
Machine Learning for Multiscale Materials Modeling, Design & Discovery

HANFENG ZHAI 

May 5, 2023

1/40
www.hanfengzhai.net | hz253@cornell.edu

SIBLEY GRADUATE RESEARCH SYMPOSIUM 

http://www.hanfengzhai.net
mailto:hz253@cornell.edu


What are Good Materials?
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Credit: APS 2022; Physics 15, 40

Credit: UConn Today, 2018

X 𝚖𝚘𝚍𝚎𝚕 y
𝚌𝚘𝚖𝚙𝚞𝚝𝚊𝚝𝚒𝚘𝚗𝚊𝚕
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How to Understand Good Materials?

X 𝚖𝚘𝚍𝚎𝚕 y

problem: “models” are developed for ad hoc scales!
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Motivation
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Graphene: a wonder material
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Part I: Multiscale Mechanics of Graphene
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Begin the research by asking the question from the multi-scale perspective

Zhai and Yeo, International Journal of Applied Mechanics (In Press), 2023 
Zhai and Yeo, Molecular ML Conference (MIT, Cambridge, MA), 2022

https://doi.org/10.1142/S1758825123500448

Background

...some theoretical backgrounds

Quantum Mechanics ! DFT

Governing equation for quantum mechanics,

i.e. Schrödinger equation:

H| i = E| i
DFT simplifies the S.E. based on 3 approxs.
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(Sub)Continuum Mechanics

Molecular Dynamics

Molecular interaction potentials based on

the idea of “attraction + repulsion”:

E = fcut(ER + EA)

where the cuto↵ fcut play essential role in

fracture of non-bonded potentials.
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Governed by laws of quantum mechanics: Numerical solution by 
Density Functional Theory (DFT), for example 

© 2006 Markus J. Buehler, CEE/MIT 

The interatomic potential 

� The fundamental input into molecular simulations, in addition to structural 
information (position of atoms, type of atoms and their
velocities/accelerations) is provided by definition of the interaction potential 
(equiv. terms often used by chemists is “force field”) 

� MD is very general due to its formulation, but hard to find a “good” potential
(extensive debate still ongoing, choice depends very strongly on the 
application) 

� Popular: Semi-empirical or empirical (fit of carefully chosen mathematical 
functions to reproduce the potential energy surface…) 
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Continuum Mechanics

Assume a deformation mapping in a 3D

space: x ! X; one can compute displacement

u = x� X, further elicit defor. grad. tensor:

F =
@x

@X
where the constitutive relation states:

� =  (✏)
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Empirical Potentials 

• Optimized Tersoff potential 

• REBO 

• AIREBO 

• AIREBO-M
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Empirical Molecular Potentials: Theoretical Formulations 
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Question: Can we benchmark empirical & ML potentials? Differences?

Methodology

Machine learning potentials

J. Behler M. Parrinello

Credits: OpenKIM and ETHZ

Proposed fitting molecular potentials using

neural networks as universal approximatiors

Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces

Jörg Behler and Michele Parrinello
Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland

(Received 27 September 2006; published 2 April 2007)

The accurate description of chemical processes often requires the use of computationally demanding
methods like density-functional theory (DFT), making long simulations of large systems unfeasible. In
this Letter we introduce a new kind of neural-network representation of DFT potential-energy surfaces,
which provides the energy and forces as a function of all atomic positions in systems of arbitrary size and
is several orders of magnitude faster than DFT. The high accuracy of the method is demonstrated for bulk
silicon and compared with empirical potentials and DFT. The method is general and can be applied to all
types of periodic and nonperiodic systems.

DOI: 10.1103/PhysRevLett.98.146401 PACS numbers: 71.15.Pd, 61.50.Ah, 82.20.Kh

The reliability of molecular dynamics (MD) or
Monte Carlo (MC) simulations depends crucially on the
accuracy of the underlying potential-energy surface (PES).
Ab initio methods based on density-functional theory [1]
(DFT) provide accurate PESs for many systems, but they
are computationally very demanding and even on the most
advanced platforms ab initio MD simulations are limited to
tens of picoseconds and a few thousand atoms. This is the
reason for the continuing popularity of empirical potentials
which provide fast access to energy and forces. However
the construction of reliable empirical potentials is a diffi-
cult and lengthy process which usually relies on fitting the
parameters of a guessed, physically motivated simple func-
tional form for the interaction potential. This can lead to
qualitatively wrong results when used in circumstances in
which the assumed functional form is not appropriate. The
database used in the fitting can include experimental or
theoretical data and even the forces obtained in an ab initio
MD run [2–4].

In this Letter we present a generalized neural-network
(NN) method for constructing DFT-based PESs which have
ab initio accuracy and are capable of describing all types of
bonding. The method overcomes the limitations that have
so far restricted the use of NNs to low-dimensional PESs
[5,6]. This is achieved by combining NN precision and
flexibility with a PES representation that is inspired by
empirical potentials. The resulting many-body potentials
are a function of all atomic coordinates and can be used in
systems of arbitrary size. We apply our ideas to the con-
struction of an NN-based many-body potential for bulk
silicon. Constructing an empirical potential for Si that is
valid across the phase diagram has proven to be a frustrat-
ing challenge for conventional empirical potentials. Our
potential works well in the solid semiconducting and in the
liquid metallic phases. In addition we can reproduce the
small energy differences between the different high-
pressure phases of crystalline Si.

Neural networks are biology-inspired algorithms that
provide an accurate tool for the representation of arbitrary
functions. Given a number of points in which the value of

the function is known, the parameters of the NN are
optimized in order to reproduce the input data in a ‘‘train-
ing’’ process and then used to evaluate the function else-
where. For the representation of PESs DFT calculations are
generally used to provide the training data set. Once
trained, the atomic coordinates are given to the NN and
the potential energy, from which also forces can be calcu-
lated analytically, is received [5,6].

The structure of a simple NN as it has hitherto been used
to represent PESs is shown schematically in Fig. 1 for a
two-dimensional PES. In the nodes of the input layer the
two generalized coordinates G1

i and G2
i that determine the

energy of configuration i are provided. The node in the
output layer yields the associated energy Ei. In between the

 

FIG. 1. Example of a standard neural network employed for
fitting potential-energy surfaces [5,6]. The node in the output
layer yields the energy Ei, which in this case depends on the
values of the two input nodes, G1

i and G2
i . In between the input

and the output layer there is a hidden layer with three nodes
represented by the circles. The arrows correspond to the 13
weight parameters wk

ij, which connect node j in layer k with
node i in layer k! 1. The bias node is used to adapt the
nonlinearity region of the activation functions. The functional
form of this small network is given in Eq. (1).

PRL 98, 146401 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
6 APRIL 2007

0031-9007=07=98(14)=146401(4) 146401-1  2007 The American Physical Society

input and the output layer are one or more ‘‘hidden layers,’’
each with a certain number of nodes. All nodes in each
layer are connected to the nodes in the adjacent layers by
real-valued weight parameters, which initially are chosen
randomly. For a given set of coordinates the output of the
NN is then given by the expression

 Ei ! f2a

!
w2

01 "
X3

j!1

w2
j1f

1
a

"
w1

0j "
X2

!!1

w1
!jG

!
i

#$
: (1)

Here, wk
ij is the weight parameter connecting node j in

layer k with node i in layer k# 1, and wk
0j is a bias weight

that is used as an adjustable offset for the activation func-
tions fka. Activation functions are typically nonlinear func-
tions that introduce the capability to fit nonlinear functions
into the NN [5,6]. In the present work the hyperbolic
tangent has been used as an activation function in the
hidden layers, and a linear function for the output layer.
Since the weight parameters initially are chosen randomly,
the output of the NN does not correspond to the correct
total energy, but since the latter is known for a set of points
from DFT calculations, an error function can be con-
structed and minimized to optimize the weight parameters
in an iterative way. The optimized set of weights obtained
can then be used to calculate the potential energy for a new
set of coordinates.

This NN structure has several disadvantages that hinder
its application to high-dimensional PESs. Since all weights
are generally different, the order in which the coordinates
of a configuration are fed into the NN is not arbitrary, and
interchanging the coordinates of two atoms will change the
total energy even if the two atoms are of the same type.
Another limitation related to the fixed structure of the
network is the fact that a NN optimized for a certain
number of degrees of freedom, i.e., number of atoms,
cannot be used to predict energies for a different system
size, since the optimized weights are valid only for a fixed
number of input nodes. Thus, in order to represent PESs
useful for all system sizes, a new NN topology has to be
introduced.

The main idea is to represent the total energy E of the
system as a sum of atomic contributions Ei, an approach
that is typically also used in empirical potentials

 E !
X
i
Ei: (2)

The general structure of this new network topology is
shown schematically in Fig. 2 for a system consisting of
three atoms and all associated degrees of freedom. The
fR"

i g represent the Cartesian coordinates " of atom i. In a
first step these coordinates are transformed into a set of
symmetry function values fG!

i g for each atom i. These
symmetry function values describe the energetically rele-
vant local environment of each atom and are subsequently
used as input for the NN. They depend on the positions of
all atoms in the system, as indicated by the dotted arrows.

For each atom in the system there is now a ‘‘standard’’ NN
(cf. Fig. 1), which we call subnet Si and which after the
weight optimization yields the energy contribution Ei to
the total energy E. Summing these energy contributions
then finally yields the total energy of the system. To ensure
the invariance of the total energy with respect to the
interchanging of two atoms the structure of all subnets
and the values of the weight parameters are constrained
to be identical in each Si.

The crucial point is the introduction of a new type of
symmetry function. While other types of symmetry func-
tions have been used before [5], in our approach the
symmetry function values of each atom reflect the local
environment that determines its energy; i.e., two structures
with different energies must yield different sets of symme-
try function values, while identical local environments
must give rise to the same set. Furthermore, the symmetry
function values must be invariant with respect to a rotation
or translation of the system. Finally, the number of sym-
metry functions must be independent of the coordination of
the atom, because the coordination number of an atom can
change in a MD simulation, while the structure of the
subnets must not be changed if the NN is to remain
applicable generally.

Symmetry functions can be constructed from atomic
positions in a way similar to empirical potentials. But
while in the latter case these terms are used to construct
directly the total energy of the system, in the case of the
NN they are used only to describe the structure. The
assignment of the energies to the structures is done in a
second step by the NN.

In order to define the energetically relevant local envi-
ronment we employ a cutoff function fc of the interatomic
distance Rij, which has the form

 fc$Rij% !
8<
:
0:5&

h
cos

%
#Rij

Rc

&
" 1

i
for Rij ' Rc;

0 for Rij > Rc:
(3)

 

FIG. 2. Structure of the neural network as applied in this Letter
to a system containing three atoms. The Cartesian coordinates of
atom i are given by R"

i . These are transformed to a set of !
symmetry function values G!

i describing the local geometric
environment of atom i, which depends on the positions of all
atoms in the system as indicated by the dotted arrows. The
symmetry function values of atom i then enter the subnet Si
yielding the energy contribution Ei of atom i to the total energy
of the system E. The structure of the subnets corresponds to the
neural network shown in Fig. 1.

PRL 98, 146401 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
6 APRIL 2007

146401-2

Theory

The atomic configurations in first principles, i.e.,

DFT, AIMD, include locations, radius, etc., are

transformed into symmetry functions:

G
R

i
=

allX

j 6=i

FR (rij )fC (rij ),

G
A

i
=

allX

j,k 6=i

FA(rij , rik , rjk )fC (rij )fC (rik )fC (rjk )

The output energies are approximated via a neural

network of L layers. The eventually learned energy:

E =
P

i
Ei , where

Ei = (KL � �L � ... � K1 � �1 � K0)
h
G
R

i
, GA

i

i

Four di↵erent such models are adopted to

benchmark the molecular simulations.

A. Shapeev

Credit: Shapeev.com
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input and the output layer are one or more ‘‘hidden layers,’’
each with a certain number of nodes. All nodes in each
layer are connected to the nodes in the adjacent layers by
real-valued weight parameters, which initially are chosen
randomly. For a given set of coordinates the output of the
NN is then given by the expression

 Ei ! f2a

!
w2

01 "
X3

j!1

w2
j1f

1
a

"
w1

0j "
X2

!!1

w1
!jG

!
i

#$
: (1)

Here, wk
ij is the weight parameter connecting node j in

layer k with node i in layer k# 1, and wk
0j is a bias weight

that is used as an adjustable offset for the activation func-
tions fka. Activation functions are typically nonlinear func-
tions that introduce the capability to fit nonlinear functions
into the NN [5,6]. In the present work the hyperbolic
tangent has been used as an activation function in the
hidden layers, and a linear function for the output layer.
Since the weight parameters initially are chosen randomly,
the output of the NN does not correspond to the correct
total energy, but since the latter is known for a set of points
from DFT calculations, an error function can be con-
structed and minimized to optimize the weight parameters
in an iterative way. The optimized set of weights obtained
can then be used to calculate the potential energy for a new
set of coordinates.

This NN structure has several disadvantages that hinder
its application to high-dimensional PESs. Since all weights
are generally different, the order in which the coordinates
of a configuration are fed into the NN is not arbitrary, and
interchanging the coordinates of two atoms will change the
total energy even if the two atoms are of the same type.
Another limitation related to the fixed structure of the
network is the fact that a NN optimized for a certain
number of degrees of freedom, i.e., number of atoms,
cannot be used to predict energies for a different system
size, since the optimized weights are valid only for a fixed
number of input nodes. Thus, in order to represent PESs
useful for all system sizes, a new NN topology has to be
introduced.

The main idea is to represent the total energy E of the
system as a sum of atomic contributions Ei, an approach
that is typically also used in empirical potentials

 E !
X
i
Ei: (2)

The general structure of this new network topology is
shown schematically in Fig. 2 for a system consisting of
three atoms and all associated degrees of freedom. The
fR"

i g represent the Cartesian coordinates " of atom i. In a
first step these coordinates are transformed into a set of
symmetry function values fG!

i g for each atom i. These
symmetry function values describe the energetically rele-
vant local environment of each atom and are subsequently
used as input for the NN. They depend on the positions of
all atoms in the system, as indicated by the dotted arrows.

For each atom in the system there is now a ‘‘standard’’ NN
(cf. Fig. 1), which we call subnet Si and which after the
weight optimization yields the energy contribution Ei to
the total energy E. Summing these energy contributions
then finally yields the total energy of the system. To ensure
the invariance of the total energy with respect to the
interchanging of two atoms the structure of all subnets
and the values of the weight parameters are constrained
to be identical in each Si.

The crucial point is the introduction of a new type of
symmetry function. While other types of symmetry func-
tions have been used before [5], in our approach the
symmetry function values of each atom reflect the local
environment that determines its energy; i.e., two structures
with different energies must yield different sets of symme-
try function values, while identical local environments
must give rise to the same set. Furthermore, the symmetry
function values must be invariant with respect to a rotation
or translation of the system. Finally, the number of sym-
metry functions must be independent of the coordination of
the atom, because the coordination number of an atom can
change in a MD simulation, while the structure of the
subnets must not be changed if the NN is to remain
applicable generally.

Symmetry functions can be constructed from atomic
positions in a way similar to empirical potentials. But
while in the latter case these terms are used to construct
directly the total energy of the system, in the case of the
NN they are used only to describe the structure. The
assignment of the energies to the structures is done in a
second step by the NN.

In order to define the energetically relevant local envi-
ronment we employ a cutoff function fc of the interatomic
distance Rij, which has the form

 fc$Rij% !
8<
:
0:5&

h
cos

%
#Rij

Rc

&
" 1

i
for Rij ' Rc;

0 for Rij > Rc:
(3)

 

FIG. 2. Structure of the neural network as applied in this Letter
to a system containing three atoms. The Cartesian coordinates of
atom i are given by R"

i . These are transformed to a set of !
symmetry function values G!

i describing the local geometric
environment of atom i, which depends on the positions of all
atoms in the system as indicated by the dotted arrows. The
symmetry function values of atom i then enter the subnet Si
yielding the energy contribution Ei of atom i to the total energy
of the system E. The structure of the subnets corresponds to the
neural network shown in Fig. 1.
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Theory

The atomic configurations in first principles, i.e.,

DFT, AIMD, include locations, radius, etc., are

transformed into symmetry functions:

G
R

i
=

allX

j 6=i

FR (rij )fC (rij ),

G
A

i
=

allX

j,k 6=i

FA(rij , rik , rjk )fC (rij )fC (rik )fC (rjk )

The output energies are approximated via a neural

network of L layers. The eventually learned energy:

E =
P

i
Ei , where

Ei = (KL � �L � ... � K1 � �1 � K0)
h
G
R

i
, GA

i

i

Four di↵erent such models are adopted to

benchmark the molecular simulations.

A. Shapeev

Credit: Shapeev.com
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Question: Can we benchmark empirical & ML potentials? Differences?

Results & Discussion

Benchmarking Machine Learning Potentials
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The simulation results for benchmarking the machine learning methods. A. The

stress-strain responses of the graphene fracture with small defect (LC = 1.7217nm) using

the MLIP potential. B. The stress-strain responses comparing the four empirical

potentials with MLIP on fracturing the graphene sheet. C. The temperature distribution

after 10,000 steps of equilibration run with preset 300K constant temperature. D.

Graphical representation of a typical fracture process based on MLIP potential.
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Observations  
• MLIP severely underestimate the fracture 

stress compared w/ empirical potentials. 

- Long-range interactions not captured in 
the ab initio training data. 

• MLIP is incapable of simulating post-
fracture behavior. 

• MLIP does not capture the temperature 
effect in stress-strain responses.
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the MLIP potential. B. The stress-strain responses comparing the four empirical

potentials with MLIP on fracturing the graphene sheet. C. The temperature distribution

after 10,000 steps of equilibration run with preset 300K constant temperature. D.

Graphical representation of a typical fracture process based on MLIP potential.
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Question: Can we verify MD simulations from Mechanics? If yes, how?
Methodology

Quantized fracture mechanics

Theoretical Derivation

Suppose the smallest crack propagation length is

L0, which for graphene along the zigzag direction

should be L0 = 0.246nm; the initial crack (defect

region of graphene) has a length of LC = 2L; ⇢ is the

tip radius, which in our case ⇢ = 0.265nm. In

continuum-based linear elastic fracture mechanics

(LEFM), the fracture is defined to occur while the

stress intensity equals its critical value,

K
LEFM
I

= KIC . In QFM, the crack propagates when

K
QFM
I

=

s
1

L0

Z L+L0

L

h
KLEFM
I

(L)
i2

dL = KIC

Substituting this KIC , the fracture stress in QFM

writes �F (L) =
KICp

⇡(L+L0/2)
, By extending this

fracture stress from sharp to blunt cracks, Pugno &

Ruo↵ finds an asymptotic correction for small tip

radii and proposed the form:

�F (L, ⇢) = KIC

vuuut
1 + ⇢

2L0

⇡(L +
L0
2 )

N. Pugno R. Ruo↵

Credit: Università di Trento and Wikipedia

KIC! ! KIC
"1 + #!/2a0$ . #9$

KIC! and KIC are the fracture toughness for a blunt and a slit
crack, respectively. According to Eq. #9$ the blunt crack in-
creases the toughness with respect to the case of the sharp
crack. Once more, we point out that this result is notably
different from a simplified correction to LEFM which
predicts20 KIC! !2KIC #i.e., no dependence upon the tip ra-
dius$. The QFM failure stress for the blunt crack is obtained
by replacing KIC! , Eq. #9$, in place of KIC in Eq. #5$

" f
QFM#c,!$ = KIC"1 + #!/2a0$

##c + a0/2$
= " f

LEFM"1 + !/2a0

1 + a0/2c
.

#10$

For the crack resistance energy we finally get

$s

$
=

1 + !/2a0

1 + a0/2c
. #11$

At very short cracks #c of the order of few atomic spac-
ings$, $s /$ depends monotonically upon c. For the large
crack #a0 /c�0$ we get $s /$=1+! /2a0%1. We further re-
mark that a0 #which is related to the bond network$ could
also depend upon the direction of crack propagation. Accord-
ingly, QFM can in principle account for the variation of the
crack resistance with propagation direction, as indicated by
some atomistic simulations.10

The QFM approach may be applied to the case of a crack
interacting with an elastic inclusion, as well. According to
the Eshelby theory,21 the variation of the SIF at the crack tip
&Ktip, respect the case of the isolated crack #K0$, is
&Ktip /K0=c1 /d2, where d is the crack inclusion distance and
c1 is a constant depending on the geometrical and elastic
properties of the matrix and the inclusion. The QFM version
of this law is obtained by using Eq. #3$

&Ktip
QFM

K0
=" 1

a0
%

d

d+a0 &Ktip
2

K0
2 dx

=
c1

d2"1 + a0/d + 1/3#a0/d$2

#1 + a0/d$3 . #12$

In the limit of small a0 /d, this equation reproduces the same
result predicted by the Novozhilov theory:

&Ktip
nov

K0
=

1

a0
%

d

d+a0 &Ktip

K0
dx =

c1

d2#1 + a0/d$
. #13$

At very short crack-inclusion distances, a0 /d&1, the QFM
correction to the Eshelby theory is important.

III. ATOMISTIC SIMULATIONS

In order to reproduce at atomistic level the above geom-
etries #i.e., the isolated crack and the crack-inclusion pair$,
we have considered a slab of perfect '-SiC monocrystal #see
Fig. 3$. The atoms interact through the bond-order Tersoff
potential,22 well suited to study the mechanical properties of
'-SiC.9,23,24 In particular such a force model is able to cor-
rectly reproduce the brittle failure of silicon carbide under
tensile load once that a suitable modification of the potential
has been operated according to Ref. 9. The stress fields were
obtained by force relaxations based on the damped dynamics
method. The convergence was controlled by monitoring the
maximum atomic force and stress components, and the sys-
tem was considered fully relaxed for atomic forces below
0.01 eV Å−1. The x, y, and z directions were aligned along

the '112̄(, '1̄10(, and '111( orthogonal directions, respec-
tively. In the x-y plane the system was kept fixed at the
equilibrium lattice parameter of '-SiC #4.318 Å$ and peri-
odically repeated. In the z direction the crystal was deformed
by means of the constant traction method.25 According to this
method, periodic boundary conditions were removed along
the z direction and the resulting surfaces 'in our case one top
silicon and one bottom carbon #111$ shuffle planes( were
subject to constant forces #tractions$ to mimic the embedding

FIG. 2. Coordinates for the local stress distribution at distance r,
ahead of a blunt crack of tip radius !.

FIG. 3. #Color online$ Top panel: Geometry and orientation
of the simulation cell. For the case of an isolated crack the
cell dimension L along x and z direction were the same
#22 nm(L(88 nm$. For the case of crack-inclusion pair, x and z
cell dimension were, respectively, 44.43 and 22.44 nm. In both
cases the y dimension is 0.61 nm. Bottom panel: Atomic-scale view
of the relaxed crack, where black #yellow$ dots represent carbon
#silicon$ atoms.
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creases with the increase in slit length. The theoretical results
match reasonably well with the MD results. The variation in
the normalized fracture strength with the slit semilength is
shown in Fig. 7. Comparison with the published numerical
data for other materials and structures, such as Si, SiC, C,
Ge,35 and single wall CNTs21 is also shown. While all the
materials and structures follow the same variation with slit
semilength, graphene shows slightly higher fracture strength
and can be considered as one of the strongest materials.

V. CONCLUSION

In this paper, by using MD simulations, we investigated
the effects of temperature, strain rate, and defects on the
mechanical properties of monolayer graphene by performing
the uniaxial tensile test along the armchair direction. We
found that the variation in Young’s modulus is relatively
small !within a 10% range" for the pristine graphene mono-
layer when temperature varies between 300 and 2400 K.
Compared to the strain rate, temperature, and defects have

significant effect on the fracture strength of monolayer
graphene. The fracture strength at 2400 K is about 40% of its
value at room temperature !300 K". We have also shown that
the results from the NLE theory on fracture strength as a
function of temperature, strain rate, and slit length match
reasonably with MD data. By comparing the strength of
graphene with experimental and simulation data of other ul-
trastrong nanomaterials/nanostructures, we can conclude that
graphene is an exceptionally strong material.
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Methodology

Quantized fracture mechanics

Theoretical Derivation

Suppose the smallest crack propagation length is

L0, which for graphene along the zigzag direction

should be L0 = 0.246nm; the initial crack (defect

region of graphene) has a length of LC = 2L; ⇢ is the

tip radius, which in our case ⇢ = 0.265nm. In

continuum-based linear elastic fracture mechanics

(LEFM), the fracture is defined to occur while the

stress intensity equals its critical value,

K
LEFM
I

= KIC . In QFM, the crack propagates when

K
QFM
I

=

s
1

L0

Z L+L0

L

h
KLEFM
I

(L)
i2

dL = KIC

Substituting this KIC , the fracture stress in QFM

writes �F (L) =
KICp

⇡(L+L0/2)
, By extending this

fracture stress from sharp to blunt cracks, Pugno &

Ruo↵ finds an asymptotic correction for small tip

radii and proposed the form:

�F (L, ⇢) = KIC

vuuut
1 + ⇢

2L0

⇡(L +
L0
2 )

N. Pugno R. Ruo↵

Credit: Università di Trento and Wikipedia

KIC! ! KIC
"1 + #!/2a0$ . #9$

KIC! and KIC are the fracture toughness for a blunt and a slit
crack, respectively. According to Eq. #9$ the blunt crack in-
creases the toughness with respect to the case of the sharp
crack. Once more, we point out that this result is notably
different from a simplified correction to LEFM which
predicts20 KIC! !2KIC #i.e., no dependence upon the tip ra-
dius$. The QFM failure stress for the blunt crack is obtained
by replacing KIC! , Eq. #9$, in place of KIC in Eq. #5$

" f
QFM#c,!$ = KIC"1 + #!/2a0$

##c + a0/2$
= " f

LEFM"1 + !/2a0

1 + a0/2c
.

#10$

For the crack resistance energy we finally get

$s

$
=

1 + !/2a0

1 + a0/2c
. #11$

At very short cracks #c of the order of few atomic spac-
ings$, $s /$ depends monotonically upon c. For the large
crack #a0 /c�0$ we get $s /$=1+! /2a0%1. We further re-
mark that a0 #which is related to the bond network$ could
also depend upon the direction of crack propagation. Accord-
ingly, QFM can in principle account for the variation of the
crack resistance with propagation direction, as indicated by
some atomistic simulations.10

The QFM approach may be applied to the case of a crack
interacting with an elastic inclusion, as well. According to
the Eshelby theory,21 the variation of the SIF at the crack tip
&Ktip, respect the case of the isolated crack #K0$, is
&Ktip /K0=c1 /d2, where d is the crack inclusion distance and
c1 is a constant depending on the geometrical and elastic
properties of the matrix and the inclusion. The QFM version
of this law is obtained by using Eq. #3$

&Ktip
QFM

K0
=" 1

a0
%

d

d+a0 &Ktip
2

K0
2 dx

=
c1

d2"1 + a0/d + 1/3#a0/d$2

#1 + a0/d$3 . #12$

In the limit of small a0 /d, this equation reproduces the same
result predicted by the Novozhilov theory:

&Ktip
nov

K0
=

1

a0
%

d

d+a0 &Ktip

K0
dx =

c1

d2#1 + a0/d$
. #13$

At very short crack-inclusion distances, a0 /d&1, the QFM
correction to the Eshelby theory is important.

III. ATOMISTIC SIMULATIONS

In order to reproduce at atomistic level the above geom-
etries #i.e., the isolated crack and the crack-inclusion pair$,
we have considered a slab of perfect '-SiC monocrystal #see
Fig. 3$. The atoms interact through the bond-order Tersoff
potential,22 well suited to study the mechanical properties of
'-SiC.9,23,24 In particular such a force model is able to cor-
rectly reproduce the brittle failure of silicon carbide under
tensile load once that a suitable modification of the potential
has been operated according to Ref. 9. The stress fields were
obtained by force relaxations based on the damped dynamics
method. The convergence was controlled by monitoring the
maximum atomic force and stress components, and the sys-
tem was considered fully relaxed for atomic forces below
0.01 eV Å−1. The x, y, and z directions were aligned along

the '112̄(, '1̄10(, and '111( orthogonal directions, respec-
tively. In the x-y plane the system was kept fixed at the
equilibrium lattice parameter of '-SiC #4.318 Å$ and peri-
odically repeated. In the z direction the crystal was deformed
by means of the constant traction method.25 According to this
method, periodic boundary conditions were removed along
the z direction and the resulting surfaces 'in our case one top
silicon and one bottom carbon #111$ shuffle planes( were
subject to constant forces #tractions$ to mimic the embedding

FIG. 2. Coordinates for the local stress distribution at distance r,
ahead of a blunt crack of tip radius !.

FIG. 3. #Color online$ Top panel: Geometry and orientation
of the simulation cell. For the case of an isolated crack the
cell dimension L along x and z direction were the same
#22 nm(L(88 nm$. For the case of crack-inclusion pair, x and z
cell dimension were, respectively, 44.43 and 22.44 nm. In both
cases the y dimension is 0.61 nm. Bottom panel: Atomic-scale view
of the relaxed crack, where black #yellow$ dots represent carbon
#silicon$ atoms.
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creases with the increase in slit length. The theoretical results
match reasonably well with the MD results. The variation in
the normalized fracture strength with the slit semilength is
shown in Fig. 7. Comparison with the published numerical
data for other materials and structures, such as Si, SiC, C,
Ge,35 and single wall CNTs21 is also shown. While all the
materials and structures follow the same variation with slit
semilength, graphene shows slightly higher fracture strength
and can be considered as one of the strongest materials.

V. CONCLUSION

In this paper, by using MD simulations, we investigated
the effects of temperature, strain rate, and defects on the
mechanical properties of monolayer graphene by performing
the uniaxial tensile test along the armchair direction. We
found that the variation in Young’s modulus is relatively
small !within a 10% range" for the pristine graphene mono-
layer when temperature varies between 300 and 2400 K.
Compared to the strain rate, temperature, and defects have

significant effect on the fracture strength of monolayer
graphene. The fracture strength at 2400 K is about 40% of its
value at room temperature !300 K". We have also shown that
the results from the NLE theory on fracture strength as a
function of temperature, strain rate, and slit length match
reasonably with MD data. By comparing the strength of
graphene with experimental and simulation data of other ul-
trastrong nanomaterials/nanostructures, we can conclude that
graphene is an exceptionally strong material.

ACKNOWLEDGMENTS

This work is supported by the National Science Founda-
tion through Grant Nos. 0810294 and 0941497.

1M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff,
Science 287, 637 !2000".

2G. Dereli and B. Sungu, Phys. Rev. B 75, 184104 !2007".
3Y. R. Jeng, P. C. Tsai, and T. H. Fang, Phys. Rev. B 71, 085411 !2005".
4Z. G. Wang, X. T. Zu, F. Gao, and W. J. Weber, Eur. Phys. J. B 61, 413
!2008".

5E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 !1997".
6Z. G. Wang, X. T. Zu, F. Gao, and W. J. Weber, Phys. Rev. B 77, 224113
!2008".

7H. Iwanaga and C. Kawai, J. Am. Ceram. Soc. 81, 773 !1998".
8B. Wu, A. Heidelberg, and J. J. Boland, Nature Mater. 4, 525 !2005".
9H. S. Park and J. A. Zimmerman, Phys. Rev. B 72, 054106 !2005".

10S. K. R. S. Sankaranarayanan, V. R. Bhethanabotla, and B. Joseph, Phys.
Rev. B 76, 134117 !2007".

11G. Brambilla and D. N. Payne, Nano Lett. 9, 831 !2009".
12C. Wei, K. Cho, and D. Srivastava, Phys. Rev. B 67, 115407 !2003".
13M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, and K.

Kaski, Phys. Rev. B 70, 245416 !2004".
14S. Zhang, S. L. Mielke, R. Khare, D. Troya, R. S. Ruoff, G. C. Schatz, and

T. Belytschko, Phys. Rev. B 71, 115403 !2005".
15K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.

Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 !2004".
16A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 !2007".
17Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F.

Crommie, Y. R. Shen, and F. Wang, Nature !London" 459, 820 !2009".
18C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 !2008".
19F. Liu, P. Ming, and J. Li, Phys. Rev. B 76, 064120 !2007".
20H. Zhao, K. Min, and N. R. Aluru, Nano Lett. 9, 3012 !2009".
21R. Khare, S. L. Mielke, J. T. Paci, S. Zhang, R. Ballarini, G. C. Schatz,

and T. Belytschko, Phys. Rev. B 75, 075412 !2007".
22S. N. Zhurkov, Int. J. Fract. Mech. 1, 311 !1965".
23G. Halsey, H. J. White, and H. Eyring, Text. Res. J. 15, 295 !1945".
24S. Arrhenius, Z. Phys. Chem. 4, 226 !1889".
25J. Bailey, The Glass Industry 20, 21 !1939".
26A. I. Slutsker, V. I. Betekhtin, J. C. Lee, D. Yusupov, A. G. Kadomtsev,

and O. V. Amosova, Acta Mater. 52, 2733 !2004".
27A. A. Griffith, Philos. Trans. R. Soc. London, Ser. A 221, 163 !1920".
28N. M. Pugno and R. S. Ruoff, Philos. Mag. 84, 2829 !2004".
29N. Pugno, A. Carpinteri, M. Ippolito, A. Mattoni, and L. Colombo, Eng.

Fract. Mech. 75, 1794 !2008".
30T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, 2nd

ed. !CRC, Boca Raton, 1995".
31S. Plimpton, J. Comput. Phys. 117, 1 !1995".
32S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472

!2000".
33O. A. Shenderova, D. W. Brenner, A. Omeltchenko, X. Su, and L. H.

Yang, Phys. Rev. B 61, 3877 !2000".
34A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima, Nature

!London" 430, 870 !2004".
35A. Mattoni, M. Ippolito, and L. Colombo, Phys. Rev. B 76, 224103

!2007".

0 2 4 6 8 10
20

30

40

50

60

70

80

90

slit semi−length L (angstrom)

F
ra

ct
ur

e
S

tr
en

gt
h

( G
P

a)

300K MD
300K QFM
1200K MD
1200K QFM

FIG. 6. !Color online" Fracture strength ! f as a function of slit semilength L
for a cracked graphene monolayer, uniaxially loaded along the armchair
direction. MD data !symbols" and the theoretical approximations !lines" are
shown at 300 and 1200 K.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

slit semi−length L (angstrom)

σ f/σ
r

graphene 300K
graphene 1200K
SiC
C
Si
Ge
CNT

FIG. 7. !Color online" Comparison of fracture strength ! f normalized with
respect to the ideal strength !r as a function of slit semilength L for
graphene at two different temperatures with values reported in literature for
SiC, C, Si, and Ge samples #all uniaxially loaded along the #111$ direction
!Ref. 35"$ and CNT #uniaxially loaded along the armchair direction !Ref.
14"$.

064321-5 H. Zhao and N. R. Aluru J. Appl. Phys. 108, 064321 !2010"

Ippolito et al., 2006 Zhao & Aluru, 2010

Key Points

• Derived from Gri↵th’s Theory

• Discretized Fracture Process

• Fittable with MD Simulation Data

7 / 17

Methodology

Quantized fracture mechanics

Theoretical Derivation

Suppose the smallest crack propagation length is

L0, which for graphene along the zigzag direction

should be L0 = 0.246nm; the initial crack (defect

region of graphene) has a length of LC = 2L; ⇢ is the

tip radius, which in our case ⇢ = 0.265nm. In

continuum-based linear elastic fracture mechanics

(LEFM), the fracture is defined to occur while the

stress intensity equals its critical value,

K
LEFM
I

= KIC . In QFM, the crack propagates when

K
QFM
I

=

s
1

L0

Z L+L0

L

h
KLEFM
I

(L)
i2

dL = KIC

Substituting this KIC , the fracture stress in QFM

writes �F (L) =
KICp

⇡(L+L0/2)
, By extending this

fracture stress from sharp to blunt cracks, Pugno &

Ruo↵ finds an asymptotic correction for small tip

radii and proposed the form:

�F (L, ⇢) = KIC

vuuut
1 + ⇢

2L0

⇡(L +
L0
2 )

N. Pugno R. Ruo↵

Credit: Università di Trento and Wikipedia

KIC! ! KIC
"1 + #!/2a0$ . #9$

KIC! and KIC are the fracture toughness for a blunt and a slit
crack, respectively. According to Eq. #9$ the blunt crack in-
creases the toughness with respect to the case of the sharp
crack. Once more, we point out that this result is notably
different from a simplified correction to LEFM which
predicts20 KIC! !2KIC #i.e., no dependence upon the tip ra-
dius$. The QFM failure stress for the blunt crack is obtained
by replacing KIC! , Eq. #9$, in place of KIC in Eq. #5$

" f
QFM#c,!$ = KIC"1 + #!/2a0$

##c + a0/2$
= " f

LEFM"1 + !/2a0

1 + a0/2c
.

#10$

For the crack resistance energy we finally get

$s

$
=

1 + !/2a0

1 + a0/2c
. #11$

At very short cracks #c of the order of few atomic spac-
ings$, $s /$ depends monotonically upon c. For the large
crack #a0 /c�0$ we get $s /$=1+! /2a0%1. We further re-
mark that a0 #which is related to the bond network$ could
also depend upon the direction of crack propagation. Accord-
ingly, QFM can in principle account for the variation of the
crack resistance with propagation direction, as indicated by
some atomistic simulations.10

The QFM approach may be applied to the case of a crack
interacting with an elastic inclusion, as well. According to
the Eshelby theory,21 the variation of the SIF at the crack tip
&Ktip, respect the case of the isolated crack #K0$, is
&Ktip /K0=c1 /d2, where d is the crack inclusion distance and
c1 is a constant depending on the geometrical and elastic
properties of the matrix and the inclusion. The QFM version
of this law is obtained by using Eq. #3$

&Ktip
QFM

K0
=" 1

a0
%

d

d+a0 &Ktip
2

K0
2 dx

=
c1

d2"1 + a0/d + 1/3#a0/d$2

#1 + a0/d$3 . #12$

In the limit of small a0 /d, this equation reproduces the same
result predicted by the Novozhilov theory:

&Ktip
nov

K0
=

1

a0
%

d

d+a0 &Ktip

K0
dx =

c1

d2#1 + a0/d$
. #13$

At very short crack-inclusion distances, a0 /d&1, the QFM
correction to the Eshelby theory is important.

III. ATOMISTIC SIMULATIONS

In order to reproduce at atomistic level the above geom-
etries #i.e., the isolated crack and the crack-inclusion pair$,
we have considered a slab of perfect '-SiC monocrystal #see
Fig. 3$. The atoms interact through the bond-order Tersoff
potential,22 well suited to study the mechanical properties of
'-SiC.9,23,24 In particular such a force model is able to cor-
rectly reproduce the brittle failure of silicon carbide under
tensile load once that a suitable modification of the potential
has been operated according to Ref. 9. The stress fields were
obtained by force relaxations based on the damped dynamics
method. The convergence was controlled by monitoring the
maximum atomic force and stress components, and the sys-
tem was considered fully relaxed for atomic forces below
0.01 eV Å−1. The x, y, and z directions were aligned along

the '112̄(, '1̄10(, and '111( orthogonal directions, respec-
tively. In the x-y plane the system was kept fixed at the
equilibrium lattice parameter of '-SiC #4.318 Å$ and peri-
odically repeated. In the z direction the crystal was deformed
by means of the constant traction method.25 According to this
method, periodic boundary conditions were removed along
the z direction and the resulting surfaces 'in our case one top
silicon and one bottom carbon #111$ shuffle planes( were
subject to constant forces #tractions$ to mimic the embedding

FIG. 2. Coordinates for the local stress distribution at distance r,
ahead of a blunt crack of tip radius !.

FIG. 3. #Color online$ Top panel: Geometry and orientation
of the simulation cell. For the case of an isolated crack the
cell dimension L along x and z direction were the same
#22 nm(L(88 nm$. For the case of crack-inclusion pair, x and z
cell dimension were, respectively, 44.43 and 22.44 nm. In both
cases the y dimension is 0.61 nm. Bottom panel: Atomic-scale view
of the relaxed crack, where black #yellow$ dots represent carbon
#silicon$ atoms.
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creases with the increase in slit length. The theoretical results
match reasonably well with the MD results. The variation in
the normalized fracture strength with the slit semilength is
shown in Fig. 7. Comparison with the published numerical
data for other materials and structures, such as Si, SiC, C,
Ge,35 and single wall CNTs21 is also shown. While all the
materials and structures follow the same variation with slit
semilength, graphene shows slightly higher fracture strength
and can be considered as one of the strongest materials.

V. CONCLUSION

In this paper, by using MD simulations, we investigated
the effects of temperature, strain rate, and defects on the
mechanical properties of monolayer graphene by performing
the uniaxial tensile test along the armchair direction. We
found that the variation in Young’s modulus is relatively
small !within a 10% range" for the pristine graphene mono-
layer when temperature varies between 300 and 2400 K.
Compared to the strain rate, temperature, and defects have

significant effect on the fracture strength of monolayer
graphene. The fracture strength at 2400 K is about 40% of its
value at room temperature !300 K". We have also shown that
the results from the NLE theory on fracture strength as a
function of temperature, strain rate, and slit length match
reasonably with MD data. By comparing the strength of
graphene with experimental and simulation data of other ul-
trastrong nanomaterials/nanostructures, we can conclude that
graphene is an exceptionally strong material.
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for a cracked graphene monolayer, uniaxially loaded along the armchair
direction. MD data !symbols" and the theoretical approximations !lines" are
shown at 300 and 1200 K.
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Theoretical Derivation

Suppose the smallest crack propagation length is

L0, which for graphene along the zigzag direction

should be L0 = 0.246nm; the initial crack (defect

region of graphene) has a length of LC = 2L; ⇢ is the

tip radius, which in our case ⇢ = 0.265nm. In

continuum-based linear elastic fracture mechanics

(LEFM), the fracture is defined to occur while the

stress intensity equals its critical value,

K
LEFM
I

= KIC . In QFM, the crack propagates when

K
QFM
I

=

s
1

L0

Z L+L0

L

h
KLEFM
I

(L)
i2

dL = KIC

Substituting this KIC , the fracture stress in QFM

writes �F (L) =
KICp

⇡(L+L0/2)
, By extending this

fracture stress from sharp to blunt cracks, Pugno &

Ruo↵ finds an asymptotic correction for small tip

radii and proposed the form:

�F (L, ⇢) = KIC

vuuut
1 + ⇢
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⇡(L +
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KIC! ! KIC
"1 + #!/2a0$ . #9$

KIC! and KIC are the fracture toughness for a blunt and a slit
crack, respectively. According to Eq. #9$ the blunt crack in-
creases the toughness with respect to the case of the sharp
crack. Once more, we point out that this result is notably
different from a simplified correction to LEFM which
predicts20 KIC! !2KIC #i.e., no dependence upon the tip ra-
dius$. The QFM failure stress for the blunt crack is obtained
by replacing KIC! , Eq. #9$, in place of KIC in Eq. #5$

" f
QFM#c,!$ = KIC"1 + #!/2a0$

##c + a0/2$
= " f

LEFM"1 + !/2a0

1 + a0/2c
.

#10$

For the crack resistance energy we finally get

$s

$
=

1 + !/2a0

1 + a0/2c
. #11$

At very short cracks #c of the order of few atomic spac-
ings$, $s /$ depends monotonically upon c. For the large
crack #a0 /c�0$ we get $s /$=1+! /2a0%1. We further re-
mark that a0 #which is related to the bond network$ could
also depend upon the direction of crack propagation. Accord-
ingly, QFM can in principle account for the variation of the
crack resistance with propagation direction, as indicated by
some atomistic simulations.10

The QFM approach may be applied to the case of a crack
interacting with an elastic inclusion, as well. According to
the Eshelby theory,21 the variation of the SIF at the crack tip
&Ktip, respect the case of the isolated crack #K0$, is
&Ktip /K0=c1 /d2, where d is the crack inclusion distance and
c1 is a constant depending on the geometrical and elastic
properties of the matrix and the inclusion. The QFM version
of this law is obtained by using Eq. #3$

&Ktip
QFM

K0
=" 1

a0
%

d

d+a0 &Ktip
2

K0
2 dx

=
c1

d2"1 + a0/d + 1/3#a0/d$2

#1 + a0/d$3 . #12$

In the limit of small a0 /d, this equation reproduces the same
result predicted by the Novozhilov theory:

&Ktip
nov

K0
=

1

a0
%

d

d+a0 &Ktip

K0
dx =

c1

d2#1 + a0/d$
. #13$

At very short crack-inclusion distances, a0 /d&1, the QFM
correction to the Eshelby theory is important.

III. ATOMISTIC SIMULATIONS

In order to reproduce at atomistic level the above geom-
etries #i.e., the isolated crack and the crack-inclusion pair$,
we have considered a slab of perfect '-SiC monocrystal #see
Fig. 3$. The atoms interact through the bond-order Tersoff
potential,22 well suited to study the mechanical properties of
'-SiC.9,23,24 In particular such a force model is able to cor-
rectly reproduce the brittle failure of silicon carbide under
tensile load once that a suitable modification of the potential
has been operated according to Ref. 9. The stress fields were
obtained by force relaxations based on the damped dynamics
method. The convergence was controlled by monitoring the
maximum atomic force and stress components, and the sys-
tem was considered fully relaxed for atomic forces below
0.01 eV Å−1. The x, y, and z directions were aligned along

the '112̄(, '1̄10(, and '111( orthogonal directions, respec-
tively. In the x-y plane the system was kept fixed at the
equilibrium lattice parameter of '-SiC #4.318 Å$ and peri-
odically repeated. In the z direction the crystal was deformed
by means of the constant traction method.25 According to this
method, periodic boundary conditions were removed along
the z direction and the resulting surfaces 'in our case one top
silicon and one bottom carbon #111$ shuffle planes( were
subject to constant forces #tractions$ to mimic the embedding

FIG. 2. Coordinates for the local stress distribution at distance r,
ahead of a blunt crack of tip radius !.

FIG. 3. #Color online$ Top panel: Geometry and orientation
of the simulation cell. For the case of an isolated crack the
cell dimension L along x and z direction were the same
#22 nm(L(88 nm$. For the case of crack-inclusion pair, x and z
cell dimension were, respectively, 44.43 and 22.44 nm. In both
cases the y dimension is 0.61 nm. Bottom panel: Atomic-scale view
of the relaxed crack, where black #yellow$ dots represent carbon
#silicon$ atoms.
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creases with the increase in slit length. The theoretical results
match reasonably well with the MD results. The variation in
the normalized fracture strength with the slit semilength is
shown in Fig. 7. Comparison with the published numerical
data for other materials and structures, such as Si, SiC, C,
Ge,35 and single wall CNTs21 is also shown. While all the
materials and structures follow the same variation with slit
semilength, graphene shows slightly higher fracture strength
and can be considered as one of the strongest materials.

V. CONCLUSION

In this paper, by using MD simulations, we investigated
the effects of temperature, strain rate, and defects on the
mechanical properties of monolayer graphene by performing
the uniaxial tensile test along the armchair direction. We
found that the variation in Young’s modulus is relatively
small !within a 10% range" for the pristine graphene mono-
layer when temperature varies between 300 and 2400 K.
Compared to the strain rate, temperature, and defects have

significant effect on the fracture strength of monolayer
graphene. The fracture strength at 2400 K is about 40% of its
value at room temperature !300 K". We have also shown that
the results from the NLE theory on fracture strength as a
function of temperature, strain rate, and slit length match
reasonably with MD data. By comparing the strength of
graphene with experimental and simulation data of other ul-
trastrong nanomaterials/nanostructures, we can conclude that
graphene is an exceptionally strong material.
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Key Points

• Derived from Gri↵th’s Theory

• Discretized Fracture Process

• Fittable with MD Simulation Data
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[4] Pugno & Ruoff, Philo. Mag., 2012

 includes molecular size effect!L0

Quantized Fracture Mechanics 

• The fracture stress derived for QFM:

Linear Elastic Fracture Mechanics 

• Relation between fracture stress & intensity factor: 

“Local Effect”
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The diagrams of the fracture stresses and strains (�F & ✏F ) of the graphene layer

regarding di↵erent initial defects lengths and temperature di↵erences.
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Zhai and Yeo, International Journal of Applied Mechanics (In Press), 2023 
Zhai and Yeo, Molecular ML Conference (MIT, Cambridge, MA), 2022

Question: Can we verify MD simulations from Mechanics? If yes, how?

Observations  Verifications 

• Molecular dynamics simulations data fitted well to QFM and the fitted  matches experimental observations. [5] 

• From both QFM & MD, one observes with smaller initial defect the fracture stress increases nonlinearly.

→
KIC

[5] Zhang et al., Nat. Comm., 2014 
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Question: Can we verify MD simulations from Mechanics? If yes, how?

Results & Discussion
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The stress-strain responses of the graphene sheet using the four di↵erent potential fields of

a small initial defect (LC = 1.7217nm). The four subfigures A, B, C, D illustrated the

deformation and fracture profile along the defected area marked with the corresponding

strain values. The red star stands for the fractured moment. The blue triangular dot is

the initial morphology of the defect.
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How to Design Good Materials?
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Zhai, Sibley Graduate Research Symposium, 2022

Question I: How to simulate the biofilm dynamics? 

Question II: How to automate the design process digitally?  

Question III: What’s the biomechanics behind the 
optimization and designed antimicrobial surfaces?

Begin the research by asking the question from the scale & design perspective

https://doi.org/10.1021/acsbiomaterials.2c01079
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Question I: How to simulate biofilm formulation and removal process?

Three di↵erent types of particles are involved in the simulation: the heterotrophs (HET),

which can be interpreted as the bacteria cells, marked in green in Figure 2; the extracellular

polymeric substances (EPS), to be marked in blue in later figures; the substrate, modeled

as rigid particles marked in white in Figure 2. Note that for di↵erent loading the simulation

setup might variate a little to tune the simulation, which is to be explained in the following

points.

x 
y 

z 

Figure 2: The numerical setup of the simulation box, implemented in LAMMPS. A cubic
simulation box with sizes of Lx = Ly = Lz = 4 ⇥ 10�5 m. The geometry of the surface is
controlled by four design parameters, Rx, Ry, h, and n, which stand for the bottom and
upper radii, the height of the cones, and the number of cones per box length, respectively,
as indicated in the zoomed schematic view. Details see text.

From the optimization formulation, we optimize the geometry of the nanosurface in the

shear flow case, yet optimizing both the geometric and vibration parameters to find out the

best vibration loading for e↵ective biofilm removal. Hence, the simulation setup is di↵erent

for vibration cases considering the periodic oscillation of the substrate comparing just putting

the substrate on the bottom of the box for both the growth and shear flow cases. Two general

simulation scenarios are investigated in this concern:

• Growth and shear flow. For both the grow and shear flow cases, the substrate is fixed

at the box bottom and the biofilm zone is located right above the cone. Each side of

the simulation box has fixed boundary conditions (FBC), meaning after the bacteria

cells will not reproduce themselves periodically after ”flying out” of the simulation

13

Zhai and Yeo, ACS Biomaterials Science & Engineering, 2023, 9, 1, 269–279 
Zhai, Sibley Graduate Research Symposium, 2022

Part II: Designing Antibiofilm Surfaces
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Question II: How to automate the design process digitally?

Zhai and Yeo, ACS Biomaterials Science & Engineering, 2023, 9, 1, 269–279 
Zhai, Sibley Graduate Research Symposium, 2022

the displacement of any bacteria cells X takes the form

X(t) = X0 +M sin

✓
2⇡

T
�

◆
(16)

where X = [X, Y, Z] is the position vectors of each particle cells, having X0 as the

initial position, with magnitude M and time T from Equation 9. � is the time elapsed

tuned to stabilize the simulation. For both the vibration scenarios, there are 500 initial

bacteria cells randomly distributed in the biofilm zone and set to grow for 20,000 s in

real-time. The vibrations are then applied to remove biofilm for 10,000 s in real-time.

3.4 Automated Optimization Workflow

Figure 3: The schematic for the Bayesian optimization workflow for designing antimicrobial
surfaces based on LAMMPS and Python. The optimization begins with randomly initiated
geometries represented via design parameters, the nanosurface geometry is then passed to
simulation: bacteria cells are initiated on top of the nanosurface and grow and removed
via di↵erent physical loading. The rest bacteria cells are counted as the objective for the
optimization. The optimized geometries are then verified through numerical experiments.
See text for details.
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Design Optimization 

• The design optimization problem is formulated as: 

• We employ Bayesian optimization using Gaussian 

process regression to build design space surrogates:

simulation. The optimization process can be simplified as

min y = NBC = f(x,p),

subject to xLB  x  xUB, 0  Ry  Rx  Lx

n

x = [Rx, Ry, h, n, (M,T )] , p = [↵, ⇠,L, T ,B]

(9)

Here, y = NBC is the residual bacteria cell numbers (biomass) after the simulation,

considering our goal is to design architectured surfaces to remove the biofilm and hence

reduce bacteria numbers. The design variables x are subjected to a range of lower and upper

bounds, which are given in Section 3.3. The design variables x = [Rx, Ry, h, n, (M,T )] are

the lower and upper radius, the height of the cones, and the total number of cones per

cube side; and (M,T ) are the magnitude and time per vibration cycle, respectively. The

magnitude and time are marked in bracket due to they are not counted as design variables in

the growth and shear optimization. The lower radius of the cone is larger than the upper’s,

Rx � Ry, which are both larger than 0 and smaller than max length per cone, perceived as

the geometric constraint. The simulation parameters p = [↵, ⇠,L, T ,B] are the shear rate,

growth rate, geometric parameters, simulation iterations, and bacteria related coe�cients, in

which L = [Lx, Ly, Lz, LS , LB, ...] includes all the parameters in setting up the geometry, and

T & B set up the simulation by controlling bacteria grow and removed for certain simulation

steps with specified biological coe�cients. The details are to be elaborated in the simulation

setup in the following Section 3.3.

Bayesian optimization consists of a Gaussian process regression built the surrogate model

for evaluating the space using Bayes statistics and an acquisition function, which is used to

construct a utility function from the model posterior that enables the next point to be

evaluated.32 The two components are introduced and explained in Sections 3.2.1 and 3.2.2.

9

3.2.1 Gaussian Process Regression

Gaussian process regression (GPR) is a Bayesian statistical approach to approximate and

model function(s). Considering our optimization, if the function is denoted as y = f(x,p),

where f is evaluated at a collection of di↵erent sets of points: x1,x2, ...,xk 2 Rd, we can hence

obtain the vector [f(x1), ..., f(xk)] to construct a surrogate model for the design parameters

with the correlated objectives. The vector is assumed to draw at random from some prior

probability distribution, where GPR takes this prior distribution to be a multivariate normal

with a particular mean vector and covariance matrix. Here, the mean vector and covariance

matrix are constructed by evaluating mean function µ0 and covariance function ⌃0 at each

pair of points xi, xj. The resulting prior distribution on the vector [f(x1), ..., f(xk)] is

represented in the form of a normal distribution to construct the surrogate model33

f(x1:k) ⇠ N (µ0(x1:k),⌃0(x1:k,x1:k))) (10)

where N (·) stands for the normal distribution. The collection of input points is represented

in compact notation: 1 : k stands for 1, 2, ..., k. The surrogate model f(x) on 1 : k is

represented as a probability distribution given in Equation 10. To update the model with

new observation, such as infer the value of f(x) at new point x, we let k = n+1 and xk = x.

The condition distribution of f(x) given observations x1:n using Bayes’ rule writes:

f(x)|f(x1:n) ⇠ N (µn(x), �
2
n
(x))

µn(x) = ⌃0(x,x1:n)⌃0(x1:n,x1:n)
�1 (f(x1:n)� µ0(x1:n) + µ0(x))

�
2
n
= ⌃0(x,x)� ⌃0(x,x1:n)⌃0(x1:n,x1:n)

�1⌃0(x1:n,x)

(11)

where the posterior mean µn(x) is a weighted average between the prior µ0(x) and estimation

from f(x1:n), with a weight depending on the kernel.

10

Here, we employ the Gaussian kernel, the prior covariance hence write34

⌃0(xi,xj) = �
2
R(xi,xj),

R(xi,xj) = exp

 
1

2

dX

m=1

(xi,m � xj,m)
2

✓2
m

!

✓m = (✓1, ✓2, ..., ✓d)

(12)

where �
2 is the overall variance parameter and ✓m is the correlation length scale parameter

in dimension m of dth dimension of x, which are all hyperparameters of GPR. R(xi,xj) is

the spatial correlation function. Our goal is to estimate the parameters �, ✓m that create

the surrogate model given training data [yk = NBC(k), xk] at iteration k.

3.2.2 Acquisition Function

Given the training data [yk, xk], Equation 10 gives us the prior distribution yn ⇠ N (µ0,⌃0)

as the surrogate. This prior and the given dataset induce a posterior: the acquisition func-

tion, denoted as A : X �! R+, determines the point in X to be evaluated through the proxy

optimization xbest = argmaxx A(x). The acquisition function depend on the previous obser-

vations, which can be represented as A = A(x; (xn, yn), ✓). Taking our previous notation,

the new observation is probed through the acquisition35

xk = xn+1 = argmax
x2 X

Xn

A (x; (xn, yn), ✓m) (13)

where the input space contains the evaluation of design variables at n points: Xn :=

(x1,x2, ...,xn). In our case, X is acquired through running n NUFEB simulations. In our

approach, we pick GP Upper Confidence Bound (GP-UCB)36 as the acquisition function,

exploit the lower confidence bounds (in the case of minimizing the objective function) to

11

construct the acquisition to minimize the regret, taking the form32

A (x; (xn, yn), ✓m) := µn (x; (xn, yn), ✓m) + � (x; (xn, yn), ✓m) (14)

where  is a tunable parameter balancing exploitation and exploration when constructing

the surrogate model. We take  = 2.5 as a default value in the model. Combining GPR and

the acquisition function one can construct the surrogate model aiming to approximate the

minimum value in the design space. In our case such Bayesian optimization methods are

applied to obtain active surface typologies with minimal residual biofilm is desired, where

the design space is a 4-dimensional space for topology optimization and a 6-dimensional

space for combined vibration optimization. We first randomly explore the design space for

10 steps for initial surrogate modeling and iterate for 90 steps based on Bayesian statistics

to construct the full surrogate with 100 data points.

3.3 Simulation Setup

The basic simulation setup is shown in Figure 2: a cubical simulation box with side length of

4⇥10�5 m are built in LAMMPS, a substrate with height LS = 4⇥10�6 m. Above the substrate

is the ”cone area”, with height h as a design variable, ranges are [2 ⇥ 10�6 m, 4 ⇥ 10�6 m].

Above the cone is the ”biofilm zone”, in which the initial bacteria cells are located for further

growth, with height LB = 2⇥ 10�6 m. n is the total number of cones per cubic side. Since

the simulation box is cubic, the total number of cones should be n ⇥ n. n is in strict form

of integer and constrained in the range [5, 10]. For each n, the maximum value of cone radii

are Lx/n. The tunable range of the two radii are set as [0.1, 0.9] ⇥ Lx
2n , corresponding to

the previously ”geometric constraint” in the optimization formulation subsection. Since the

geometric constraint Rx � Ry is assumed, the radii are to reversed if a larger Ry is proposed

by the optimization algorithm. For the vibration parameters, the magnitude lies in the range

[4⇥ 10�7 m, 2⇥ 10�6 m]; the time period lies in the range of [10�5 s, 1 s].

12
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3 Technical Implementation of Automated BO

The design variables are passed from Python to LAMMPS via the mentioned Python-

LAMMPS interface. The corresponding objective value obtained in the LAMMPS simula-

tions is then passed to the BO algorithm in Python to generate a new set of design variables.

The optimization loops cease at the preset iteration steps.
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Figure S6: The technical implementation for the proposed automated Bayesian optimiza-
tion.

4 Optimization Constraint Rbottom � Rtop Examination

To reason out the logic of setting up the constraint Rbottom � Rtop in the optimization

process, we conduct a comparative study and present mechanical insights into the surface-

biofilm interactions.

We set up a biofilm shear-o↵ simulation with di↵erent active surfaces of di↵erentRtop &Rbottom

(or Rbottom & Rtop) as 0.89µm and 2.67µm, respectively. We switch Rtop and Rbottom to ex-

amine the e↵ect of our optimization constraint. The basis of the substrate has 9⇥ 9 cones.

Figure S7 shows the snapshots of the shear-o↵ simulations. By simply observing the simu-

lation visualizations, one can conclude that there are more residual bacteria cells after the

shear-o↵ for the “relaxed-constrained” active surface design. A further examination shows

that by relaxing the constraint the residual bacteria cells indeed increase (Figure S8). The

main di↵erence happens at a “Critical Regime” where the reversed active surfaces seem to

S5
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Figure S3: The process for geometry selection for vertical vibrational biofilm removal. (A)
The upper and lower radii Rbottom to Rtop diagram. (B) The heights of the extracted geome-
tries along the simulations. (C) The cone numbers per box side of the extracted geometries
along the simulations. (D) The boxplot for upper diameter Dbottom of the extracted ge-
ometries, where D̄bottom is the mean value. (E) The boxplot for lower diameter Dtop of the
extracted geometries, where D̄top is the mean value. (F) The boxplot for height h of the ex-
tracted geometries, where h̄ is the mean value. (G) Visualization of the extracted geometry.
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Figure S4: The process for geometry selection for lateral vibrational biofilm growth. (A)
The upper and lower radii Rbottom to Rtop diagram. (B) The heights of the extracted geome-
tries along the simulations. (C) The cone numbers per box side of the extracted geometries
along the simulations. (D) The boxplot for upper diameter Dbottom of the extracted ge-
ometries, where D̄bottom is the mean value. (E) The boxplot for lower diameter Dtop of the
extracted geometries, where D̄top is the mean value. (F) The boxplot for height h of the ex-
tracted geometries, where h̄ is the mean value. (G) Visualization of the extracted geometry.
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Figure S1: The process for geometry selection for resisting pure biofilm growth. (A) The
upper and lower radii Rbottom to Rtop diagram. (B) The heights of the extracted geometries
along the simulations. (C) The cone numbers per box side of the extracted geometries along
the simulations. (D) The boxplot for upper diameter Dbottom of the extracted geometries,
where D̄bottom is the mean value. (E) The boxplot for lower diameter Dtop of the extracted
geometries, where D̄top is the mean value. (F) The boxplot for height h of the extracted
geometries, where h̄ is the mean value. (G) Visualization of the extracted geometry.
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Figure S2: The process for geometry selection for shear flow biofilm removal. (A) The
upper and lower radii Rbottom to Rtop diagram. (B) The heights of the extracted geometries
along the simulations. (C) The cone numbers per box side of the extracted geometries along
the simulations. (D) The boxplot for upper diameter Dbottom of the extracted geometries,
where D̄bottom is the mean value. (E) The boxplot for lower diameter Dtop of the extracted
geometries, where D̄top is the mean value. (F) The boxplot for height h of the extracted
geometries, where h̄ is the mean value. (G) Visualization of the extracted geometry.
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Figure S1: The process for geometry selection for resisting pure biofilm growth. (A) The
upper and lower radii Rbottom to Rtop diagram. (B) The heights of the extracted geometries
along the simulations. (C) The cone numbers per box side of the extracted geometries along
the simulations. (D) The boxplot for upper diameter Dbottom of the extracted geometries,
where D̄bottom is the mean value. (E) The boxplot for lower diameter Dtop of the extracted
geometries, where D̄top is the mean value. (F) The boxplot for height h of the extracted
geometries, where h̄ is the mean value. (G) Visualization of the extracted geometry.
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Figure S2: The process for geometry selection for shear flow biofilm removal. (A) The
upper and lower radii Rbottom to Rtop diagram. (B) The heights of the extracted geometries
along the simulations. (C) The cone numbers per box side of the extracted geometries along
the simulations. (D) The boxplot for upper diameter Dbottom of the extracted geometries,
where D̄bottom is the mean value. (E) The boxplot for lower diameter Dtop of the extracted
geometries, where D̄top is the mean value. (F) The boxplot for height h of the extracted
geometries, where h̄ is the mean value. (G) Visualization of the extracted geometry.
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Question II: How to automate the design process digitally?

Zhai and Yeo, ACS Biomaterials Science & Engineering, 2023, 9, 1, 269–279 
Zhai, Sibley Graduate Research Symposium, 2022

Figure 4: The design parametric matrices and the corresponding values of the objective
function during the optimization process. Note that for better visualization the parametric
matrices are normalized. Four subfigures indicate the optimization of the simulations based
on four di↵erent physical methods to remove biofilm. The objective with lower biomass is
marked in red dots for geometry extraction.

represented in blue dots. From Figure 4 we observe that for the growth and shear flow cases

the lower objective values are distributed more uniformly throughout the iterations, whereas

for the vibration cases, the lower objectives seem to only exist under certain ”connected”

steps where the corresponding design parameters exhibiting similar values.

4.2 Geometry Representation

The lower value objectives marked in red in Figure 4 are extracted as the corresponding

geometries seem to resist biofilm with good e↵ect. To finalize the geometric design corre-

sponding to each scenarios, all the extracted data are visualized in Figure 5: the subfigures

1 - 3 (in subfigures A - D) show the data representation of radii Rx to Ry, height h, and

cones per box side n, in which di↵erent n values are marked in di↵erent colors. We do so be-

cause each n represents a totally di↵erent geometric design as n is an integer and should not

be averaged over the extracted designs. Hence, we select the n value repeat the most times
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Figure S3: The process for geometry selection for vertical vibrational biofilm removal. (A)
The upper and lower radii Rbottom to Rtop diagram. (B) The heights of the extracted geome-
tries along the simulations. (C) The cone numbers per box side of the extracted geometries
along the simulations. (D) The boxplot for upper diameter Dbottom of the extracted ge-
ometries, where D̄bottom is the mean value. (E) The boxplot for lower diameter Dtop of the
extracted geometries, where D̄top is the mean value. (F) The boxplot for height h of the ex-
tracted geometries, where h̄ is the mean value. (G) Visualization of the extracted geometry.

A B C

D E F

G

Figure S4: The process for geometry selection for lateral vibrational biofilm growth. (A)
The upper and lower radii Rbottom to Rtop diagram. (B) The heights of the extracted geome-
tries along the simulations. (C) The cone numbers per box side of the extracted geometries
along the simulations. (D) The boxplot for upper diameter Dbottom of the extracted ge-
ometries, where D̄bottom is the mean value. (E) The boxplot for lower diameter Dtop of the
extracted geometries, where D̄top is the mean value. (F) The boxplot for height h of the ex-
tracted geometries, where h̄ is the mean value. (G) Visualization of the extracted geometry.
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Question III: What’s the biomechanics of the antimicrobial surfaces?
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Part II: Designing Antibiofilm Surfaces

large radii with fewer cones. We explain this phenomenon as with only a larger contact area

can the vibration energy be transported to the biofilm for removal. Following the thought

one may also be curious whether a purely flat surface possesses a better vibration biofilm

removal e↵ect compared with the active surfaces, the verification is hence to be presented in

Section 4.3.

4.3 Optimization Verification and the Biomechanics

0
10
4

10
5
10
6101

102
103
104

Figure 6: The numerical verification compares the optimized geometry with the flat surface
for resisting biofilm growth and shear flow removal. The upper figures indicate the snapshots
of the simulation for visualizing the biofilm growth and removal corresponding to real-world
time. The lower figures indicate the changes in the bacteria numbers with respect to time
during the simulation for highlighting the di↵erences between the flat and optimized surfaces.

To verify the optimized geometries and the biofilm removal mechanism, comparison nu-

merical experiments are conducted for the four scenarios. The optimized active surfaces are

compared with flat surfaces for just the biofilm growth and the shear flow removal shown in

Figure 6. Since both the geometries and vibration properties are optimized under di↵erent

vibration-induced biofilm removal, the optimized scenarios are compared with two bench-

20
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Outline

Forward Problem Multiscale Modeling

Inverse Problem Design Optimization



What can we learn more? 

X* 𝚊𝚛𝚐𝚖𝚊𝚡(𝚢(𝚇)) y*

problem: can we trust “ ”?̂𝚖𝚘𝚍𝚎𝚕−𝟷

𝙶𝙿(𝚇, 𝚢) ↔ ̂𝚖𝚘𝚍𝚎𝚕−𝟷
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Question I: Can we extend our framework to 3D porous materials?

Zhai and Yeo, Unpublished, 2023

Part III: Designing Bioporous Materials
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Question II: Can we characterize the optimization process?

Part III: Designing Bioporous Materials

Zhai and Yeo, Unpublished, 2023
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Part III: Designing Bioporous Materials

Zhai and Yeo, Unpublished, 2023

Question III: Can we trust the ML approximated design space?
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Part III: Designing Bioporous Materials

Zhai and Yeo, Unpublished, 2023

Question III: Can we trust the ML approximated design space?
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Part III: Designing Bioporous Materials

Zhai and Yeo, Unpublished, 2023

Question IV: Any new physics?
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Outline
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How to Discover Good Materials?

X 𝚖𝚘𝚍𝚎𝚕−𝟷
y

problem: no initial form of “X”!
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Part IV: Benchmarking Optimization Algorithms 
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Digital molecular materials design framework
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Design Optimization 

• The design optimization problem is 

formulated as: 

• The automation is connected via MEGNet:

optimization algorithms. We provide several metrics to evaluate the optimization results from different algorithms.

Explore Design Space

Motivation ! Problem

A simple problem: Discover New Materials

Why do we need computational design optimization?

Experimental synthesis is expensive, trial-and-error is time-consuming,

and grid search is computationally burdening.

argmax
�

y = f (x�)

find � = ��, where ymax = y(x�� )

Why do we need to benchmark the optimization algorithms?

There are so many di�erent algorithms for materials inverse design —

how these optimizations di�er in the application of molecular materials

design is of interest — could’ve significantly improved discovery e�ciency.

Goal: Benchmark the design optimization process and results for

molecular materials design with targeted properties.
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Formulate Design Optimization Problem

Found Better Materials

Deploy

Figure 1. Schematic of the materials design process. The process begins with defining the intended industrial application (A)
and identifying the desired material properties (B), such as high bulk modulus and low Fermi energy. A digital design
optimization problem is then formulated using numerical models (C) to discover or design materials with the desired properties.
Different optimization methods use exploration/exploitation strategies to generate a design space for exploring the best
materials (D). The optimal materials are extracted from the design space exploration and are ready for real-world applications
(E). In this study, we focus on formulating an optimization framework that enables the application of the most current popular
optimization methods to search for desired molecular materials and compare different optimizations based on specific metrics.
Finally, the “mined” materials are analyzed.

Results
Design Optimization for Materials
The goal is to benchmark design optimization algorithms for inverse materials design, in which we formulate the problem as
maximizing an objective function corresponding to materials properties. Here, we design the problem to maximize the bulk
modulus while simultaneously minimizing the Fermi energy. The model is proposed not based on any specific applications, but
rather as a prototype model to conduct benchmarking. However, this can be treated as analogous to semiconductor materials
design in a non-exact way. The design optimization problem shown above aims to maximize an objective function, J , which is
defined as the difference between the bulk modulus and the Fermi energy, J = K �EFermi, as a single-objective optimization
problem:

argmax
natom, xn, h

J = K �EFermi,

where K,EFermi = MEGNet(GQ),

! G = W(natom, xn, h); Q = [natom,xn,h ]

subject to natom 2 [1,4] or ⌘ 1, xn 2 [0,100], h 2 [0,100]

(1)

Here, the problem is defined as a discrete constrained optimization problem. The input graph structure G is related to the
properties K and EFermi, which can be considered as a forward mapping. The forward mapping of fast properties predictions is

3/30

Workflow Automation
One of the main contributions of our work is the development of an optimization framework that is flexible for many
implementations of state-of-art optimization methods. The key point in such a framework is the automation of the optimization,
where the update of the next set and the current set of the materials evaluation are connected. The automation is enabled through
the graph neural network surrogate model as formulated in Equation (1), the MEGNet. The whole workflow can be simplified
to the expression:

(

evaluationz }| {
MEGNet(Qn+1) Qn+1)| {z }

exploration

search↵
feedback

IOA(Qn,

evaluationz }| {
MEGNet(Qn);PIOA)| {z }

exploitation

(7)

where IOA stands for “inverse optimization algorithms”. Assumes the algorithm evaluates the nth set of materials with the
design variable Qn, obtaining the corresponding properties MEGNet(Qn), by employing the hyperparameters PIOA specified by
from different optimization methods, one then obtain the design variables for the next set of evaluation Qn+1, for which the
evaluated properties MEGNet(Qn+1) then feeds back to the IOA and iteratively search for the next set. This loop allows one to
get rid of the traditional “trial-and-error” approach and only need to set the hyperparameters to obtain the optimal materials
given the targeted properties.
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Preliminary Results: Single-element Molecules

A

B

C

Observations 

• The RUN algorithm outperforms the result optimization 

methods in material count in the “target design space”. 

• GA, ACO, and DRL are generally good in single-element 

molecule design.

Zhai, Hao, & Yeo, Unpublished, 2023.
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Observations 

• Ta is the most evaluated molecule among 12 optimization methods. 

• Design space is highly non-convex.

Zhai, Hao, & Yeo, Unpublished, 2023.
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Preliminary Results: Single-element Molecules
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Observations 

• GWO, HIWOA, ACO, and RUN stand out for 

target design space material counts. 

• DRL didn’t successful learn the policy (per se).

Zhai, Hao, & Yeo, Unpublished, 2023.
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Preliminary Results: Multi-element Molecules
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Observations 

• Cs is the most evaluated material among all the optimization methods. 

•  is the most evaluated multi-element chemical compound. 

• ACO, SA, RUN, and DRL: higher mean objective values for single-element materials; 

GA and RUN: multi-element mat.

𝖧𝖿𝟤𝖨𝗇𝖬𝗈

Zhai, Hao, & Yeo, Unpublished, 2023.
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Preliminary Results: Multi-element Molecules
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>> hanfengzhai/cornell: We Understand Good Materials.

>> hanfengzhai/cornell: We Design Good Materials. 

>> hanfengzhai/cornell: We Examine the Design Process.

>> hanfengzhai/cornell: We Discover Good Materials.
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>> hanfengzhai/: Let’s explore the virtual physics world!
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