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CEE 6736: HW #1
Hanfeng Zhai

Mechanical Engineering, Cornell University
hz253@cornell.edu

September 6, 2022

[2]: # !sudo apt install cm-super dvipng texlive-latex-extra texlive-latex-recommended

Please show all work (i.e. include source code, and include thoughtful, analytical discussions):

(1) Use Python to draw the “vector plot” (i.e. slopes within the velocity-time space) for the drone
free fall ODE that we derived in class (Lesson 3. . . we sketched out the idea in there). Assume
a mass, m = 10kg and drag coefficient, γ = 2 kg

sec . See the web link, under “Homework”
within the course website, for guidance on how to draw the vector field plot using Python
and matplotlib. Discuss the results.

The easiest way to create the Python environment for this course is to install Anaconda (see web
link under ”Software resources” on course website)

Solution:

According to the lecture notes, the governing equation of a pendulum follows (assuming g pos-
sesses a positive acceleration, a negative sign are added before it):

dv(t)
dt

= −g − γ

m
v (1)

where
γ ≡ drag of coefficient

γv ≡ wind of resistance
m ≡ mass of quad copter

(2)

By just observing the equation one can discern that when v̇(t) = 0, veq = 49m/s, in which we
denote veq as the equilibrium velocity. By plotting the vector field without solving the equation
and mark the equilibrium velocity we observe that the field cnverges to this value.

Further, solving this equation using Python, we employ the ODE solver in scipy. We first define
a function then apply the odeint for solution visualizations. Visualizing numerical solutions we
observe that the solutions with different ICs also converge to the equilibrium velocity.

[8]: import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from scipy.integrate import odeint
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t,v = np.meshgrid(np.linspace(0,100,15),np.linspace(-100,100,15)) # generate mesh

# define parameters
gamma = 2
m = 10

# define equations
drag = (gamma/m) * v
g = 9.8
RHS = - g - drag

# define accurate form of the ODE
def drone_freefall(v, t):

dvdt = - g - (gamma/m) * v
return dvdt

# solving the equation(s) using odeint
t_dis = np.linspace(0,100,100)
v0_1 = 0
v0_2 = 100
v0_3 = -100
v_sol_1 = odeint(drone_freefall, v0_1, t_dis)
v_sol_2 = odeint(drone_freefall, v0_2, t_dis)
v_sol_3 = odeint(drone_freefall, v0_3, t_dis)

# plotting
plt.quiver(t,v,3,RHS)
plt.axhline(y=-49, color='r', linestyle='-')
plt.plot(t_dis, v_sol_1, 'b*', label="initial velocity: 0 m/s")
plt.plot(t_dis, v_sol_2, 'g*', label="initial velocity: 100 m/s")
plt.plot(t_dis, v_sol_3, 'y*', label="initial velocity: -100 m/s")
plt.xlabel('time')
mpl.rcParams.update({'font.size': 16})
plt.ylabel('velocity')
plt.legend(shadow=True, handlelength=1, fontsize=12)
plt.rcParams['figure.dpi'] = 500
plt.show()
plt.figure(figsize=(5, 3))
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[8]: <Figure size 2500x1500 with 0 Axes>

<Figure size 2500x1500 with 0 Axes>

More physical intuition regarding this plot is that no matter which initial velocity the object was
assigned (or given), it will always converge to a fixed velocity value. However, the converging
times are different regarding different initially set velocities. One Important Point to note is that
the horizontal-directional (i.e. time) portion of the acceleration should be a constant since there is
no time term in the RHS of Equation (1). However, selecting the appropriate constant regarding
time "direction" is crucial. Based on the fitting with the numerical solution of the colored dots, we
think "3" is a decent value. Also, we observe that at a fixed velocity the slope remains the same, as
the value can be calculated from Equation (1).
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CEE 6736: HW #1
Hanfeng Zhai

Mechanical Engineering, Cornell University
hz253@cornell.edu

September 16, 2022

[ ]: # !sudo apt install cm-super dvipng texlive-latex-extra texlive-latex-recommended

Problem 1

Please show all work (i.e. include source code, and include thoughtful, analytical discussions):

(1) Pick a population (e.g. New York City in March of 2020, or a city in the state of Florida in
August 2021, etc.) and find the COVID data from the relevant health department. Assume
defensible values for X and I in your populations. Use these data to test our COVID trans-
mission model. Discuss the results.

Solution:

Recall the COVID transmission model discussed in class. First defining: Ni ≡ Number of in-
fections on a given day i; X ≡ Expected numbers of daily contacts per infected person; I ≡
Probability of infection for each contact. The infection for the next day writes:

Ni+1 = (IX + 1)Ni

This model can be further expressed as, at a certain day i, the infectious number follows:

Ni = (1 + IX)iN0

where N0 denotes the initial values at t = 0. Promoting this to a continuous model:

dN

dt
= (IX)N

where IX is identified as the R factor.

This is a special case that follows the linear ODE form when the bias term equals zero. Hence,
the solution ought to follow the basic form: N = CeRt, where C is a constant. Based on the data
fitting, it seems like a good fit for R is 0.05. Assuming an (reasonable) I of 0.001, the X is hence 50.

We now apply the data of Tompkins county (from July 2021 to Oct 2021) to test the model, starting
from loading the data from .txt file:

[ ]: import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

1

mailto:hz253@cornell.edu


from scipy.integrate import odeint

t_discretized = np.linspace(0,90,90)
N_real = np.exp(.05*t_discretized)
N_real_2 = np.exp(.075*t_discretized[0:60])

tompkins_data = np.loadtxt("tompkins_data.txt")
num_infec = np.flip(tompkins_data.T[2])
daily_text = np.flip(tompkins_data.T[1]);daily_text_identity = daily_text/np.

↪→mean(daily_text)
total_infec = np.flip(tompkins_data.T[3]);total_infec_identity = total_infec/np.

↪→mean(total_infec)
plt.plot(num_infec,'ro-.',label='Tompkins COVID Data')
plt.plot(t_discretized,N_real,'b-',label='Fitted Solution: $\mathcal{R} = 0.05$')
plt.plot(t_discretized[0:60],N_real_2,'g-',label='Fitted Solution: $\mathcal{R}␣

↪→= 0.075$')
plt.xlabel("Days ($i$)")
plt.ylabel("Increased Infection ($\mathbb{N}$)")

plt.legend(shadow=True, handlelength=1, fontsize=12)

[ ]: <matplotlib.legend.Legend at 0x7f445026c390>
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Problem 2

Determine if the equation of a line (y = mx+ b) satisfies the Axioms of Linearity. Discuss the results.

Solution:

Let f (x) = y = mx + b, recall the definition of axioms of linearity,

c f (x1 + x2) = c f (x1) + c f (x2)

Substitute it into f (x) we have:

LHS = c(m(x1 + x2)+ b) = cmx1 + cmx2 + cbRHS = c(mx1 + b)+ c(mx2 + b) = cmx1 + cmx2 + 2cb

It is observed that LHS ̸= RHS. Hence the line does not satisfy the axiom of linearity. What’s more,
it can be determined if the bias term b is eliminated, the line hence obeys the axiom of linearity.

Problem 3

Use the ODE solution method discussed in class (i.e. d
dt ln| · |) to exactly solve the drone ODE

from HW1 using mass, m = 10kg and the drag coefficient, γ = 2kg/sec and the initial condition:
v(0) = 0. Please plot the exact solution within the vector plot from HW1 and discuss.

Solution:

Recall the governing equation of the drone free fall, the velocity writes:

dv(t)
dt

= −g − γ

m
v

where
γ ≡ drag of coefficient

γv ≡ wind of resistance
m ≡ mass of quad copter

written in the standard form
dv(t)

dt
+

γ

m
v = −g

applying the integration factor µ(t) = e
γ
m t, the equation can be rewrite in the form given the fact

that dµ(t)
dt = γ

m µ:
d
dt

[
e

γ
m tv(t)

]
= −e

γ
m tg

the solution further writes:

v(t) = e−
γ
m t

∫ t

t0

e
γ
m s(−g) · ds + Ce−

γ
m t

skipping the detailed derivation, we directly land in the final solution form of v(t):

v(t) =
1

µ(t)

[∫ t

t0

µ(s)(−g) · ds + C
]
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To determine the constant C, we substitute the given initial values: v(0) = 0 → C = 5g. We,
therefore, obtain the solution:

v(t) =
1

e
γ
m t

[
−g

∫ t

t0

e
γ
m s · ds + 5g

]
=

1

e
γ
m t

[
−g

m
γ

e
γ
m t + 5g

]
=

1
e0.2t

[
−5ge0.2t + 5g

]
We, therefore, plot the graph:

[ ]: import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from scipy.integrate import odeint

t,v = np.meshgrid(np.linspace(0,100,15),np.linspace(-100,100,15)) # generate mesh

# define parameters
gamma = 2
m = 10

# define equations
drag = (gamma/m) * v
g = 9.8
RHS = - g - drag

sol_exact = (1/np.exp(0.2*t_dis)) * (-5*g*np.exp(0.2*t_dis) + 5*g)
# print(np.shape(sol_exact))
# solving the equation(s) using odeint
t_dis = np.linspace(0,100,100)

# # plotting
plt.quiver(t,v,3,RHS)
plt.axhline(y=-49, color='r', linestyle='-')
plt.plot(t_dis, sol_exact, 'b*', label="initial velocity: 0 m/s")
plt.xlabel('time')
mpl.rcParams.update({'font.size': 16})
plt.ylabel('velocity')
plt.legend(shadow=True, handlelength=1, fontsize=12)
plt.rcParams['figure.dpi'] = 500
plt.show()
plt.figure(figsize=(5, 3))
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[ ]: <Figure size 2500x1500 with 0 Axes>

<Figure size 2500x1500 with 0 Axes>
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CEE 6736: HW #1
Hanfeng Zhai

Mechanical Engineering, Cornell University
hz253@cornell.edu

September 22, 2022

[65]: # !sudo apt install cm-super dvipng texlive-latex-extra texlive-latex-recommended

Please show all work (i.e. include source code, and include thoughtful, analytical discussions):

(1) Please revisit our example from class, where the pond experienced salt water runoff from a
bridge crossing over it. Please use Python to plot the salt concentration, q(t), given in metric
tons, as it fluctuates during the first 20 years that the bridge is in service. I am simply asking
you to plot the solution to our math model that we obtained in class.

Solution:

Recall the governing equation for pond runoff discussed in class (in metric tons case):

dq
dt

+
1
2

q = 10 + 5 sin(t)

Consider there is no runoff at the “very beginning”: q(0) = 0. Recall the analytical solution given
in the lecture:

q(t) = 20 − 40
17

cos(2t) +
10
17

sin(2t)− 300
17

e−
t
2

Plotting this:

[5]: import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from scipy.integrate import odeint

t = np.linspace(0,20,100)
q_analy = 20 - (40/17)*np.cos(2*t) + (10/17)*np.sin(2*t) - (300/17)*np.exp(-t/2)

plt.plot(t,q_analy,'r-.',label='Analytical Solution')
plt.xlabel("Time [Years]")
plt.ylabel("Pond Runoff [Metric Tons]")

# set plotting
plt.legend(shadow=True, handlelength=1, fontsize=12)
plt.rcParams['figure.dpi'] = 500
plt.show()
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plt.figure(figsize=(5, 3))
mpl.rcParams.update({'font.size': 16})

<Figure size 2500x1500 with 0 Axes>

(2) Please write a small Python program that uses Euler’s method to approximate the same
response of our pond system during the first 20 years. Vary time step size, ∆t, and compare
the approximate solutions against the closed form solution for this problem (given in class,
and used in (1)).

Solution:

Recall the Euler method discretization taught in class, the derivative is discretized in the form
(lecture notes):

q1 − q0

∆t
= 10 + 5 sin(2t)− 0.5q0

where the current point q1 can be computed as

q1 = q0 + (10 + sin(2t)− 0.5q0)︸ ︷︷ ︸
f (t,q0)

(t − t0)

This can be promoted to a more general case as

qi︸︷︷︸
current step

= qi−1︸︷︷︸
previous step

+

10 + sin( ti−1︸︷︷︸
previous time

)− 0.5 qi−1︸︷︷︸
previous step

 ∆t

2



We hence write a loop to solve this:

[4]: year = 20.0
q_t1 = np.zeros(20)
q_t2 = np.zeros(200)
q_t3 = np.zeros(2000)
Delta_t1 = 1
Delta_t2 = .1
Delta_t3 = .01
q0 = 0
i=0
for i in range(0,int(year/Delta_t1)):

q_t1[i] = q_t1[i-1] + np.float64((10 + 5*np.sin(2*((i-1)/1)) - .5*q_t1[i-1]) *␣
↪→Delta_t1)
i += 1

for i in range(0,int(year/Delta_t2)):
q_t2[i] = q_t2[i-1] + np.float64((10 + 5*np.sin(2*((i-1)/10)) - .5*q_t2[i-1])␣

↪→* Delta_t2)
i += 1

for i in range(0,int(year/Delta_t3)):
q_t3[i] = q_t3[i-1] + np.float64((10 + 5*np.sin(2*((i-1)/100)) - .5*q_t3[i-1])␣

↪→* Delta_t3)
i += 1

t_1 = np.linspace(0,20,20)
t_2 = np.linspace(0,20,200)
t_3 = np.linspace(0,20,2000)
plt.plot(t_1, q_t1, 'ro-.', label='Euler\'s Method: $\Delta t = 1$ [yr]')
plt.plot(t_2, q_t2, 'b>-.', label='Euler\'s Method: $\Delta t = 0.1$ [yr]')
plt.plot(t_3, q_t3, 'g.', label='Euler\'s Method: $\Delta t = 0.01$ [yr]')
plt.plot(t,q_analy, 'k-.', label='Analytical Solution')
plt.xlabel("Time [Years]")
plt.ylabel("Pond Runoff [Metric Tons]")

# set plotting
plt.legend(shadow=True, handlelength=1, fontsize=12)
plt.rcParams['figure.dpi'] = 500
plt.show()
plt.figure(figsize=(5, 3))
mpl.rcParams.update({'font.size': 16})
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<Figure size 2500x1500 with 0 Axes>

(3) Please discuss your results from (1) and (2)

Solution:

As we are discretizing the solutions, when ∆t = 1 [yr], the discretized solution is highly inaccu-
rate — the solution points are observed to be "lagged behind" the standard analytical solution.
Increasing discretization fidelity to ∆t = 0.1 and 0.01 the approximated solutions are generally
accurate — observed to be agreeing well with the analytical solution.

(4) Please analytically solve the following ODE using separation of variables: dy
dx = 4x−x3

4+y3

Solution:

Rewrite the equation in the form:

(4 + y3)dy = (4x − x3)dx

Integrate both sides: ∫
(4 + y3)dy =

∫
(4x − x3)dx

The general solution writes:

4y +
1
4

y4 + C = 2x2 − 1
4

x4

Or written in the form:
2x2 − 1

4
x4 − 4y − 1

4
y4 + C = 0

4



which is an implicit solution.

Now, let x2 = X , the equation writes:

−1
4
X 2 + 2X = 4y +

1
4

y4 + C

The explicit solution can be obtained via the quadratic equation:

X1 = 4 − 2

√
4 + 4y +

1
4

y4 + C

X2 = 4 + 2

√
4 + 4y +

1
4

y4 + C

The solutions of the overall equation hence write:

x1 =

√
4 − 2

√
4 + 4y +

1
4

y4 + C

x2 = −

√
4 − 2

√
4 + 4y +

1
4

y4 + C

x3 =

√
4 + 2

√
4 + 4y +

1
4

y4 + C

x4 = −

√
4 + 2

√
4 + 4y +

1
4

y4 + C
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CEE 6736: HW #4
Hanfeng Zhai

Mechanical Engineering, Cornell University
hz253@cornell.edu

October 19, 2022

[2]: # !sudo apt install cm-super dvipng texlive-latex-extra texlive-latex-recommended

[1]: import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from scipy.integrate import odeint

Problem

Please show all work (i.e. include source code, and include thoughtful, analytical discussions):

(1) Please revisit our example from class, where we applied the Forward Euler scheme to the
numerical solution of dy

dt = ry.

Solution:

Revisiting our lecture notes, using the Forward Euler method the update of each step takes the
form:

yn+1 = yn + h f (tn, yn)

= yn + hryn

= yn(1 + rh)

(2) Re-use your previous Euler solver source code (from HW3) to investigate the utility of the
theoretical stability criterion that we arrived at for (1): h < 2

|r| . (hint I just want you to do
this by trial and error, as you adjust step size, h.)

Solution:

In this problem, I set up 4 rs, r = ± 1
2 and r = ±2. I approximate the given ODE of these four

rs with different h to check the theoretical stability criterion. The application codes are shown as
below:

[52]: time = 20.0
q_t1 = np.ones(20)
q_t2 = np.ones(40)
q_t3 = np.ones(200)
q_t4 = np.ones(2000)
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r = 0.5

q0 = 1
i=0

def obtain_discretized(r,time):
h_1 = 1;h_2 = .5;h_3 = .1;h_4 = .01
q_t1 = np.ones(int(time/h_1));q_t2 = np.ones(int(time/h_2))
q_t3 = np.ones(int(time/h_3));q_t4 = np.ones(int(time/h_4))
t_1 = np.linspace(0,time,int(time/h_1));t_2 = np.linspace(0,time,int(time/h_2))
t_3 = np.linspace(0,time,int(time/h_3));t_4 = np.linspace(0,time,int(time/h_4))
t = np.linspace(0,time,100)
for i in range(0,int(time/h_1)):

q_t1[i] = q_t1[i-1] * (1 + r * h_1);i += 1
for i in range(0,int(time/h_2)):

q_t2[i] = q_t2[i-1] * (1 + r * h_2);i += 1
for i in range(0,int(time/h_3)):

q_t3[i] = q_t3[i-1] * (1 + r * h_3);i += 1
for i in range(0,int(time/h_4)):

q_t4[i] = q_t4[i-1] * (1 + r * h_4);i += 1
q_analy = np.exp(r * t)
return q_t1, q_t2, q_t3, q_t4, q_analy, t_1, t_2, t_3, t_4, t

r1_sol1,r1_sol2,r1_sol3,r1_sol4,r1_analy,t1,t2,t3,t4,t = obtain_discretized(-0.
↪→5,10)

r2_sol1,r2_sol2,r2_sol3,r2_sol4,r2_analy,t1,t2,t3,t4,t = obtain_discretized(0.
↪→5,10)

r3_sol1,r3_sol2,r3_sol3,r3_sol4,r3_analy,t1,t2,t3,t4,t =␣
↪→obtain_discretized(-2,10)

r4_sol1,r4_sol2,r4_sol3,r4_sol4,r4_analy,t1,t2,t3,t4,t = obtain_discretized(2,10)
# plt.plot(t1, r1_sol1, 'ro-.', label='Euler\'s Method: $\Delta t = 1$')
# plt.plot(t2, r1_sol2, 'b>-.', label='Euler\'s Method: $\Delta t = 0.5$')
# plt.plot(t3, r1_sol3, 'y>-.', label='Euler\'s Method: $\Delta t = 0.1$')
# plt.plot(t4, r1_sol4, 'g.', label='Euler\'s Method: $\Delta t = 0.01$')
# plt.plot(t,r1_analy, 'k-.', label='Analytical Solution')
# plt.xlabel("$t$")
# plt.ylabel("$y$")

fig, axs = plt.subplots(1, 2, figsize = (15, 5))
axs[0].plot(t1, r1_sol1, 'ro-.', label='$r = -0.5$; $\Delta t = 1$')
axs[0].plot(t2, r1_sol2, 'b>-.', label='$r = -0.5$; $\Delta t = 0.5$')
axs[0].plot(t3, r1_sol3, 'y>-.', label='$r = -0.5$; $\Delta t = 0.1$')
axs[0].plot(t4, r1_sol4, 'g.', label='$r = -0.5$; $\Delta t = 0.01$')
axs[0].plot(t, r1_analy, 'k-.', label='$r = -0.5$; analytical')
axs[0].plot(t1, r3_sol1, 'o-.', label='$r = -2$; $\Delta t = 1$')
axs[0].plot(t2, r3_sol2, '>-.', label='$r = -2$; $\Delta t = 0.5$')
axs[0].plot(t3, r3_sol3, '>-.', label='$r = -2$; $\Delta t = 0.1$')
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axs[0].plot(t4, r3_sol4, '.', label='$r = -2$; $\Delta t = 0.01$')
axs[0].plot(t, r3_analy, '-.', label='$r = -2$; analytical')
axs[0].set_xlabel('$t$')
axs[0].set_ylabel('$y$')
axs[0].legend(shadow=True, handlelength=1, fontsize=12)
# axs[0].set_yscale('log')
axs[1].plot(t1, r2_sol1, 'ro-.', label='$r = 0.5$; $\Delta t = 1$')
axs[1].plot(t2, r2_sol2, 'b>-.', label='$r = 0.5$; $\Delta t = 0.5$')
axs[1].plot(t3, r2_sol3, 'y>-.', label='$r = 0.5$; $\Delta t = 0.1$')
axs[1].plot(t4, r2_sol4, 'g.', label='$r = 0.5$; $\Delta t = 0.01$')
axs[1].plot(t, r2_analy, 'k-.', label='$r = 0.5$; analytical')
axs[1].plot(t1, r4_sol1, 'o-.', label='$r = 2$; $\Delta t = 1$')
axs[1].plot(t2, r4_sol2, '>-.', label='$r = 2$; $\Delta t = 0.5$')
axs[1].plot(t3, r4_sol3, '>-.', label='$r = 2$; $\Delta t = 0.1$')
axs[1].plot(t4, r4_sol4, '.', label='$r = 2$; $\Delta t = 0.01$')
axs[1].plot(t, r4_analy, '-.', label='$r = 2$; analytical')
axs[1].set_xlabel('$t$')
axs[1].set_ylabel('$y$')
# axs[1].set_yscale('log')
axs[1].set_ylim(0,100)
axs[1].legend(shadow=True, handlelength=1, fontsize=12)
# set plotting
plt.rcParams['figure.dpi'] = 500
plt.show()
plt.figure(figsize=(5, 3))
mpl.rcParams.update({'font.size': 16})

<Figure size 2500x1500 with 0 Axes>

In the left sub-figure, we can observe that at the bound for stability criterion the approximation
solution is evidently not accurate. It is also observed that when ∆t = 0.1 the approximated solu-
tion is generally accurate. When the r value is positive, the approximated solutions propagate the
errors along with increasing time.
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(3) Using the solver from (2), please reduce the step size, h, to determine the approximate step
size where accumulated round-off error becomes important, with respect to solution accu-
racy, within your particular computational environment (i.e. the combination of hardware,
OS, language choice, and selected numerical precision.) Please indicate what all four of these
computational environmental parameters are, as part of your answer to this question.

Solution:

In this problem, we first enforce the data type to be float16, then decrease the order of the value
of h and observe the approximated solution after one step benchmarked by the exact solution.
From the output data, we can deduce that when h = 10−3 the approximated value diverges to a
non-accurate solution. The hardware is a MacBook Pro M1 chip, with a macOS system, using the
python language implemented in Google Colab. The numerical precision is float16.

[4]: def obtain_discretized_h(r,time,h):
q_r = np.ones(int(time/h));q_r = q_r.astype('float16')
t_r = np.linspace(0,time,int(time/h));t_r = t_r.astype('float16')
t = np.linspace(0,time,100)
for i in range(0,int(time/h)):

q_r[i] = q_r[i-1] * (1 + r * h);i += 1
q_analy = np.exp(r * t)
return q_r,t_r,q_analy,t

r1_sol1,r1_t,q_analy,t_a = obtain_discretized_h(1,1,1e-2)
r2_sol1,r2_t,q_analy,t_a = obtain_discretized_h(1,1,1e-3)
r3_sol1,r3_t,q_analy,t_a = obtain_discretized_h(1,1,1e-4)
r4_sol1,r4_t,q_analy,t_a = obtain_discretized_h(1,1,1e-5)
r5_sol1,r5_t,q_analy,t_a = obtain_discretized_h(1,1,1e-6)
r6_sol1,r6_t,q_analy,t_a = obtain_discretized_h(1,1,1e-7)
# rinf_sol1,rinf_t1,q_analy,t_a = obtain_discretized_h(1,10,1e-10)
# plt.yscale('log')\
print(q_analy[-1],r1_sol1[-1],r2_sol1[-1],r3_sol1[-1],r4_sol1[-1],r5_sol1[-1],r6_sol1[-1])

22026.465794806718 20910.0 10190.0 1.0 1.0 1.0 1.0
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Composite and porous materials have been widely ap-
plied in various industries including aerospace, civil in-
frastructure, automobile, bioengineering, electronics, etc.,
where the microstructural and topological design for tai-
lored properties has been of importance. Towards this goal,
the first step is usually to build up a surrogate model for
fast evaluation of the physical fields. In this work, we em-
ployed the developed Fourier Neural Operator (FNO) archi-
tecture to do real-time inference of the von Mises’ stress field
of set digital composite materials. A hypothesis is set be-
tween the mapping of the input materials representation to
its corresponding von Mises’ stress distribution calculated
from linear elastic solid mechanics for surrogate modeling
with FNO. The inference results show satisfactory accuracy,
and further, push up toward our future work of inverse de-
sign and neural operator benchmarking.

1 Introduction
Obtaining decent designs of materials, structures, and

systems, via probing the design variables is a long-standing
problem in various scientific and engineering fields. Re-
cently, with the rapid developments of machine learn-
ing (ML) and its applications in optimization and com-
puting, many researchers have applied various ML frame-
works for different design problems, such as CNN for
porous graphene design [1], Gaussian process for an-
tibiofilm nanosurfaces design [2], CNN for composites de-
sign [3]. All these works rely on utilizing state-of-the-art
machine learning (ML) structures for constructing a sur-
rogate for materials properties evaluation for the inverse
problem. In this course project, I mainly investigate how
to construct such forward surrogate models using the re-
cently developed neural operator methods.

∗Submitted as a course paper for Mathematical Modeling of Natural
and Engineered Systems
Prepared with ASME Technical Publications Template

There have been rapid developments in applying ML
for mechanics problems, mainly on how to construct sur-
rogate models efficiently. From the multiscale perspec-
tive, ab initio based machine learning potential bridges
the scale from quantum (or more rigorously in the scale of
density functional theory) to the molecular regime [4, 5].
There are follow-up works adopting the same ideology
bridging the molecular scale to the mesoscale, i.e. the
coarse-grained regime [6] by E and coworkers. Up to the
micro- and macroscale, there are many works that lever-
age high-resolution simulations and use various ML tools
to build up surrogate models, like predicting bubble dy-
namics [7]. In general, the key idea is to train a surrogate
model using the regressor of convenience with the corre-
sponding optimization algorithms, i.e. GD, SGD, RMSProp,
and Adam.

There is a rise in the efforts to integrate known theo-
ries in ML since around 2015. Some representative works
include using sparse regression to identify dynamics sys-
tems’ mathematical expression, and encoding dynami-
cal systems by Brunton and coworkers [8–10]; encoding
known equations into neural networks via automatic dif-
ferentiation for more accurate inference of physical sys-
tems by Karniadakis and coworkers [11–13]; and most im-
portantly and recently, applying universal approximation
theory to map functional spaces and extended to deep nets
called operator regression [14]. There are some major de-
bates on the performances and structures of different op-
erator networks, more specifically debates over deep oper-
ator networks and Fourier neural operator [15,16]. Despite
the plural network architectures, we here are interested in
how the Fourier Neural Operator (FNO), and future bench-
marking of different neural operators, perform on predic-
tive materials design and deployment applications.

Thanks to their tunable and flexible properties, com-
posites, have been widely employed in various industries.
To rapidly assess the properties and design composite ma-



terials, the first step is usually to obtain the stress distribu-
tion on the materials under a certain loading. Calculating
this stress distribution can somehow be time-consuming.
In other senses, even if we can fast evaluate the stress map-
ping, it is still computationally burdensome to obtain the
stress mapping for the vast amounts of different composite
structures. Here, we leverage the general FNO architecture
to map the structure of the composite materials to its cor-
responding von Mises’ stress distribution for “on-the-fly”
materials evaluation.

This short report is arranged as follows: In section 2
we briefly introduce how the problem is set up, includ-
ing basic theoretical and numerical setup for the solid me-
chanics problems (Sec. 2.1 & Sec. 2.2) and the materials
choices (Sec. 2.3). In section 3 we introduce how to gen-
erate the training data (Sec. 3.1) and review the formula-
tion of FNO (Sec. 3.2). In section 4 we present the results
by FNO predictions by analyzing the data distribution and
showed some stress mapping comparison results. Even-
tually, we concluded the paper and present some future
plans in section 5. Based on my future plans, eventually,
I hope these efforts could lead to a publication.

2 Problem Formulation
The key and simple problem we are interested in

is solving the stress distribution on composite materials
based on different geometries. To obtain the stress field,
one would need the materials’ structures, know the corre-
sponding initial and boundary conditions, generate com-
putational meshes for spatial distribution, and composite
the corresponding stress distribution based on finite ele-
ment simulations. To generate different geometries, we set
up a so-called “materials basis” on a 5× 5 grid, where we
generate 10 random locations within the basis. These 10
pores are set as carbon, with the rest material matrix set as
Poly(methyl methacrylate) (PMMA), together composing
the composite material unit volume. Here, we use linear
elastic solid mechanics (COMSOL Multiphysics®) to solve
for the stress distributions. We denote the representation
of the materials as a ∈ A where A are the totally differ-
ent materials combination possibilities, and our targeted
physical property, i.e., the stress field as u ∈U .

2.1 Linear Elastic Solid Mechanics
The stress distributions on the composite materials

are solved based on the linear elasticity model. In the
closed physical system, i.e. composite materials computa-
tional domain, the equations for equilibrium shall be sat-
isfied:

∇·σ+Fv = 0 (1)

where σ is the stress field to be computed, F is the exter-
nal forces applied to the body and v is the object’s velocity.
Here, since we are investigating a static problem, Equation
(1) can be reduced to ∇·σ= 0

The stresses σ and strains ϵ distributions on the body
obeys the linear elasticity rule:

σ= C : ϵelastic (2)

where ϵ is the elastic strain and C is the elasticity matrix.
The overall strains take the form of the gradients of the

displacement fields u = [u1,u2]:

ϵ= 1

2

[
(∇u)T+∇u

]
(3)

And the elasticity matrix is a function of the Poisson’s ratio
ν and elastic modulus E :

C = C(E ,ν) (4)

In our approach, we use a plane strain approach with
homogeneous isotropic materials, where the general linear
elasticity relation between the stresses and strain can be
expanded to

σ11

σ22

σ12

= E

(1+ν)(1−2ν)

1−ν ν 0
ν 1−ν 0
0 0 1−2ν

ϵ11

ϵ22

ϵ12

 (5)

In the computation, we obtain the von Mises’ stress
based on the full field stress data, written as (in the case
of plane strain):

σvM =
√

1

2

[
(σ11 −σ22)2 + (σ22 −σ33)2 + (σ33 −σ11)2

]+3σ2
12

(6)
where the normal stress in the 3-direction is solved from
the other normal stresses and Poisson’s ratio:

σ33 = ν(σ11 +σ22) (7)

2.2 Bidirection Tensile-Compression Tests
In this problem, we avoid periodic boundary condi-

tions to make the problem more complex, i.e., harder for
the ML model to learn. We hence applied loading in 2 di-
rections and fix the bottom side.

Assuming the two directions in the horizontal and ver-
tical axes are x1 and x2, the exact boundary conditions are
hence written as (in SI unit):

x2 = 0 : u = 0,

x1 = 0 : σxx =−100,

x1 = 0.1 : σxx = 100,

x2 = 0.1 : σy y =−100.

(8)

Note that the unit for the geometry, i.e., the square lengths
can be neglected since the geometry is treated as a unitless



computational domain in the simulations. Hence, as long
as the ratio of x1/x2 remains the same the results should
be the same. But the unit has to satisfy the continuum as-
sumption in solid mechanics. For example, if one assumes
x1 = 0.1 nm or Ångstrom should not be valid.

2.3 Materials Properties
The composite materials are assumed to be a fiber-

reinforced microstructure with carbon fiber embedded in
the soft PMMA matrix. The carbon is considered a sim-
ple time- and temperature-independent linear elastic ma-
terial, with given properties shown in Table 1

E 2.5×1012

ν 0.188

ρ 2.267×103

Table 1. The materials properties for carbon, in SI unit. E is the
elastic modulus, ν is the Poisson’s ratio and ρ is the density.

For the PMMA, both the elastic moduli, Poisson’s ra-
tio, and density are functions of temperatures T . Here, the
temperature is fixed at 293.15K during the computation
process, the corresponding materials properties for PMMA
are shown in Table 2.

E 6.1742×109

ν 0.3216

ρ 1.900×103

Table 2. The materials properties for PMMA, in SI unit.

Given the properties of our materials, and based on
the mentioned computation process in sections 2.1 and
2.2, we can write our formulated problem simplified as

a
h,ph−−−→ [x1, x2]

E ,ν,ρ,ps−−−−−→ [σ11,σ12,σ22] −→σvM = u (9)

where h stands for the mesh sizes, and ph is the related
meshing parameters; ps stands for the parameters in the
solvers employed. This whole process can be further sim-
plified to a mapping

a ∈A
F E M−−−→ u ∈U (10)

where the main task here is to find a surrogate for FEM so
that can infer u “on-the-fly” from a as a forward problem.
Here, we instead approximate the mapping of A −→ U ,
with the developed FNO method by approximating in a
high-dimensional space, so the maps between any subsets
a and u are theoretically to be covered and predicted.

3 Methodology
3.1 Data Generation

To solve for the stress based on given representations,
a learning task to approximate the mapping is formulated
with small data. The general workflow for generating the
training data is shown in Figure 1. Since the problem is
formulated as the location randomization of the 10 carbon
fiber locations on the 5 × 5 materials basis, there are ex-
pected to have C 5

5 = 3268760 possible materials combina-
tions. As to challenge the approximation & representation
capability of the neural operator, we only run 100 FEM sim-
ulations, approximately 0.0031% of the full possible mate-
rials representations. With the small dataset, we use the
classic 80/20 split to generate the training and testing data,
i.e., the FNO is trained on 80 FEA simulations that map the
materials’ representations to their von Mises’ stress and in-
fer the stress distribution of the rest 20 simulations. Here,
based on the computed Gauss von Mises’ stress distribu-
tion, we map the field data on a 512×512 matrix or can be
treated as an image representation, i.e., 512×512 pixels.

There are two main challenges in the learning task: (1)
the dataset is very small, makes it difficult for any learn-
ers to approximate the operator; (2) The stress distribution
is computed based on non-periodic boundary conditions,
making it more challenging to approximate the intrinsic
trend in the data, as a little variation of carbon location
may induce a nonlinearly increase of the stress that is very
difficult to be captured.

X

Y

X

Y
a

u(!)!(a)
ℳ : ! → u

G : a → u

$%&'()

Fig. 1. The general schematic of this project. Random locations are
generated based on the materials basis grid for a digital composite
structure representation. Its corresponding meshes are then gener-
ated for linear elastic solid mechanics calculation of the von Mises’
stress field. The field can then be scanned as an image for training.

3.2 Fourier Neural Operator
Different from the traditional numerical solver or re-

cently developed data-driven methods (e.g., Gaussian pro-
cess regression or neural networks), the neural operator
strives to approximate the mapping between infinite di-
mensional spaces, theoretically, given any input-output



pairs (i.e., the training data). Li et al. [17] propose the ap-
proximation of the mapping between two separable Ba-
nach spaces A = A (D ;Rda ), U = U (D ;Rdu ): there exists
a possible operator projection G : A −→ U , where D ⊂ Rd

is a bounded open set and numerical values live in spaces
Rda and Rdu . The authors assume the map can be parame-
terized by θ ∈Θ based on given N observed data {a j ,u j }N

j .

Given the observations, the materials representations a j ∼
µ is an i.i.d. sequence from the probability measure µ. The
operator mapping thence writes:

G : A ×Θ−→U (11)

where in our problem the materials representation writes
a ∈ A maps to the von Mises’ stress u ∈ U , where the ob-
served data a,u ∈ R512×512. In the learning task, the loss
function seeks to minimize the expectation of the errors
between the observations and operator-inferred data in
the stochastic process for searching the optimal parame-
ters, U ×U −→R:

min
θ∈Θ

Ea∼µ
[
L (Ĝ(a;θ),G(a))

]
(12)

Li et al. [17] propose an iterative update process in a
higher dimensional space to update the function that lives
in the so-called Fourier layer, v(x), where x can be treated
as the discretized observations: v0 7−→ v1 7−→ ... 7−→ vT

where v are the functions taking values from Rdv . This
iterative process is illustrated in Figure 2, combined with
schematics for mapping different dimensions from the
training images. The iterative updates take the form:

vt+1(x) :=σ
(
W vt (x)+F−1 (

F (κφ) ·F (vt )
)

(x)
)

, ∀x ∈ D
(13)

where F−1
(
F (κφ) ·F (vt )

)
(x) is the Fourier integral oper-

ator by applying convolution in the Fourier space. Note
that F and F−1 are the Fourier and inverse Fourier trans-
form, respectively, on a function v : D →Rdv

(F v) j (k) =
∫

D
v j (x)e−2iπ〈x,k〉d x,

(F−1v) j (k) =
∫

D
v j (k)e2iπ〈x,k〉dk

(14)

Since the learning is conducted in a higher dimensional
space, i.e., Rdv for the operator approximation as iterat-
ing functions v , the authors apply two shallow neural net-
works, P and Q, that maps the observation data into and
out of the Fourier space Rdv , respectively. We can simplify
these processes as v0(x) = P (a(x)) and u(x) = Q(vT (x))
that map Rda −→Rdv and Rdv −→Rdu , respectively.

The overall architecture of FNO can then be simpli-
fied to a combination of two shallow networks P and Q for
dimensional mapping and an iterative algorithm for func-
tion update in the Fourier spaces. Suppose there are T hid-
den layers in the Fourier spaces, by adding the biases to the

. . .

a(s) ∈ " u(s) ∈ #
v0(s) . . . vL(s)v1(s)

P Q

Fig. 2. The schematic and architecture for learning the structure-
stress mapping with Fourier Neural Operator. The materials repre-
sentation is input as images for the combined linear and Fourier con-
volution with an output stress field for the supervised learning task.
The two neural networks represent the P and Q networks, respec-
tively.

iteration algorithm, the FNO architecture writes:

v0(x) = P (a(x), x),

vt+1(x) :=σ
(
W vt (x)+F−1 (

F (κφ) ·F (vt )
)

(x)+bt (x)
)

,

u(x) =Q(vT (x)).
(15)

FNO is then trained on FEM simulations data of
{a j ,u j }80

j=1 ∈ R512×512 −→ R512×512 for the inference of

testing data {ak ,uk }20
k=1.

4 Results and Discussion
Figure 3 shows the prediction accuracy for the 20 cases

as to normalize the stress distribution in the range of [0,1].
The blue dots are the inference-testing data points and the
red line benchmarks the perfect fit, i.e., 100% accuracy.
Most cases exhibit satisfactory inference accuracy as they
generally match the trend of the benchmark red line. Both
cases exhibit an interesting “upward” trend: the predicted
stress distribution is slightly smaller than the training data
when the stress values are high. Some cases are not so ac-
curate with obvious convex-shaped data distribution, e.g.,
cases VIII, XIII, XIV, etc. This could be induced by the non-
periodic boundary conditions induced stress value varia-
tion.

To better explain and unveil a deeper outlook for the
inferences in Figure 3, we generate Figure 4 to show the
probability distribution combined with a Gaussian fit of
both the testing data and the inferences. It can be ob-
served that cases VIII and XIII both show decent matching
of the probability distribution, whereas XIV shows an ev-
ident data mismatch between the benchmark and the in-
ference. Also, although observed to be acceptably accu-
rate, case XX’s data distribution shows that the inference
exhibits a pretty high variability.

To verify the observations and primary conclusions
drawn from comparing Figures 3 and 4, we further gener-
ate Table 3 to show the actual relative errors |Ē | between



Fig. 3. The 1D data linear fit for the 20 test cases. The blue dots
represent the actual data mapping between the test data (vertical
axis) and the FNO-predicted stress data (horizontal axis). The red
lines represent the ground truth mapping. Note that the data are
represented in the normalized range of 0 to 1.

Fig. 4. The data distribution and the corresponding Gaussian fit for
both the normalized stresses of the predicted and ground truth for
the 20 test cases. The shallow pink (Dtest) and blue (Dpred) data
bars stand for the ground truth and predictions, respectively. The red
lines (Ntest) and blue dotted lines (Npred) stand for the Gaussian
distribution fit for Dtest and Dpred, respectively.

the inferences and the testing data computed from

|Ē | =
∣∣∣∣upr ed −utest

utest

∣∣∣∣ (16)

where upr ed are the von Mises’ stresses inferred by FNO
and utest are the stresses in the test data. From Table 3 we
deduce that two observed cases with high data distribution
variances, XIV and XX, do have a higher |Ē |. What’s more,
case V with a higher |Ē | also has a higher data distribution
mismatch in Figure 4, even though it is observed to be rela-
tively accurate from Figure 3. Case XIII, although observed
to be extremely inaccurate in Figure 3, is estimated to have
an acceptable accuracy of 6.61% (Tab. 3), due to the good

6.2928% 4.5463 % 7.8800% 2.7298% 10.5378%

9.7442% 6.8194% 3.1333% 7.7651% 9.4791%

6.6065% 2.8239% 6.6120% 15.2119% 4.0497%

9.8786% 1.7947% 2.7175% 4.5316% 15.2800%

Table 3. The relative errors for the test cases based on the predic-
tions from FNO.

data distribution match (Fig. 4).

Fig. 5. Some preliminary prediction results for the von Mises’ stress
distribution. The first column is the ground truth, i.e., the stress field
calculated by FEM. The second column is the inference results by
FNO. The third column is the absolute errors. The axial marks are
the pixel numbers.

Eventually, we generate Figure 5 to visualize the
“good” prediction results, i.e., the data fit agrees well with
the linear correlation, and the data distribution matches
well. The relative errors are small, by comparing them
with the testing data and showing the absolute errors, i.e.,
|E | = |upr ed −utest |. It is visually verified that the FNO in-
ferred stress fields from small data training are pretty ac-
curate. Judging from |E | visually we can deduce there are
two main sources of the prediction errors: (1) The non-
periodic boundary conditions, as one observes high error
distribution along the upper boundary; (2) Geometry in-
duced variability, as one observes error distribution along
the carbon fiber areas. Note that these phenomena are
also observed for other deep learning-based stress predic-
tions, which can be viewed as a drawback for data-driven
approximations.



5 Conclusion and Outlook
In this report, we present efforts utilizing Fourier neu-

ral operator to infer the von Mises’ stress data based on
given material microstructure representation from small
data. The training data is generated by solving for the
stress field from linear elastic solid mechanics given a non-
periodic compression loading. Based on the prediction re-
sults from FNO, we have the following main conclusions:

• Based on training from the limited dataset, we gener-
ate good predictive accuracy on the test dataset of the
von Mises’ stress distribution from FNO.

• Although a scattered data plot offers a good sense of
how the inference fit the benchmarks, it may not ac-
curately describe the detailed prediction accuracy.

• The probability distribution offers more insight into
the prediction accuracy if taking the relative errors as
the benchmark criterion.

• The two main error sources from FNO on mapping
stress fields from material geometries are proposed
to be the non-periodic boundary conditions and the
variations within the geometries.

Based on our present efforts, there are certain steps
that can push this work forward. We make the following
plan for future work hoping to compile a full manuscript:

• Incorporate more complicated physical models for
computing the corresponding physical properties, i.e.,
multiphysics models, with more complex constitutive
models to generate the corresponding stress fields.

• Compare DeepONet and FNO on the training process
to offer better insights into the two models, as they are
treated as canonical models in operator regressions.

• Study how pixel resolutions affect prediction accuracy.
• Investigate how network volume/parameter size af-

fects prediction accuracy.
• Employ the trained models with optimization frame-

works for inverse design.
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