials; 

GA and RUN: multi-element mat.

()*+,-.

Zhai, Hao, & Yeo, Unpublished, 2023.

C
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Outline

Forward Problem Multiscale Modeling

Inverse Problem Design Optimization
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Outline

Forward Problem Multiscale Modeling

Inverse Problem Design Optimization
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Outline

Forward Problem Multiscale Modeling

Inverse Problem Design Optimization

Multiscale Mechanics

Optimizations

Computations

Applications

Machine Learning 
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Summary 

Fall 2021 Spring 2022

Fall 2022 Spring 2023

• Foundations of Solid Mechanics 

• Multidisc. Design Optimization 

• Adaptive and Learning Systems 

• Seminars & Colloquiums

• Computational Materials Scien. 

• Multiscale Computational Mech. 

• Bas. Programming Python 

• Seminars & Colloquiums

• Math. Modeling of Systems  

• Principles of Large-Scale ML (V)

• Non. Finite Element Analy.: Solids  

• Inverse Problems: Theory & Appl.
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Summary 

Publications

• Zhai & Yeo, ACS Biomater. Sci. Eng. 

2023, 9, 1, 269–279 

• Zhai & Yeo, Int. J. Appl. Mech., 2023 

(In Press)

Presentations

• MIT Molecular ML Conference 

• Sibley Graduate Research Symposium  

• MSE Graduate Research Symposium  

• ELMI Monthly Meeting 

• ELMI Research Symposium 

• MAE PhD Visit Day 

• Sobhani Lab Group Meeting

• Wang et al., Submitted 

• Zhai, Hao, & Yeo, In preparation 

• Zhai & Yeo, In preparation 

• …
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