Multiscale Mechanics of Graphene Fracture under Thermal Gradients
using Empirical and Machine-Learned Interatomic Forcefields
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Modeling & Simulations where K7 is the fracture intensity to be fitted for verifications.

. . . . . — — Physico-Chemical Perspective of the Nonlinear Mechanics
A three-dimensional simulation box with X and Y directional lengths of 50 nm, and Z directional y P
height of 6 nm were set with full periodic boundary conditions on each surface, as shown in Figure Verification from Quantized Fracture Mechanics The transversal bond of a smaller initial crack (closer to a pore) contributes to sharing the loading.
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Figure 5. The nonlinear fracture processes employing four different empirical potentials.

Anomalous Kinetic Energy Transportation

Considering the case of dynamic failure, the kinetic energy rate should be the difference between
the work and elastic energy rate, which is interpreted to drive the dynamic fracture. Herein show |
an anomalous fracture of kinetic energy transportation in Figure 3.

Conclusions & Summary

Figure 1. Schematic illustration of the simulation setup.

The stress-strain responses are highly dependent on potentials. The "REBO-based” potentials
exhibit strain-hardening effects for a small initial defect.

2. The fracture direction is reported to be not related to temperature gradients under é = 10?51,
. The fitted fracture intensity Ky~ matches the literature experimental results.
4. An abnormal fracture form is observed for "'REBO-based” potentials, where the kinetic energy

Deep Learning Potential Fields

Machine learning potentials (MLPs) based on first principle calculations. The atomic configu-
rations in first principles, i.e., DFT, AIMD, include locations, radius, etc., are transformed into
symmetry functions based on the formulation by Behler and Parrinello [1]:
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" il s transported along with the crack tips before fracture.
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i Gk 6. The employed deep learning potentials lack the ability to describe post-fracture molecular

The output energies are approximated via a neural network of L layers. The eventually learned descriptions, with atoms “exploded” into scattered distributions.

energy is the summation of the atomic energies, £ = » . E;, where
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