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1 Simulation Completion

We completed the simulation and have produced a grand MATLAB script which calls two

different COMSOL setups for one given set of design variables. We extract the total cost

of the system as described in the previous assignment, simply by multiplying the respective

parts the system by their current market prices. We extract the power output by dividing the

square of the total magnetic flux difference by the period of a thermal heating/cooling cycle.

For a given vector of design variables, we thus run 3 simulations. The first two simulate the

magnetic field for different instances of the magnetic permeability, and the last simulates the

temperature distribution over time. For computing the efficiency, we can reuse the simulation

results for the magnetic fields and this time extract the total exergy change of the system

over a thermal cycle. This result is extracted from the same simulation as the heating time,

and thus we only need to run 3 separate simulations per function(s) evaluation. We refer to

assignment 2 for further details on the physical reasoning. At this point, there are no further

issues. As for interesting design points that can be used to initialize optimization algorithms,
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we did in assignment 2 make a full factorial design vector exploration and identified the

design vectors that yielded the best results with respect to each objective function.

For optimizing the cost:

(ywk, hyk, hpm, hA, wgap) = (0.15, 0.15, 0.05, 0.05, 0.05)

For optimizing the power output:

(ywk, hyk, hpm, hA, wgap) = (0.05, 0.45, 0.25, 0.15, 0.15)

For optimizing the efficiency:

(ywk, hyk, hpm, hA, wgap) = (0.05, 0.45, 0.25, 0.15, 0.05)

- where everything is in units of meters.

2 Heuristic Optimization

2.1 Heuristic Algorithm Selection

At the current stage, we mainly focus on one thing that of key interest by the industry:

money. For every company, especially startups, core technology is important yet only within

the budget limit and provide good profit. Notably, for our problem, the Thermal-Magnetic

Generator (TMG) is not widely adopted by the industry in the last few decades largely due

to the high cost of Gadolinium, which is the ”active material” in our settings.

Here, we chose genetic algorithm (GA) for optimizing the TMG geometry to achieve as

low cost as possible. GA mimics the Darwinian theory of survival of fittest in nature [1].

The main reason of choosing GA are: (1) GA is simple and easy to understand since it don’t

require a complex problem formulation for specific problems, which make us easy to grab

and use [Ref.]. (2) It is usually faster to solve [Ref.]. (3) GA works well on discrete problems,

and deals well with stochastic data [Ref.], which is very important for our implementation.

Admittedly, as a heuristic method, GA does not promise a global optimum. However, in our

problem, since we are estimating the cost of a product, therefore an generally ”good” cost

shall be acceptable for the final design [Ref.]. To emphasize, we don’t want to sacrifice the

product quality or power output of TMG just to reduce cost. Hence, GA can be adopted to

achieve such ”acceptable result” with simple implementation with a fast solving process.
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Figure 1: Schematic diagram for genetic algorithm optimization.

2.2 Single Objective Heuristic Optimization

The team focused on our cost module for single objective heuristic optimization. This

was a logical choice because our cost module is independent of power and efficiency and is

fully contained within MATLAB. This will drastically reduce computation time and minimize

complexity when setting up the genetic algorithm. The algorithm is reliant on a new objective

function adapted from the team’s previous work to output cost. The cost objective function is

included in Appendix 4. A new geometric constraint function was also adapted from previous

work and included in Appendix 4. The main script containing options and the function call

to run the genetic algorithm is included in Appendix 4.

After performing an initial setup of the genetic algorithm, the team began to tune the

algorithm’s parameters to reduce compute time while improving results. First, function

and constraint tolerances were adjusted to 1 × 10−6. We found that using a smaller value

increased compute time and number of generations for each algorithm execution, but did not

improve results. The team also experimented with different population sizes, but ultimately

settled on the default value of 50 recommended by Mathworks for optimizations using five

or fewer design variables. Due to our problem’s geometric constraints we were unable to
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adjust mutation rate and relied on Matlab’s mutationadaptfeasible function. Adjusting

maxgenerations had no effect on our results as the algorithm generally completed each run

in 3-5 generations.

The two settings which have greatest effect on the quality of our results are the crossover

ratio and crossover fraction. Crossover ratio adjusts the distance away from the better of

two parents at which a child is placed between generations. We found that a value of 1.6

consistently improved the quality of the results and tended to slightly increase the number

of generations before convergence. Crossover fraction represents the portion of the next

generation created by the crossover of two parents. For our optimization, we found a value

of 0.7 yields slightly better and more consistent results.

2.3 Results Analysis

The team set up a script to run the genetic algorithm using our tuned settings 500 times

to analyze the results. The script returned the following output:

1 The lowest cost from 500 algorithm runs is 0.3403 , corresponding to a design vector of:

2

3 0.0010 0.0020 0.0010 0.0010 0.0010

4

5

6 The algorithm found this to be the optimal result 77 times out of 500. The average optimal

value is 0.4148

Our computationally cheap cost function affords us the luxury of running the genetic

algorithm many times to help analyze the results. Because the algorithm found the same

optimal result 77 times out of 500, we conclude that we have found the global optimum for

cost. The minimized cost function yields a value of $0.3403.

3 Gradient-based or local derivative-free optimization

3.1 Gradient-based Algorithm Selection

Here, to optimize the cost objective with gradient-based method, we employ the fmincon

in Matlab®. fmincon is a gradient-based method that is designed to work on problems

where the objective and constraint functions are both continuous and have continuous first

derivatives [3]. The reason we chose fmincon as the optimization methods include: (1) this
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method is a gradient-based method, agrees with the requirement for Q3; (3) this method is

easy to implement, and handy to analyse the results. (3) the method serves a wide range of

applications. Here, we employ the SQP method and give the analytical form of our problem

to the toolbox for optimization evaluation.

The basic of gradient-based optimization is to formulate a Hessian as an optional input.

This Hessian is the matrix of second derivatives of the Lagrangian, namely [3]:

∇2L(x, λ) = ∇2J(x) +
∑

λi∇2Ci(x) +
∑

λi∇2Ei(x) (1)

where λi are the parameters imposed on constraints to formulate the Lagrangian, and Ci are
the inequality constraints, Ei are the equality constraints. Due to the analytical nature of

the cost objective, the fmincon can be successfully implemented to TherMaG system.

3.2 Single Objective Gradient-based Optimization

3.2.1 Problem formulation

As stated in our last homework, the cost is a function to the geometric parameters of the

TMG. The optimization of the cost can be written in standard form:

min
geometry

J = cost

where cost = GAactive + IAyoke + NAmag,

s.t. hyk(2wyk + wgap)− Vmax ≤ 0 (C1)

hyk − Lmax ≤ 0 (C2)

2wyk + wgap − Lmax ≤ 0 (C3)

hA + hpm − hyk ≤ 0 (C4)

where G = 1.71553 × 105[$/m3], I = 1.4804 × 103[$/m3], N = 1.628 × 105[$/m3], standing

for the price in [$/m3] for Gadolinium, Iron, and Neodymium, respectively; and Aactive =

hAwgap, Ayoke = 2wykhyk, Amag = hpmwgap, stands for the area for active materials, yoke,

and magnetic materials, respectively. The upper and lower bounds (ub & lb) of the variables

X = [hA, wgap, wyk, hyk, hpm] is [0.05, 0.45].
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Figure 2: A schematic diagram representing the gradient-based optimization. Note that the optimization
process can be accessed through our supplementary video showing the results of different runs of the opti-
mization algorithm. Due to its stochastic nature, each run will not necessarily produce the same result. This
particular video is for the optimization of the efficiency where the initial point was the ”good” one.

3.2.2 Algorithm formulation

We therefore formulate the function of objective with fmincon on our cost module. A

schematic representing our gradient-based optimization is shown in Figure 2. The optimiza-

tion process can be simplified to:

• Step 1. System setup: =⇒ Setting up the running steps, initial design variables (initial

guess), specify the optimization methods and related parameters involved (i.e., objective

functions, constraints, lower & upper bounds, etc.).

• Step 2. Optimization in loop: =⇒ Setting up a for loop for running fmincon coupled

with Livelink®. Ouput the optimized design with saving the iterations diagram.

• Step 3. Parameters computation: =⇒ Save the final optimized design and printed it

out.

1 clear

2 clc

3 close all

4

5 tic

6

7 numRuns = 1;

8

9 % starting point for optimization

10 x0 = [.05;.1;.05;.05;.05];

11

6
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12 % Set nondefault solver options

13 options = optimoptions(’fmincon ’,’Algorithm ’,’sqp’,’PlotFcn ’,{@optimplotfval ,

@optimplotfunccount });

14

15 % set upper and lower bounds

16 lb = [.001, .001, .001, .001, .001];

17 ub = [.5, .5, .5, .5, .5];

18

19 % make anonymous functions

20 powerFcn = @(power) efficiency_power_modules(power);

21 efficiencyFcn = @(efficiency) efficiency_power_modules(efficiency);

22

23 %outputs = zeros(numRuns ,1);

24 objVals = zeros(numRuns ,1);

25 vectors = zeros(numRuns ,5);

26

27 % run the optimization many times to see what happens

28 for i = 1: numRuns

29

30 % Solve

31 [solution ,objectiveValue ,exitflag ,output ,lambda ,grad ,hessian] = fmincon(powerFcn ,x0

,[],[],[],[],lb ,ub,@geocon ,options;

32

33 outputs(i) = output;

34 objVals(i) = objectiveValue;

35 vectors(i,:) = solution;

36

37 string = "optim" + num2str(i);

38 saveas(gcf ,string ,’png’);

39

40 end

41

42 [min , index] = min(objVals);

43

44 fprintf(’The best solution from %d optimization runs is power = %.8f, corresponding to a

design vector of: \n’,numRuns ,min);

45 fprintf(’\n’);

46 disp(vectors(index ,:));

47 fprintf(’\n’);

48 fprintf(’This solution had the following simulation output info: \n’);

49 fprintf(’\n’);

50 disp(outputs(index));

51

52 toc
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3.3 Single-objective optimization

Using the script shown above, we move on to do a gradient based optimization of the cost.

This is a simple objective function to optimize, and it will be easy to validate that our algo-

rithm is doing a good job. Using an initial design vector given by, [ywk, hyk, hpm, hA, wgap] =

[0.05; 0.1; 0.05; 0.05; 0.05], our results are summarized by the following output in MATLAB:

1 The best solution from 30 optimization runs is cost = 0.34027460 , corresponding to a design

vector of:

2

3 0.0010 0.0020 0.0010 0.0010 0.0010

4

5

6 This solution had the following simulation output info:

7

8 iterations: 2

9 funcCount: 18

10 algorithm: ’sqp’

11 constrviolation: 0

12 stepsize: 1.4867e-17

13 lssteplength: 1

14 firstorderopt: 3.7253e-09

15

16 Elapsed time is 15.709778 seconds.

The initial design vector here was arbitrary, but the optimal result is exactly the same as

the one found by our genetic algorithm in the previous section. If we instead use the ”good”

guess, given by the vector, [ywk, hyk, hpm, hA, wgap] = [0.15; 0.15; 0.05; 0.05; 0.05] pulled from

the effects table in our Design of Experiments from Assignment 2, the results are as follows:

1 The best solution from 30 optimization runs is cost = 0.34027460 , corresponding to a design

vector of:

2

3 0.0010 0.0020 0.0010 0.0010 0.0010

4

5

6 This solution had the following simulation output info:

7

8 iterations: 2

9 funcCount: 18

10 algorithm: ’sqp’

11 constrviolation: 0

12 stepsize: 1.8527e-18

13 lssteplength: 1
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14 firstorderopt: 7.4506e-09

15

16 Elapsed time is 13.554918 seconds.

These results make a lot of sense. The total cost is a simple function to compute and

a gradient based optimization algorithm should quickly be able to figure out that having

smaller dimensions will generally decrease the overall cost. There are also constraints on the

dimensions, so it is not trivial to figure out which configuration exactly, is the best. As seen

however, it did turn out that with both initial guesses, the gradient based method moved our

design vector into and along a constraint boundary such that the final point was the same,

namely the design vector, [0.0010; 0.0020; 0.0010; 0.0010; 0.0010]. Additionally, we see that

the elapsed time for the optimization with a ”good” starting point is approximately 14% less

than with an arbitrary initial guess, which also makes sense. The team is pleased that both

the heuristic and gradient based optimization methods yielded identical results in minimizing

cost.

If we try doing the same for the efficiency or the power, the situation is different. Dif-

ferent initial guesses will lead to different optima. It was not required for the project, but

we here demonstrate doing the same procedure with the efficiency as the objective func-

tion. To achieve this result, the team wrote a function evaluation script which couples

Matlab with COMSOL to automatically run simulations with design variables dictated by

the optimization algorithm. Let us start with an arbitrary design vector again given by,

[ywk, hyk, hpm, hA, wgap] = [0.05; 0.1; 0.05; 0.05; 0.05]. The following output is then generated1:

1 The best solution from 30 optimization runs is efficiency = -0.00002090 , corresponding to a

design vector of:

2

3 0.0438 0.1274 0.0969 0.0276 0.0124

4

5

6 This solution had the following simulation output info:

7

8 iterations: 9

9 funcCount: 136

10 algorithm: ’sqp’

11 constrviolation: 0

12 stepsize: 9.6833e-07

13 lssteplength: 3.2199e-05

1Note here that the efficiency should be multiplied by −1, as the problem is formulated as one of minimization of the negative
efficiency
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14 firstorderopt: 0.2493

15 bestfeasible: [1x1 struct]

16

17 Elapsed time is 29333.725125 seconds.

The computed optimal design vector is given by, [0.0438; 0.1274; 0.0969; 0.0276; 0.0124].

Note that efficiency is negative. This is because the optimization minimizes the objec-

tive function, so we multiplied the result of our efficiency calculation by -1 before pass-

ing the value into the optimization function. In this way, the most negative value rep-

resents the highest efficiency. Trying again with the ”good” guess, this time given by,

[ywk, hyk, hpm, hA, wgap]=[0.05; 0.45; 0.25; 0.15; 0.05], the output becomes:

1 The best solution from 30 optimization runs is efficiency = -0.00008848 , corresponding to a

design vector of:

2

3 0.0759 0.5000 0.4300 0.0662 0.0976

4

5

6 This solution had the following simulation output info:

7

8 iterations: 7

9 funcCount: 147

10 algorithm: ’sqp’

11 constrviolation: 0

12 stepsize: 8.7723e-07

13 lssteplength: 1.8562e-06

14 firstorderopt: 2.3595

15 bestfeasible: [1x1 struct]

16

17 Elapsed time is 28687.589087 seconds.

As seen, the optimal design is here supposed to be given by, [0.0759; 0.5000; 0.4300; 0.0662; 0.0976].

There clearly is a significant difference. The two different design vectors do have considerable

differences in the ratios between individual design variables, and going as as to say that dif-

ferent ”design niches” have been found, might not be completely unjustifiable. It is however

clear that the design based on the ”good” guess outperforms the one based on the arbitrary

one substantially, which seems like a valuable experience to have. For the particular case of

the optimization of the efficiency, let us show how the algorithm performed across iterations

graphically. For the arbitrary guess, we refer to figure 3. For the ”good” guess, we refer to

figure 4.
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Figure 3: Plot showing the function evaluation at each iteration (top) and the number of function evaluations
for the given iteration (bottom) in the case where we do gradient based optimization of the efficiency based
on the aforementioned arbitrary design vector as the initial guess. The design space seems ”flat” in the
beginning, but eventually, some ”hyper-geometric” edge is being reached and the value of the function drops
rapidly

We also tried doing this for the total power output. Note that again, maximum power is

represented by the most negative result. Using as the initial guess the same arbitrary one as

in the previous two cases, we get the output,

1 The best solution from 30 optimization runs is power = -0.00003466 , corresponding to a

design vector of:

2

3 0.1503 0.1788 0.1375 0.0413 0.1994

4

5

6 This solution had the following simulation output info:

7

8 iterations: 6

9 funcCount: 91

10 algorithm: ’sqp’

11 constrviolation: 2.7756e-17

12 stepsize: 1.3562e-06

13 lssteplength: 7.7310e-06

14 firstorderopt: 0.0427

15

16 Elapsed time is 46578.355250 seconds.
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Figure 4: Plot showing the function evaluation at each iteration (top) and the number of function evaluations
for the given iteration (bottom) in the case where we do gradient based optimization of the efficiency based
on the aforementioned ”good” design vector as the initial guess. The descent towards a better function
evaluation seems to begin ”right away” here, whereas there was a ”flatter” region to first be traversed in the
case of the arbitrary guess (figure 3).

Using instead the ”good” guess, which for power optimization is given by2, [ywk, hyk, hpm, hA, wgap] =

[0.05; 0.45; 0.25; 0.15; 0.15];, the following output is generated

1 The best solution from 30 optimization runs is power = -0.00002438 , corresponding to a

design vector of:

2

3 0.0500 0.4500 0.2500 0.1500 0.1500

4

5

6 This solution had the following simulation output info:

7

8 iterations: 1

9 funcCount: 34

10 algorithm: ’sqp’

11 constrviolation: 0

12 stepsize: 1.1156e-06

13 lssteplength: 4.5999e-05

14 firstorderopt: 0.0187

15

16 Elapsed time is 21144.058804 seconds.

2Again, the minus sign can be ignored
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Interestingly, the arbitrary guess outperforms the qualified one! This would appear

strange, but is not at all unbelievable. Our physical model is extremely complicated at

an initial guess being stuck at a sub optimal solution is to be expected. In this case, it

simply turned out that one initial guess - although in itself a better one - was more prone to

getting caught in this sub-optimal ”trap”3. This is of course the big danger and shortcom-

ing of gradient based methods and would possibly not have become an issue for a heuristic

method. This seems like an even more valuable lesson to have learned.

3.4 Sensitivity Analysis

To apply sensitivity analysis, thanks to the analytical nature of the cost module, we employ

the MATLAB symbolic toolbox to derive the effects of each variables, i.e., ∇hA
J , ∇wgapJ ,

∇wyk
J , ∇hyk

J , ∇hpmJ ; and the effects of each constraints (derivatives of the multiplier λi),

i.e., ∇λi
J on the cost objective.

1 clc; clear; close all

2

3 syms Gadolinium Iron Neodymium

4 syms h_A w_gap w_yk h_yk h_pm

5

6 magnetArea = h_pm*w_gap;

7 activeMaterialArea = h_A*w_gap; % in reality , this would not be a solid mass

8 yokeArea = 2*w_yk*h_yk;

9

10 J = Gadolinium*activeMaterialArea + Iron*yokeArea + Neodymium*magnetArea;

11

12 J_hA = diff(J,h_A);

13 J_wgap = diff(J,w_gap);

14 J_wyk = diff(J,w_yk);

15 J_hyk = diff(J,h_yk);

16 J_hpm = diff(J,h_pm);

17

18 [J_hA; J_wgap; J_wyk; J_hyk; J_hpm]

Running the previous code we generate:

1 Gadolinium*w_gap

2 Gadolinium*h_A + Neodymium*h_pm

3 2*Iron*h_yk

4 2*Iron*w_yk

3Actually, the initial guess was pretty much ”inside the trap from the beginning”, which see from it conveging right away
(only one iteration)! Perhaps the tolerance could have been tuned to avoid this, but it is likely that the results would have been
pretty close to the same
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5 Neodymium*w_gap

Therefore we can write out all the effects in analytic forms:

∇wyk
J = 2Ihyk (E1)

∇hyk
J = 2Iwyk (E2)

∇hpmJ = Nwgap (E3)

∇hA
J = Gwgap (E4)

∇wgapJ = GhA + Nhpm (E5)

(2)

To estimate the effect of changing constraints, we can compute the Lagrangian multipliers

λ1 =
∂J

∂C1
=

∂(GAactive + IAyoke + NAmag)

∂(hyk(2wyk + wgap)− Vmax)
(E6)

λ2 =
∂J

∂C2
=

∂(GAactive + IAyoke + NAmag)

∂(hyk − Lmax)
(E7)

λ3 =
∂J

∂C3
=

∂(GAactive + IAyoke + NAmag)

∂(2wyk + wgap − Lmax)
(E8)

λ4 =
∂J

∂C4
=

∂(GAactive + IAyoke + NAmag)

∂(hA + hpm − hyk)
(E9)

We can also do a estimate on the effects on the changing parameters:

∂J

∂G
= hAwgap (E10)

∂J

∂I
= 2wykhyk (E11)

∂J

∂N
= hpmwgap (E12)

(3)

Theoretically, to calculate from E6 to E9 we need to apply the chain rule, i.e.,

λ1 =
∂J

∂C1
=

∂J

∂wyk

∂wyk

∂C1
+

∂J

∂hyk

∂hyk

∂C1
+

∂J

∂wgap

∂wgap

∂C1
λ2 =

∂J

∂C2
=

∂J

∂hyk

∂hyk

∂C2
λ3 =

∂J

∂C3
=

∂J

∂wyk

∂wyk

∂C3
+

∂J

∂wgap

∂wgap

∂C3
λ4 =

∂J

∂C4
=

∂J

∂hpm

∂hpm

∂C4
+

∂J

∂hyk

∂hyk

∂C4
+

∂J

∂hA

∂hA

∂C4

(4)
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As shown in Equation (4), calculating the main effects of the four constraints requires

complicated mathematical derivations, which are not what we desired. Thence we figured

out another way to estimate which constraint is the active one and which are not: the original

gradient-based optimization was ran by many times through cancelling each constraints and

thence we can deduce the active constraint.

By cancelling C1, C2, C4, the optimization output are

1 The best solution from 3 optimization runs is cost = 0.34027460 , corresponding to a design

vector of:

2

3 0.0010 0.0020 0.0010 0.0010 0.0010

4

5

6 This solution had the following simulation output info:

7

8 iterations: 2

9 funcCount: 18

10 algorithm: ’sqp’

11 constrviolation: 0

12 stepsize: 1.4867e-17

13 lssteplength: 1

14 firstorderopt: 3.7253e-09

15 bestfeasible: [1x1 struct]

16

17 Elapsed time is 1.025314 seconds.

The optimization results are same as our previous results, indicating that both C1, C2, C4,
are inactive constraints.

By cancelling C3, the generated optimization output are

1 The best solution from 3 optimization runs is cost = 0.33731380 , corresponding to a design

vector of:

2

3 1.0e-03 *

4

5 1.0000 1.0000 1.0000 1.0000 1.0000

6

7

8 This solution had the following simulation output info:

9

10 iterations: 2

11 funcCount: 18

12 algorithm: ’sqp’

13 constrviolation: 0

15
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14 stepsize: 7.9967e-18

15 lssteplength: 1

16 firstorderopt: 7.4506e-09

17 bestfeasible: [1x1 struct]

18

19 Elapsed time is 1.062669 seconds.

This indicate that C3 is the active constraint, and the action of cancelling C3 is to relax the

active constraint. And we already know the new optimized design and original constraint op-

timized design are [0.0010, 0.0020, 0.0010, 0.0010, 0.0010], [0.0010, 0.0010, 0.0010, 0.0010, 0.0010],

respectively. With the constraint problem figured out, we can continue with the effect (sen-

sitivity analysis) computation for each design variables and parameters.

Based on the theoretical equations {Equation (2) & Equation (3)}, we can therefore code

all the previous effects (Ei) (numerical) inMatlab, formulating a new function sensitivity:

1 function [Ematrix] = sensitivity(Input)

2

3 close all

4 clc

5

6

7 x = Input;

8 w_yk = x(1); h_yk = x(2); h_pm = x(3); h_A = x(4); w_gap = x(5);

9

10 %% Define the constants

11

12 Gadolinium = 1.71553 e5; %$/m^3

13 Iron = 1.4804 e3; %$/m^3

14 Neodymium = 1.628e5; %$/m^3

15 V_max = .125; L_max = .5;

16

17 %% Effects of the design variables

18

19 J_hA = Gadolinium*w_gap; %E1

20 J_wgap = Gadolinium*h_A + Neodymium*h_pm; %E2

21 J_wyk = 2*Iron*h_yk; %E3

22 J_hyk = 2*Iron*w_yk; %E4

23 J_hpm = Neodymium*w_gap; %E5

24

25 magnetArea = h_pm*w_gap;

26 activeMaterialArea = h_A*w_gap; % in reality , this would not be a solid mass8

27 yokeArea = 2*w_yk*h_yk;

28

29 J = Gadolinium*activeMaterialArea + Iron*yokeArea + Neodymium*magnetArea;

16



Multidisciplinary Design Optimization Assignment #3: Part (b)

30 %% Constraints

31

32 c1 = h_yk *(2* w_yk + w_gap) - V_max;

33 c2 = h_yk - L_max;

34 c3 = 2*w_yk + w_gap - L_max;

35 c4 = h_A + h_pm - h_yk;

36

37 %% Effects of parameters

38

39 J_G = h_A*w_gap;

40 J_I = 2*w_yk*h_yk;

41 J_N = h_pm*w_gap;

42

43 % We cancel this part due to the complex nature of the problem

44 % E6 = diff(J,c1);

45 % E7 = diff(J,c2);

46 % E8 = diff(J,c3);

47 % E9 = diff(J,c4);

48

49

50 %% Main sensitivity analysis: calculate E_i (Effects)

51

52 E1 = J_wyk;

53 E2 = J_hyk;

54 E3 = J_hpm;

55 E4 = J_hA;

56 E5 = J_wgap;

57 E10 = J_G;

58 E11 = J_I;

59 E12 = J_N;

60

61 %% Obtain the eventual values

62 Ematrix = [E1; E2; E3; E4; E5; E10; E11; E12];

63 categories = categorical ({’Yoke Width’,’Yoke Height ’,’Permanent Magnet Height ’,’Active

Material Height ’,’Gap Width ’,’c1 = h_yk .*(2.* w_yk + w_gap) - V_max’,’c2 = h_yk - L_max’,

’c3 = 2.* w_yk + w_gap - L_max’,’c4 = h_A + h_pm - h_yk’,’Gadolinium ’,’Iron’,’Neodymium ’

});

64 figure

65 hold on

66 bar(categories ,Ematrix) %visualize the value

67 title(’Main Effect of Design Variables ’);

68 figure

69 hold on

70 labels = {’Yoke Width’,’Yoke Height ’,’Permanent Magnet Height ’,’Active Material Height ’,’Gap

Width’,’c1 = h_yk .*(2.* w_yk + w_gap) - V_max ’,’c2 = h_yk - L_max’,’c3 = 2.* w_yk + w_gap

- L_max ’,’c4 = h_A + h_pm - h_yk’,’Gadolinium ’,’Iron’,’Neodymium ’};
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71 pie(Ematrix ,labels) %visualize the weight (or effects) of each design vars. --> this one

makes more sense

72 title(’Main Effect of Design Variables ’);

73 end

By giving a random initial guess (input design variables vector), and running the command

test = sensitivity([.001; .002; .001; .001; .001]); we can therefore generate the

8 main effects for 5 design variables4 {ywk, hyk, hpm, hA, wgap} and 3 parameters {G, I,N}:
E1 =

5.9216

E2 =

2.9608

E3 =

162.8000

E4 =

171.5530

E5 =

334.3530

E10 =

1.0000e-06

E11 =

4.0000e-06

E12 =

1.0000e-06

By visualizing the results we could generate Figure 5, from which we could conclude that

for this specific initial design variable the Gap Width (wgap) seem to be the driver in this

problem. And this results can be said partly satisfy our expectations, since here we only

optimize the geometry to minimize cost, hence any main height or width of the TMG body

may be contribute largely to the cost optimization.

4- at this particular point, it should be noted

18



Multidisciplinary Design Optimization Assignment #3: Part (b)

-1 1
-1

1
Main Effect of Design Variables

Yoke Width

Yoke Height

Permanent Magnet Height

Active Material Height

Gap Width

Gadolinium

Iron

Neodymium

Active Material Height

Gadolinium

Gap Width Iron

Neodymium

Permanent M
agnet Height

Yoke Height

Yoke Width
0

50

100

150

200

250

300

350
Main Effect of Design Variables

-1 1
-1

1
Main Effect of Design Variables

Yoke Width

Yoke Height

Permanent Magnet Height

Active Material Height

Gap Width

Gadolinium

Iron

Neodymium
A B

Figure 5: The graph representing each effects for design variables and parameters. Subfigure A is the bar
plot for effects and B is the π plot.

4 Appendix

objee.m: Function returning cost for an input design vector.

1 function f = objee(x)

2 % x = [h_A; w_gap; w_yk; h_yk; h_pm];

3

4 Gadolinium = 1.71553 e5; % $/m^3

5 Iron = 1.4804 e3; % $/m^3

6 Neodymium = 1.628e5; % $/m^3

7

8 w_yk = x(1);

9 h_yk = x(2);

10 h_pm = x(3);

11 h_A = x(4);

12 w_gap = x(5);

13

14 magnetArea = h_pm*w_gap;

15 activeMaterialArea = h_A*w_gap; % in reality , this would not be a solid mass

16 yokeArea = 2*w_yk*h_yk;

17 f = Gadolinium*activeMaterialArea + Iron*yokeArea + Neodymium*magnetArea;

18 end

geocon.m: Function handling geometric constraints for the genetic algorithm optimization.
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1 function [c,ceq] = geocon(x)

2

3 V_max = .125;

4 L_max = .5;

5

6 w_yk = x(1);

7 h_yk = x(2);

8 h_pm = x(3);

9 h_A = x(4);

10 w_gap = x(5);

11

12 c(1) = h_yk *(2* w_yk + w_gap) - V_max;

13 c(2) = h_yk - L_max;

14 c(3) = (2* w_yk + w_gap) - L_max;

15 c(4) = (h_A + h_pm) - h_yk;

16

17 ceq = [];

18 end

TherMaG GA.m: Script setting up and calling the genetic algorithm to optimize cost and

return results.

1 clear

2 clc

3

4 % number of times to run the algorithm

5 numRuns = 500;

6

7 % set upper and lower bounds

8 lb = [.001, .001, .001, .001, .001];

9 ub = [.5, .5, .5, .5, .5];

10

11 % set optimization options

12 options = optimoptions(’ga’, ...

13 ’CrossoverFcn ’,{@crossoverheuristic ,1.6},’Display ’ ,...

14 ’iter’, ...

15 ’FunctionTolerance ’, 1e-6, ...

16 ’PopulationSize ’, 50, ...

17 ’CrossoverFraction ’, 0.7 ,...

18 ’MaxGenerations ’, 2000 ,...

19 ’ConstraintTolerance ’, 1e-6 ,...

20 ’MutationFcn ’,{@mutationadaptfeasible });

21

22 % initialize vars for storing results

23 objectives = zeros(numRuns ,1);
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24 dVectors = zeros(numRuns ,5);

25

26 % run the GA a few times to find the best result

27 for i = 1: numRuns

28

29 [solution ,objectiveValue] = ga(@objee ,5,[],[],[],[],lb,ub ,@geocon ,[], options);

30

31 objectives(i) = objectiveValue;

32 dVectors(i,:) = solution;

33

34 end

35

36 % round the final objectives to aid judgement of the algorithm consistency

37 objectives = round(objectives ,4);

38 [min , index] = min(objectives);

39 count = sum(objectives == min);

40 avgObjective = mean(objectives);

41

42 fprintf(’\n’);

43 fprintf(’The lowest cost from %d algorithm runs is %.4f, corresponding to a design vector of

: \n’, numRuns , min);

44 fprintf(’\n’);

45 disp(dVectors(index ,:));

46 fprintf(’\n’);

47 fprintf(’The algorithm found this to be the optimal result %d times out of %d. The average

optimal value is %.4f\n’, count , numRuns , avgObjective);
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