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1 Model Implementation

1.1 Module decomposition and analysis

The problem formulation is simplified as it was last described considerably. The fluid

dynamics module is eliminated since it does not strongly variate the energy generation of

TMG, and the heat transfer is facilitated purely by conduction, as the active material is in

direct contact with an infinite heat source with a fixed temperature (the engine) (as shown

in figure 4). Inspired by a bit of sporadic research, we decide that our particular engine is

running at 400K. It is running in an environment of 293.15K.

We have created 2 numerical models which have to be run separately and then analyzed

in conjunction in order to spit out the expression for predicted power output, and efficiency.

We have also created a computer program which returns the total cost of the whole thermo-

magnetic system, given a design vector.

The first numerical model we created was the magnetic one. It is implemented in COMSOL

Multiphysics and will be able to spit out the total magnetic flux passing though our coil for
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Multidisciplinary Design Optimization Assignment #2: Part (b)

Figure 1: The magnetic distribution for changed geometry for hot active material (Gd).

any set of geometric parameters, or materials. We programmed an adaptive geometry, so

that any input design vector can immediately translate into a fully functional model. This

has been tested and has turned out to work. Let us demonstrate this for the same design

vector as our initial guess in Q2. In figure 1 and figure 2, we show a graphical representation

of the output. The red arrows represent the direction of the magnetic field, and the blue

density plot shows the magnetic flux density. In figure 1 the active material is above the Curie

temperature, and in figure 2 it is below the Curie temperature. The magnetic distinction

between the two are realized by changing the magnetic permeability from 1 to 20, which

represents a transition from non-magnetic to ferromagnetic which turns out to be as good

as total, and certainly good enough for the purposes of this project. It very clear how the

active material changes from being non-guiding to guiding, when the temperatures drops.

These results are exactly what we expected. Since the field is still emerging, there is not

a whole lot of data that can be used for validation. I happen to have worked with the same

physics before though, and have validated it by means of mesh convergence testing, at least.

This, in conjunction with the fact that the same qualitative behaviour as we expected is

produced, leads us to consider the model validated enough for further studying.

The second numerical model computes the heat distribution as a function of time. We

here look at the time it takes to heat up the active material and take that as an expression
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Figure 2: The magnetic distribution for changed geometry for cold active material (Gd).

for the total time of a thermal cycle1, since it is basically the same process as the cooling,

only in reverse. We are thus implicitly assuming that there is a delay between the switching

of the heating and cooling processes, which is sufficiently long to ensure that a more or less

uniform temperature distribution has been created at the onset of the cooling process. This

may or may not be a good approximation, but we have had to restrict ourselves, and of

course, the problem is just being redefined to one where cycling of cold and hot matter in

contact with the device has not been optimized from the start itself. In conclusion, we are

assuming that the total heating/cooling time scales linearly with the time it takes to heat

up the active material from a uniform temperature distribution equal to that of the ambient

surroundings. For an optimized cycling mechanism, this would not be the case, but would

likely be close to it. In another project, the procedure for cooling/heating initialization might

be very interesting to optimize too. We have programmed a stop condition which evaluates

the geometric domain of the active material and finds the minimum temperature. When this

minimum temperature is above 310K, the whole active material is well above a complete

transition to being non-ferromagnetic, and the stop criterion is activated and gives us the

time it took to reach that point. As emphasized in the previous report, we have not set our

hearts at optimizing the temperature to which one would want to heat up, simply because

of the increased physical complexity which comes about from having to couple the exact

1both heating and cooling
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Figure 3: The temperature distribution for the changed shape, with an initial heat flux on the active material.

temperature distribution with a ”magnetic permeability field”, which we would then have to

introduce in the geometric domain of the active material, and define based on experimental

data on the temperature-dependence hereof2.

Figure 3 shows the distribution of temperature at the time of activation of the stop

condition. Validity of this model stands with the validity of the heat-diffusion equation. As

was the case with the magnetic simulation, the physics itself3 is well tested, and the results

are backed up by intuition. This is just a heating process, and that it should take 243.8s to

heat up a material with the indicated dimensions from 293.15K to a temperature distribution

such as the one seen, is very reasonable considering that the material is in fact, metallic, and

should thus have a very high conductivity. On that note, let it also be said that all the

fundamental physical parameters4 have been found in COMSOL’s own library.

The power output of the system has been determined to be proportional to the total

magnetic flux going though the active material raised to the power of two. Actually, let us

just make the reasoning for this a little bit more clear. We can write the power output P :

2which is rare by the way
3the governing PDE’s
4such as the coefficient of heat transfer
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P = IV (1)

Assuming the coil around the active material to be completely ohmic,

V = IR → I =
V

R
(2)

Hence, substituting Eq. 2 in the Eq. 1 we have

P =
V 2

R
(3)

V is induced by the electromotive force of the changing magnetic field, and hence, Faraday’s

law gives us,

V = ε = −N∆Φ

∆t
(4)

The induced current will however in turn, produce a magnetic field in the opposite direc-

tion5. This is proportional to I, which in turn is proportional to the change of magnetic flux.

We combine this effect with that of the electrical resistance, R, and the number of turns, N ,

and throw it all into a constant, K. We do not calculate K explicitly, but simply note that

the power is proportional to ∆Φ2 · 1
∆t

. For optimization, we do not actually care what this

value is. Interestingly, we can optimize our system without ever knowing exactly what the

objective function is! We simply express it in ”units” of K.

P = K ·∆Φ2 ·∆t−1 (5)

The efficiency is taken as, Eout

Qin
. We just need to look at a single cycle. The total heat

put into the system (and ejected again), will be taken as Qin =
∫
δV
CV · (T − 293.15K)dV .

We simply take the added temperature and multiply with the energy associated with that.

This is done for every infinitesimal point in the structure and it is all added together. CV

is kept within the integral, as the different components of the structure have different heat

capacities.

5Lenz’s law
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η =
Eout
Qin

=
1

Qin

∆Φ2

∆t
·∆t (6)

η =
∆Φ2∫

δV
CV · (T − 293.15K)dV

(7)

In this derivation, we have stuck with ∆t and ∆Φ for the total change in t and Φ over half a

cycle. Eout was thus found simply by multiplying P by t. This approach should generalize to

incremental changes in t and Φ. Either way, it is clear that the efficiency too can be found

to be proportional to a (somewhat) simple expression. This time, we simply get,

η = G · ∆Φ2∫
δV
CV · (T − 293.15K)dV

(8)

So for computing the efficiency, we do not need to worry about the time involved. We

simply look at the total difference in magnetic flux of half a cycle and the temperature

difference of half a cycle. We do (in principle) need to multiply the whole thing by 2 since

the heating of half a cycle corresponds to the heat spent on a full cycle. During that same

time the total magnetic flux will have changed two times. Anyway, this is of course just

collected in the constant K anyway. The expressions for P and η given in equation 5 and 8

are the ones that we optimize in this project. Henceforth, the factors K and G will implicitly

be multiplied on.

1.2 Cost module

The team gathered data on the cost of key materials used in our design and built a

MATLAB script ”costModule.m” to evaluate the objective Cost for an individual or array

of given design vectors. The cost data is summarized in Table 1 and ”costModule.m” is

included in Appendix 1.2. Cost is computed by multiplying the area of each component by

the cost of its material. Because the team is designing around a 2D model, we must note

the true meaning of the units in our objective Cost variable. The pricing data gives cost

in terms of cubic meters, but the combination of our geometric variables yields an area in

square meters. Therefore, in computing $/m2 from a rate given in $/m3, the team recognizes

that the objective Cost variable will have units of $/m ”into the page.” This is consistent

with our methods in other sections of our analysis.
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Material Cost
Iron [Ref.] 1.4804e3 $/m3

Neodymium [Ref.] 1.628e5 $/m3

Gadolinium [Ref.] 1.71553e5 $/m3

Table 1: The price of the materials applied in the simulations.

Feasibility

In preparation for creating a Design of Experiments as well as more rigorous simulation and

optimization later on, the team created a script ”geometricConstraints.m” in MATLAB

to evaluate the feasibility of any design vector based on geometric constraints. Currently, all

of the team’s design variables are geometric. The team defined a set of equations which must

all be true for a design vector to be physically valid. Equations 9-12 define the relationships

required between geometric design variables shown in Figure 4 for a given input to be valid.

The team established geometric constraints at this time. The maximum volume (area) of

our design is 0.125 m2. The maximum length of the design is 0.5 m. These constraints are

mostly arbitrary at this time. While they do yield a ”reasonably” sized design, the team may

adjust them later on as details of the design and optimization process begin to accumulate.

hyk(2wyk + wgap) > Vmax (9)

hyk > Lmax (10)

2wyk + wgap > Lmax (11)

hA + hpm > hyk (12)

The code to check the geometric feasibility of a design vector is included in Appendix

1.2. The code is written as a function so that it may be used by other scripts to assist

with our Design of Experiments and optimization algorithm later on. Using the function,

we verified an initial design vector shown in Table 2 for use with our model implementation.

The material used here is iron for the yoke and neodymium for the permanent magnet. The

active material is Gadolinium. For now, these material choices are more or less considered

parameters, but we could potentially change them to variables later on.
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Multidisciplinary Design Optimization Assignment #2: Part (b)

Figure 4: The schematic view for our setup of the thermal-magnetic generator (TMG) as illustrated in the
last HW.

Variable Abbreviation Level
Yoke Width wyk 0.05 m
Yoke Height hyk 0.4 m

Permanent Magnet Height hpm 0.1 m
Active Material Height hA 0.1 m

Gap Width wgap 0.15 m

Table 2: Initial design vector for the TMG experiments.

Design of Experiments

The team carried out a Design of Experiments exercise to explore the design space and

evaluate how different objective variables are affected by changes in specific design variables.

Although the team has not yet fully integrated their COMSOL models with MATLAB to

run autonomously, the team identified a method of running many simulations in series within

the COMSOL interface. This capability combined with the observation that each simulation

only took 30s-60s to run led the team to perform a ”full factorial” design of experiments. The

team wrote a function ”designVectorBuilder.m” taking inputs of lower bound, step size,

and upper bound to generate vectors based on every combination of design variables between

the range of the lower and upper bounds. The function is included in Appendix 1.2. Next,

the matrix of design vectors is fed into the geometric constraint function, which evaluates the

feasibility of each input. ”designVectorBuilder.m” then returns a full factorial matrix of

valid design vectors with help from ”geometricConstraints.m”. Since our design space is

continuous, the step size does limit the number of design vectors used in our ”full factorial”

experiment. For our DoE, we used a lower bound of .05 m, step size of .1 m, and upper bound
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of .05 m for each design variable. The design vector building function initially created 3125

combinations of input variables, but reduced them down to only 68 vectors which met the

design constraints. The team exported the matrix of valid design vectors into a reformatted

.txt file which could be directly imported into COMSOL.

After running the simulations, the team exported data from COMSOL and manipulated

it further in Excel to achieve the desired numeric outputs. Later, the team plans to fully

automate this manipulation in MATLAB as it was fairly time consuming and not intuitive to

look at. The team wrote the function ”initialDoE.m” to carry out the combined analysis of

the full factorial experiment. The script uses ”designVectorBuilder.m”, ”costModule.m”,

and two helper functions (for importing data) to build the DoE. The full ”initialDoE.m”

script is included in Appendix 1.2. Through a series of loops the script computes the effect

of every design variable at every level on each objective outcome. The full lists of effects are

stored as matrices in the MATLAB workspace, but the script has two outputs. First, the

script returns a table showing the variable, level, and effect associated with the greatest effect

for that variable on each objective outcome shown in Figure 5. Due to the methods used

to compute objective variables, the scale of effects may not be intuitive for some objectives.

This is a result of scaling constants which are associated with our Power and Efficiency

calculations but not computed in our model at this time. In order to better show the relative

effects of each design variable, the script returns a second table identical to the first but

with normalized effects for each objective shown in Figure 5. The variable and level pairs in

Figure 5 represent initial X* design vectors which we can recommend for optimization in the

direction of each of our objectives based on our analysis. Notably, there is not a single instance

of any variable and level pair causing the greatest effect for all of our objective outcomes at

once. This suggests that our objectives may be difficult to achieve simultaneously and makes

our problem an especially strong candidate for multidisciplinary optimization later on in the

project.
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Variable Objective
wyk Cost
hyk Cost
hpm Cost
hA Cost
wgap Cost
wyk Power
hyk Power
hpm Power
wgap Power
hA Power
wyk Efficiency
hyk Efficiency
hpm Efficiency
hA Efficiency
wgap Efficiency

Table 3: The variable table for DoE considering different variables with regards to different objectives. The
actual computation results are shown in Figure 5.

.

Figure 5: Variables and levels of greatest effect on objectives. Raw (left), normalized effects (right).

10



Multidisciplinary Design Optimization Assignment #2: Part (b)

Appendix

costModule.m: The function to estimate the cost for materials during the optimization

process. Note that the price of the materials corresponds to Table 1.

1 function cost = costModule(inputs)

2

3 % function determines the cost of an input vector of geometric

4 % parameters. Returns a cost values corresponding to vector

5 % inputs.

6

7 % establish cost rates

8 Gadolinium = 1.71553 e5; % $/m^3

9 Iron = 1.4804 e3; % $/m^3

10 Neodymium = 1.628e5; % $/m^3

11

12 % extract input geometry

13 %h_fc = inputs (1);

14 w_yk = inputs (1,:);

15 h_yk = inputs (2,:);

16 h_pm = inputs (3,:);

17 h_A = inputs (4,:);

18 w_gap = inputs (5,:);

19

20 % initialize cost output vector

21 cost = zeros(1,length(inputs));

22

23 for i = 1: length(inputs)

24

25 % compute areas

26 magnetArea = h_pm(i)*w_gap(i);

27 activeMaterialArea = h_A(i)*w_gap(i); % in reality , this would not be a solid mass

28 yokeArea = 2*w_yk(i)*h_yk(i);

29

30 % compute cost

31 cost(i) = Gadolinium*activeMaterialArea + Iron*yokeArea + Neodymium*magnetArea; % $/

m into the page

32

33 end

34

35 end
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geometricConstraints.m: The function to enforce and encode the geometric constraint

through the intermediate varaible valid.

1 function valid = geometricConstraints(inputs ,V_max ,L_max)

2

3 % function determines the spatial validity of an input vector of

4 % geometric parameters. Returns 1 if the input is valid. Returns 0 if

5 % the input is invalid.

6

7 w_yk = inputs (1);

8 h_yk = inputs (2);

9 h_pm = inputs (3);

10 h_A = inputs (4);

11 w_gap = inputs (5);

12

13 valid = 1;

14

15 if h_yk *(2* w_yk + w_gap) > V_max

16 valid = 0;

17 elseif h_yk > L_max

18 valid = 0;

19 elseif (2* w_yk + w_gap) > L_max

20 valid = 0;

21 elseif (h_A + h_pm) > h_yk

22 valid = 0;

23 end

24

25 end

designVectorBuilder.m: The function to build up the design vector for further analysis.

1 function designVectors = designVectorBuilder(lb ,step ,ub)

2

3 % Function returns a set of design vectors which satisfy geometric

4 % design constraints

5

6 % declare constraint constants

7 V_max = .125;

8 L_max = .5;

9

10 % initialize wide ranges for design variables

11 w_yk0 = lb:step:ub;

12 h_yk0 = lb:step:ub;

13 h_pm0 = lb:step:ub;

14 h_A0 = lb:step:ub;
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15 w_gap0 = lb:step:ub;

16

17 % note that this creates a stupidly large vector

18 sheet = combvec(w_yk0 , h_yk0 , h_pm0 , h_A0 , w_gap0);

19

20 % initialize vector of valid geometric inputs

21 validSheet = zeros(5,length(sheet));

22

23 for i = 1: length(sheet)

24

25 input = sheet(:,i);

26

27 % evaluate the geometric configuration based spatial validity

28 if geometricConstraints(input ,V_max ,L_max) == 1

29 % valid inputs will be copied to the new sheet

30 validSheet (:,i) = input (:);

31 end

32

33 end

34

35 % remove zero columns

36 designVectors = validSheet (:,any(validSheet ,1));

37

38 end

initialDoE.m: The function to initialize the whole design space for design of experiments.

1 %% Perform initial setup: import data , initialize variables

2

3 clear

4 clc

5 close all

6

7 % Generate design vectors

8 lb = .05;

9 step = .1;

10 ub = .45;

11 designVectors = designVectorBuilder(lb,step ,ub);

12

13 % ’variables ’ corresponds to variables w_yk , h_yk , h_pm , h_A , w_gap

14 variables = 1:5;

15

16 % import power data

17 DoEpowerResults = importPowerfile("DoEpowerResults.xlsx", "Ark1", [7, 74]);

18
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19 % import efficiency data

20 DoEefficiencyResults = importEfficiencyfile("DoEefficiencyResults.xlsx", "Ark1", [85, 152]);

21

22 % to help later with checking variable effects

23 effectLevels = lb:step:ub;

24

25 % initialize array to hold cost , power , and efficiency outcomes for each design vector

26 experimentResults = zeros(3,length(designVectors));

27

28 %% Fill in experimental results and compute means

29

30 % compute cost outcomes with cost module and add to results

31 experimentResults (1,:) = costModule(designVectors);

32

33 % enter power outcomes computed from COMSOL (later will call for these

34 % computations through matlab)

35 experimentResults (2,:) = DoEpowerResults;

36

37 % enter efficiency outcomes computed from COMSOL (later will call for these

38 % computations through matlab)

39 experimentResults (3,:) = DoEefficiencyResults;

40

41 % compute overall mean cost , power , and efficiency outcomes

42 meanCost = mean(experimentResults (1,:));

43 meanPower = mean(experimentResults (2,:));

44 meanEfficiency = mean(experimentResults (3,:));

45

46 %% compute effect of design variables on cost

47

48 % initialize cost effects matrix [variable , level , effect]

49 costEffects = zeros(length(variables)*length(effectLevels) ,3);

50

51 % helper variable to ensure that each block of variables , levels , and effects are created in

the right locations

52 offset = 0;

53

54 for i = 1: length(variables)

55 for j = 1: length(effectLevels)

56

57 % set the variable being measured (represented by a number)

58 costEffects(j+offset ,1) = i;

59

60 % set the variable level of the variable being measured

61 costEffects(j+offset ,2) = effectLevels(j);

62

63 % compute the effect of the variable at the given level
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64

65 % find the column indices of all results where variable i is at the j level

66 indices = find(designVectors(i,:) == effectLevels(j));

67

68 jResultSum = 0;

69

70 for k = 1: length(indices)

71 % sum the results of cost when variable i is at j level

72 jResultSum = jResultSum + experimentResults (1,indices(k));

73 end

74

75 % compute average cost when variable i is at j level

76 jMean = jResultSum/length(indices);

77

78 % add effect to the effect matrix

79 costEffects(j+offset ,3) = jMean - meanCost;

80

81 end

82 offset = offset + length(effectLevels);

83

84 end

85

86 %% compute effect of design variables on power

87

88 % initialize power effects matrix [variable , level , effect]

89 powerEffects = zeros(length(variables)*length(effectLevels) ,3);

90

91 % helper variable to ensure that each block of variables , levels , and effects are created in

the right locations

92 offset = 0;

93

94 for i = 1: length(variables)

95 for j = 1: length(effectLevels)

96

97 % set the variable being measured (represented by a number)

98 powerEffects(j+offset ,1) = i;

99

100 % set the variable level of the variable being measured

101 powerEffects(j+offset ,2) = effectLevels(j);

102

103 % compute the effect of the variable at the given level

104

105 % find the column indices of all results where variable i is at the j level

106 indices = find(designVectors(i,:) == effectLevels(j));

107

108 jResultSum = 0;
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109

110 for k = 1: length(indices)

111 % sum the results of power when variable i is at j level

112 jResultSum = jResultSum + experimentResults (2,indices(k));

113 end

114

115 % compute average power when variable i is at j level

116 jMean = jResultSum/length(indices);

117

118 % add effect to the effect matrix

119 powerEffects(j+offset ,3) = jMean - meanPower;

120

121 end

122 offset = offset + length(effectLevels);

123

124 end

125

126 %% compute effect of design variables on efficiency

127

128 % initialize efficiency effects matrix [variable , level , effect]

129 efficiencyEffects = zeros(length(variables)*length(effectLevels) ,3);

130

131 % helper variable to ensure that each block of variables , levels , and effects are created in

the right locations

132 offset = 0;

133

134 for i = 1: length(variables)

135 for j = 1: length(effectLevels)

136

137 % set the variable being measured (represented by a number)

138 efficiencyEffects(j+offset ,1) = i;

139

140 % set the variable level of the variable being measured

141 efficiencyEffects(j+offset ,2) = effectLevels(j);

142

143 % compute the effect of the variable at the given level

144

145 % find the column indices of all results where variable i is at the j level

146 indices = find(designVectors(i,:) == effectLevels(j));

147

148 jResultSum = 0;

149

150 for k = 1: length(indices)

151 % sum the results of efficiency when variable i is at j level

152 jResultSum = jResultSum + experimentResults (3,indices(k));

153 end
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154

155 % compute average efficiency when variable i is at j level

156 jMean = jResultSum/length(indices);

157

158 % add effect to the effect matrix

159 efficiencyEffects(j+offset ,3) = jMean - meanEfficiency;

160

161 end

162 offset = offset + length(effectLevels);

163

164 end

165

166 %% Determine recommended start points X0 for numeric integration

167

168 % create copies of matrices with normalized effects

169 normalizedCostEffects = costEffects;

170 normalizedPowerEffects = powerEffects;

171 normalizedEfficiencyEffects = efficiencyEffects;

172

173 normalizedCostEffects (:,3) = normalize(costEffects (:,3));

174 normalizedPowerEffects (:,3) = normalize(powerEffects (:,3));

175 normalizedEfficiencyEffects (:,3) = normalize(efficiencyEffects (:,3));

176

177 % find variables and levels for greatest effect on each output

178

179 % best variable/level pairs to minimize cost:

180

181 % initialize array to hold the best variables/levels/effects for cost

182 bestCostVarsLevels = zeros (2,5); % row1 = level row2 = effect

183

184 % variable 1 (w_yk)

185 index = find(costEffects (1:5 ,3) == min(costEffects (1:5 ,3)));

186 bestCostVarsLevels (:,1) = [costEffects(index ,2); costEffects(index ,3)];

187 bestNormalCostVarsLevels (:,1) = [normalizedCostEffects(index ,2); normalizedCostEffects(index

,3)];

188

189 % variable 2 (h_yk)

190 index = 5 + find(costEffects (6:10 ,3) == min(costEffects (6:10 ,3)));

191 bestCostVarsLevels (:,2) = [costEffects(index ,2); costEffects(index ,3)];

192 bestNormalCostVarsLevels (:,2) = [normalizedCostEffects(index ,2); normalizedCostEffects(index

,3)];

193

194 % variable 3 (h_pm)

195 index = 10 + find(costEffects (11:15 ,3) == min(costEffects (11:15 ,3)));

196 bestCostVarsLevels (:,3) = [costEffects(index ,2); costEffects(index ,3)];

197 bestNormalCostVarsLevels (:,3) = [normalizedCostEffects(index ,2); normalizedCostEffects(index
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,3)];

198

199 % variable 4 (h_A)

200 index = 15 + find(costEffects (16:20 ,3) == min(costEffects (16:20 ,3)));

201 bestCostVarsLevels (:,4) = [costEffects(index ,2); costEffects(index ,3)];

202 bestNormalCostVarsLevels (:,4) = [normalizedCostEffects(index ,2); normalizedCostEffects(index

,3)];

203

204 % variable 5 (w_gap)

205 index = 20 + find(costEffects (21:25 ,3) == min(costEffects (21:25 ,3)));

206 bestCostVarsLevels (:,5) = [costEffects(index ,2); costEffects(index ,3)];

207 bestNormalCostVarsLevels (:,5) = [normalizedCostEffects(index ,2); normalizedCostEffects(index

,3)];

208

209 % best variable/level pairs to maximize power:

210

211 % initialize array to hold the best variables/levels/effects for power

212 bestPowerVarsLevels = zeros (2,5); % row1 = level row2 = effect

213

214 % variable 1 (w_yk)

215 index = find(powerEffects (1:5 ,3) == max(powerEffects (1:5 ,3)));

216 bestPowerVarsLevels (:,1) = [powerEffects(index ,2); powerEffects(index ,3)];

217 bestNormalPowerVarsLevels (:,1) = [normalizedPowerEffects(index ,2); normalizedPowerEffects(

index ,3)];

218

219 % variable 2 (h_yk)

220 index = 5 + find(powerEffects (6:10 ,3) == max(powerEffects (6:10 ,3)));

221 bestPowerVarsLevels (:,2) = [powerEffects(index ,2); powerEffects(index ,3)];

222 bestNormalPowerVarsLevels (:,2) = [normalizedPowerEffects(index ,2); normalizedPowerEffects(

index ,3)];

223

224 % variable 3 (h_pm)

225 index = 10 + find(powerEffects (11:15 ,3) == max(powerEffects (11:15 ,3)));

226 bestPowerVarsLevels (:,3) = [powerEffects(index ,2); powerEffects(index ,3)];

227 bestNormalPowerVarsLevels (:,3) = [normalizedPowerEffects(index ,2); normalizedPowerEffects(

index ,3)];

228

229 % variable 4 (h_A)

230 index = 15 + find(powerEffects (16:20 ,3) == max(powerEffects (16:20 ,3)));

231 bestPowerVarsLevels (:,4) = [powerEffects(index ,2); powerEffects(index ,3)];

232 bestNormalPowerVarsLevels (:,4) = [normalizedPowerEffects(index ,2); normalizedPowerEffects(

index ,3)];

233

234 % variable 5 (w_gap)

235 index = 20 + find(powerEffects (21:25 ,3) == max(powerEffects (21:25 ,3)));

236 bestPowerVarsLevels (:,5) = [powerEffects(index ,2); powerEffects(index ,3)];
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237 bestNormalPowerVarsLevels (:,5) = [normalizedPowerEffects(index ,2); normalizedPowerEffects(

index ,3)];

238

239 % best variable/level pairs to maximize efficiency:

240

241 % initialize array to hold the best variables/levels/effects for power

242 bestEfficiencyVarsLevels = zeros (2,5); % row1 = level row2 = effect

243

244 % variable 1 (w_yk)

245 index = find(efficiencyEffects (1:5 ,3) == max(efficiencyEffects (1:5 ,3)));

246 bestEfficiencyVarsLevels (:,1) = [efficiencyEffects(index ,2); efficiencyEffects(index ,3)];

247 bestNormalEfficiencyVarsLevels (:,1) = [normalizedEfficiencyEffects(index ,2);

normalizedEfficiencyEffects(index ,3)];

248

249 % variable 2 (h_yk)

250 index = 5 + find(efficiencyEffects (6:10 ,3) == max(efficiencyEffects (6:10 ,3)));

251 bestEfficiencyVarsLevels (:,2) = [efficiencyEffects(index ,2); efficiencyEffects(index ,3)];

252 bestNormalEfficiencyVarsLevels (:,2) = [normalizedEfficiencyEffects(index ,2);

normalizedEfficiencyEffects(index ,3)];

253

254 % variable 3 (h_pm)

255 index = 10 + find(efficiencyEffects (11:15 ,3) == max(efficiencyEffects (11:15 ,3)));

256 bestEfficiencyVarsLevels (:,3) = [efficiencyEffects(index ,2); efficiencyEffects(index ,3)];

257 bestNormalEfficiencyVarsLevels (:,3) = [normalizedEfficiencyEffects(index ,2);

normalizedEfficiencyEffects(index ,3)];

258

259 % variable 4 (h_A)

260 index = 15 + find(efficiencyEffects (16:20 ,3) == max(efficiencyEffects (16:20 ,3)));

261 bestEfficiencyVarsLevels (:,4) = [efficiencyEffects(index ,2); efficiencyEffects(index ,3)];

262 bestNormalEfficiencyVarsLevels (:,4) = [normalizedEfficiencyEffects(index ,2);

normalizedEfficiencyEffects(index ,3)];

263

264 % variable 5 (w_gap)

265 index = 20 + find(efficiencyEffects (21:25 ,3) == max(efficiencyEffects (21:25 ,3)));

266 bestEfficiencyVarsLevels (:,5) = [efficiencyEffects(index ,2); efficiencyEffects(index ,3)];

267 bestNormalEfficiencyVarsLevels (:,5) = [normalizedEfficiencyEffects(index ,2);

normalizedEfficiencyEffects(index ,3)];

268

269 % package the results in a pretty table

270

271 Level = [bestCostVarsLevels (1,:) ’;bestPowerVarsLevels (1,:) ’;bestEfficiencyVarsLevels (1,:) ’];

272 Effect = [bestCostVarsLevels (2,:) ’;bestPowerVarsLevels (2,:) ’;bestEfficiencyVarsLevels (2,:)

’];

273 Objective = ["cost";"cost";"cost";"cost";"cost";"power";"power";"power";"power";"power";"

efficiency";"efficiency";"efficiency";"efficiency";"efficiency";];

274 Variable = ["w_yk";"h_yk";"h_pm";"h_A";"w_gap";"w_yk";"h_yk";"h_pm";"h_A";"w_gap";"w_yk";"
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h_yk";"h_pm";"h_A";"w_gap";];

275 effectAnalysis = table(Variable ,Objective ,Level ,Effect)

276

277 Level = [bestNormalCostVarsLevels (1,:) ’;bestNormalPowerVarsLevels (1,:) ’;

bestNormalEfficiencyVarsLevels (1,:) ’];

278 Normalized_Effect = [bestNormalCostVarsLevels (2,:) ’;bestNormalPowerVarsLevels (2,:) ’;

bestNormalEfficiencyVarsLevels (2,:) ’];

279 Objective = ["cost";"cost";"cost";"cost";"cost";"power";"power";"power";"power";"power";"

efficiency";"efficiency";"efficiency";"efficiency";"efficiency";];

280 Variable = ["w_yk";"h_yk";"h_pm";"h_A";"w_gap";"w_yk";"h_yk";"h_pm";"h_A";"w_gap";"w_yk";"

h_yk";"h_pm";"h_A";"w_gap";];

281 normalizedEffectAnalysis = table(Variable ,Objective ,Level ,Normalized_Effect)

Coupled model: A simplified case study

The core of the Thermal-Magnetic Generator (TMG) is always about the energy trans-

formation between the magnetic to electric energy. But thermal convection, or heat transfer,

is of importance in the magnetic generation since the permeability of the active materials

is heavily influenced by the temperature. Therefore, the study of heat transfer here is still

of focus on the magnetic field yet investigating the variables related to the thermal field (or

block). Focusing on such a point and hope to provide a benchmark for our DoE we here

carried out simplified study with the coupled study of the two modules. As mentioned in

the previous homework, we designed a complex system involves interaction between fluid

dynamics, heat transfer, magnetic in a complex system. But at a current stage we only start

with a very generalized and simplified model as shown in Figure 6, specific outlining the

characteristics of the heat transfer module.

Within the model, there is initial heat flux set on the active material, corresponding to the

real-world applications that temperature change on active materials causes magnetic changes,

which leads to generation of electricity. Here, for soft iron, relative permeability Pr = 1; The

thermal conductivity kε = 240 [W/m ·K] [Ref.]; The density ρ = 7000 [kg/m3] [Ref.]; Heat

capacity at constant pressure CpMag = 450 [J/kg · J ] [Ref.]. Listed above are properties of

soft iron, which are considered as parameters based on our previous Assignment.

For the permanent magnets, considering choice of such a material will strongly influence

the performance of the system, we re-modify such as a variable. Here, relative permeability

Pr = 1; The thermal conductivity kε = 500 [W/m ·K] [Ref.]; The density ρ = 7000 [kg/m3]
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Figure 6: A schematic illustration of the simplied model for the thermal convection module.

[Ref.]; Heat capacity at constant pressure CpAM = 450 [J/kg · J ] [Ref.]. Since the choice of

permanent magnets are already a variable, listed above are all considered as variables.

For active materials, we choose Gd as the materials, since this is the most commonly

used and applied active magnetic material6. The Gd is applied with the COMSOL inner

material library, where the material properties is inner connected7. The initial conditions are

set corresponding to Figure 6, where an initial thermal flux are set on the active material,

with a linear heat source of Q0 = qs · T , of qs = 500[W/m3 ·K] We run the coupled thermal

and magnetic modules in a Time Dependent general coupling study. Since in the previous

section (Sec. 1) we found out that it will take ≈ 240s for the system to heat up, thus

here we run the simulation for 250s to check how the numerical results look like. For the

general thermal-magnetic coupled model, the thermal contour are shown in Figure 7, where

the magnetic field

6Pyykkö, P. Nature Chem. 7, 680 (2015).
7Will be detailed further in future works
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A B

Figure 7: The thermal contour for the coupled model

Figure 8: The magnetic flux contour for the coupled model.
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