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Key Highlights

Nonequilibrium molecular dynamics were employed to study graphene fracture under

temperature gradients with fixed strain rate, where the effect of initial defect sizes,

temperature differences, and potential fields are investigated.

Different empirical potential fields, including optimized Tersoff, REBO, AIREBO, and

AIREBO-M are employed in the NEMD simulations.

Quantized fracture mechanics are adopted to verify the computations from NEMD.

A comparative study of empirical MD potentials with state-of-the-art ab initio-based

machine learning potentials is also presented, where the limitations and the fracture

characterizations are elaborated.

The overall goal is: (1) identify the effect of different potential models, characterize the

mechanics from simulations corresponding to the mathematical models; (2) unveil the

mechanism under the thermal gradient fractures independent of potential fields.

Modeling & Simulations
A three-dimensional simulation box with X and Y directional lengths of 50 nm, and Z directional

height of 6 nmwere set with full periodic boundary conditions on each surface, as shown in Figure

1. The X direction is the armchair direction and Y is the zigzag direction. A thermal gradient was

applied in the Y direction, where the bottom is the heat source and the upper side is the heat sink.

A defect is set in the center of the graphene layer, of different lengths to account for the sizing

effects of precrack. A strain rate of 109s−1 is applied in the X direction for crack propagation.
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Figure 1. Schematic illustration of the simulation setup.

Deep Learning Potential Fields
Machine learning potentials (MLPs) based on first principle calculations. The atomic configu-

rations in first principles, i.e., DFT, AIMD, include locations, radius, etc., are transformed into

symmetry functions based on the formulation by Behler and Parrinello [1]:

GR
i =

all∑
j 6=i

FR(rij)fC(rij), GA
i =

all∑
j,k 6=i

FA(rij, rik, rjk)fC(rij)fC(rik)fC(rjk) (1)

The output energies are approximated via a neural network of L layers. The eventually learned
energy is the summation of the atomic energies, E =

∑
i Ei, where

Ei = (KL ◦ σL ◦ ... ◦ K1 ◦ σ1 ◦ K0)
[
GR

i , GA
i

]
(2)

Four different such MLPs, dropout uncertainty neural networks with different dropout rates [8],

and moment tensor-based machine learning interatomic potential [4], are adopted to benchmark

the molecular simulations.

Multiscale Mechanics Theories

Molecular dynamics. Both the REBO [2] and Tersoff [3] models have similar energy fields

following the form

EREBO
ij \ /ETersoff

ij =
∑
j 6=i

fREBO
c (rij) \ /fTersoff

c (rij)
[
VR(rij) + bijV

A
ij

]
(3)

and other REBO-based potentials, i.e., AIREBO [7], AIREBO-M [5] takes the general form of

EAIREBO−M = EREBO + EMorse \ /ELJ + ETorsion (4)

Quantized fracture mechanics. QFM is derived from Griffth’s theory based on the

assumption of discretized crack propagation through operating the fracture stress from linear

elastic fracture stress [6], where the fracture stress in QFM writes:

σF(L, ρ) = KIC

√√√√ 1 + ρ
2L0

π(L + L0
2 )

(5)

where KIC is the fracture intensity to be fitted for verifications.

Verification from Quantized Fracture Mechanics
The fitted curve from QFM (black dashed lines) well matches MD simulation data as shown in

Figure 2. A nonlinear increase in fracture for smaller defects is reported marked in the arrows.
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Figure 2. Verification results of the molecular dynamics data fitted with QFM theories.

Anomalous Kinetic Energy Transportation
Considering the case of dynamic failure, the kinetic energy rate should be the difference between

the work and elastic energy rate, which is interpreted to drive the dynamic fracture. Herein show

an anomalous fracture of kinetic energy transportation in Figure 3.
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Figure 3. Graphical illustration of the observed ”kinetic energy transportation” phenomena during the fractures.

Benchmarking ab initio Deep Learning Potentials
Figure 4 shows the results from benchmarking four different MLPs. DUNN with a dropout rate

of 0.2 (DUNN v2) surprisingly shows a more accurate energy configuration.
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Figure 4. The simulation results for benchmarking the machine learning methods.

Physico-Chemical Perspective of the Nonlinear Mechanics
The transversal bond of a smaller initial crack (closer to a pore) contributes to sharing the loading.

This explanation (or guess) is proposed to account for (1) strain-hardening observed for small

cracks; (2) nonlinear increasing stress in QFM.
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Figure 5. The nonlinear fracture processes employing four different empirical potentials.

Conclusions & Summary

1. The stress-strain responses are highly dependent on potentials. The ”REBO-based” potentials

exhibit strain-hardening effects for a small initial defect.

2. The fracture direction is reported to be not related to temperature gradients under ε̇ = 109s−1.

3. The fitted fracture intensityKIC matches the literature experimental results.

4. An abnormal fracture form is observed for ”REBO-based” potentials, where the kinetic energy

is transported along with the crack tips before fracture.

5. The machine learning interatomic potentials show lower fracture stresses than empirical’s.

6. The employed deep learning potentials lack the ability to describe post-fracture molecular

descriptions, with atoms ”exploded” into scattered distributions.
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