
TherMaG: Engineering Design of Thermal-Magnetic

Generator with Multidisciplinary Design Optimization

Will Hintlian∗, Hanfeng Zhai†, Mads Peter Berg‡

Sibley School of Mechanical and Aerospace Engineering

Applied and Engineering Physics

Cornell University

November 20, 2021

1 Scaling

1.1 Cost

As referred back to the original optimization problem, we still focus on the cost module

as for the scaling problem with gradient based method fmincon.

We adopt the sqp algorithm on the cost module with the five input design variables

(0.05; 0.1; 0.05; 0.05; 0.05) for running the optimization; the objective of cost module, the

geometric constraint and the main optimization program are same as our previous work (as

attached in the Appendix). Note that the upper and lower bounds are (.45, .45, .45, .45, .45)

and (.05, .05, .05, .05, .05). By running the optimization we generate the following output:

1

2 Local minimum found that satisfies the constraints.

3

4 Optimization completed because the objective function is non -decreasing in

5 feasible directions , to within the value of the optimality tolerance ,

6 and constraints are satisfied to within the value of the constraint tolerance.

7

∗Email: wth42@cornell.edu
†Email: hz253@cornell.edu
‡Email: mpb99@cornell.edu

1

mailto:wth42@cornell.edu
mailto:hz253@cornell.edu
mailto:mpb99@cornell.edu

Multidisciplinary Design Optimization Assignment #3: Part (b)

8 <stopping criteria details >

9 No scaling: The best solution is efficiency = 0.34027460 , corresponding to a design vector

of:

10

11 0.0010

12 0.0020

13 0.0010

14 0.0010

15 0.0010

16

17

18 This solution had the following simulation output info:

19

20 iterations: 2

21 funcCount: 18

22 algorithm: ’sqp’

23 message: ’ Local minimum found that satisfies the constraints. Optimization

completed because the objective function is non -decreasing in feasible directions , to

within the value of the optimality tolerance , and constraints are satisfied to within

the value of the constraint tolerance. <stopping criteria details > Optimization

completed: The relative first -order optimality measure , 2.228358e-11, is less than

options.OptimalityTolerance = 1.000000e-06, and the relative maximum constraint

violation , 0.000000e+00, is less than options.ConstraintTolerance = 1.000000e-06. ’

24 constrviolation: 0

25 stepsize: 1.4867e-17

26 lssteplength: 1

27 firstorderopt: 7.4506e-09

28 bestfeasible: [1x1 struct]

29

30 The unscaled hessian is:

31

32 1.0e+05 *

33

34 0.0005 0.0003 0.0142 0.0149 0.0291

35 0.0003 0.0001 0.0071 0.0075 0.0145

36 0.0142 0.0071 0.3895 0.4104 0.7998

37 0.0149 0.0075 0.4104 0.4325 0.8428

38 0.0291 0.0145 0.7998 0.8428 1.6427

39

40 The unscaled condition number is 7.144017e+05

41 Local minimum found that satisfies the constraints.

42

43 Optimization completed because the objective function is non -decreasing in

44 feasible directions , to within the value of the optimality tolerance ,

45 and constraints are satisfied to within the value of the constraint tolerance.

46

2

Multidisciplinary Design Optimization Assignment #3: Part (b)

47 <stopping criteria details >

48 Cost scaling: The best solution is cost = 0.00192677 , corresponding to a design vector of:

49

50 0.0010

51 0.0020

52 0.0010

53 0.0010

54 0.0010

55

56

57 This solution had the following simulation output info:

58

59 iterations: 2

60 funcCount: 18

61 algorithm: ’sqp’

62 message: ’ Local minimum found that satisfies the constraints. Optimization

completed because the objective function is non -decreasing in feasible directions , to

within the value of the optimality tolerance , and constraints are satisfied to within

the value of the constraint tolerance. <stopping criteria details > Optimization

completed: The relative first -order optimality measure , 1.332268e-15, is less than

options.OptimalityTolerance = 1.000000e-06, and the relative maximum constraint

violation , 0.000000e+00, is less than options.ConstraintTolerance = 1.000000e-06. ’

63 constrviolation: 0

64 stepsize: 9.8027e-17

65 lssteplength: 1

66 firstorderopt: 1.3323e-15

67 bestfeasible: [1x1 struct]

68

69 The scaled hessian is:

70

71 25.9973 12.3112 2.0591 2.1765 4.3607

72 12.3112 6.7806 0.8421 0.9008 1.9928

73 2.0591 0.8421 1.0649 0.0751 0.2650

74 2.1765 0.9008 0.0751 1.0859 0.2859

75 4.3607 1.9928 0.2650 0.2859 1.6759

76

77 The scaled condition number is 6.270862e+01

78 The scaled optimization found a 0 percent smaller optimal value in the same number of

iterations and -0 percent fewer function evaluations

79

80 The scaled optimization found a solution 87.90 percent faster than the unscaled optimization

>>

3

Multidisciplinary Design Optimization Assignment #3: Part (b)

Therefore we can write out the unscaled Hessian:

H =



52.4001 25.5125 1416.4316 1492.5933 2909.1499

25.5125 13.3813 708.0283 746.1091 1454.3874

1416.4316 708.0283 38945.6567 41038.5367 79983.3184

1492.5933 746.1091 41038.5367 43245.9949 84283.6567

2909.1499 1454.3874 79983.3184 84283.6567 164268.1001


(1)

With simple observation we can deduce that the problem is obviously ill conditioned; A

scaling of the problem is hence required.

The five input design variables are [wyk, hyk, hpm, hA, wgap], to approximate the final form

of O(H) ≈ 1; we hope to make each terms of H ∼ 1. Therefore, the scaling factor should be

[10−1.5; 10−.5; 10−2; 10−2; 10−2.5]. Same as our previous settings, the lower and upper bounds

of the optimization system are (0.05, 0.05, 0.05, 0.05, 0.05) and (0.45, 0.45, 0.45, 0.45, 0.45), re-

spectively. Applying the factors and scale the new design variables as [w̃yk, h̃yk, h̃pm, h̃A, w̃gap] =

[10−1.5wyk, 10
−.5hyk, 110

−2hpm, 10
−2hA, 10

−2.5wgap] and reoptimize the problem (the new code

for the reoptimization are also attached in the Appendix).

From the output we can deduce that the new Hessian H̃ is

H̃ =



25.9973 12.3112 2.0591 2.1765 4.3607

12.3112 6.7806 0.8421 0.9007 1.9928

2.0591 0.8421 1.0649 0.07509 0.2650

2.1765 0.9007 0.0751 1.0859 0.2859

4.3607 1.9928 0.2649 0.2859 1.6759


(2)

It can be deduced that the problem is no longer ill-conditioned. Also, surprisingly, the

scaled and original optimization both land on the same solution for the design variables:

(0.05, 0.05, 0.05, 0.1, 0.05).

To estimate the how scaling works for the cost module, we mainly investigate compute

time, condition number, number of function evaluations, and quality of the optimized solution

before and after the scaling.

Considering computation time, we observe that using scaling on the cost function allows

the optimization to run 87% faster while performing the same number of function evaluations.

4

Multidisciplinary Design Optimization Assignment #3: Part (b)

Considering the condition number, we can apply the Matlab® built-in function cond()

to compute the condition number of our Hessian, given by

κ(H) = ||H||||H−1|| (3)

Before the scaling the condition number is κ(H) = 7.144× 105; and after the scaling the

condition is κ(H̃) = 6.271×10. It is obvious that the condition number dropped significantly

after scaling, indicating an effective scaling.

Eventually, when looking at the quality of the optimization, the First-order optimality

could help us deduce. First-order optimality is a measure of how close a point x is to optimal

[4]. Here, in our approach, the objective takes the form

min cost(wyk, hyk, ...) (4)

the first-order optimality measure is the infinity norm (meaning maximum absolute value) of

max
i

|(∆cost(geomtric vars.))i| = ||∆cost(geomtric vars.)||∞ (5)

The first order optimality drops from 7.45× 10−9 to 1.33× 10−15 after scaling, indicating

an extremely effective scaling.

1.2 Efficiency and General Optimization Considerations

When it comes to efficiency and power output, things become complicated. If the optimum

solution is taken as the one that optimizes efficiency, then the situation is very different.

The optimization algorithm is run anew without scaling, and the resultant Hessian1 at the

optimum, is given by,

Hxopt =



4.891 −4.1653 1.150 0.0 −2.3737

−4.1653 9.9191 −1.1196 −0.0 6.2427

1.1501 −1.1196 0.8515 0 −0.5468

0.0 0.0 0.0 1 0.0

−2.373 6.2427 −0.5468 0.0 3.972


(6)

1that is, the numerical approximation for it using MATLAB’s built-in function (FD)

5

Multidisciplinary Design Optimization Assignment #3: Part (b)

- computed using finite differencing. This looks fairly innocent, but it turns out that the

condition number is extremely large. That is, κ = 5041. Also, since large and small numbers

are so sporadically distributed in the matrix, there is no easy way of finding a good scaling.

Rather, a systematic approach is undertaken. First, let us write up the new matrix in terms

of the scaling parameters, L. This is computed by taking first taking the outer product of

L with itself; then taking the Hadamard product between the resulting matrix and Hxopt

before the scaling. This yields

Ĥxopt =



4.891L2
1 −4.1653L1L2 1.150L1L3 0. −2.3737L5L1

−4.1653L1L2 9.9191L2
2 −1.1196L3L2 −0. 6.2427L5L2

1.1501L1L3 −1.1196L3L2 0.8515L2
3 0 −0.5468L5L3

0 0 0 L2
4 0

−2.373L5L1 6.2427L5L2 −0.5468L5L3 0 3.972L2
5


(7)

It should be noted that this approach is just a suggestion of our own, whose sole purpose is to

bring down the computed condition number, at the given optimum. It builds on the Taylor

approximation to second order, where the function is assumed to behave quadratically along

the diagonal, and linear in both variables in the cross terms. Of course, there is no way of

guaranteeing that the scaling actually translates into something that is well approximated

by a Taylor series like that very far from the optimum2. Maybe, the actual objective func-

tion3 could even have a sort of delta-function like behavior up until right before the optimum.

Anyway, for optimizing the condition number, a numerical approach is used where we loop

through each component of L and optimize individually. The optimum is then fixed and

used for computing the optimum of the next component, and so forth. There will no doubt

be more intelligent ways to undertake a joint optimization of all the components and once4,

but this approach turns out to be extremely effective too. As every other component is held

fixed, the condition number is plotted as the one in question varies. The optimum is then

determined graphically. As nice as the graphs look, let us skip ahead to the results though.

2should of course always be possible right at it
3this is recognized as a sort of abstract idea, since no objective function is actually defined analytically
4somewhat ironically, we could have used an advanced optimizing algorithm to optimize this

6

Multidisciplinary Design Optimization Assignment #3: Part (b)

The final scaling vector looks like this, L = [0.25; 0.6; 1; 0.15; 0.9]. The condition number

has thus been reduced from 5041 to 310. This is more impressive than it looks. Randomly

varying components of the scaling vector was attempted too. This was never able to yield

a condition number below 4000, so the systematic approach definitely proved itself useful.

Looking at the diagonal elements, Ĥi,i(xopt), there was not a lot to be gained. Ĥ2,2(xopt)

and Ĥ3,3(xopt) did vary by an order of magnitude, but all are already ∼ O(1). Furthermore,

it turned out that trying to re-scale without considering the condition number almost always

increased it. Computation time only increased. All this may have seemed like overkill, as we

are not being asked for it anyway. However, it turned out we were in dire need of good scaling

as our problem is of a complexity which makes the computation time take hours otherwise.

When rerunning with the scaling, the condition number of the new optimum had come all

the way down to just 11.5. It converged with a time reduction of only 14% though, and the

quality of the optimum deteriorated considerably, going from an efficiency of 3.15 · 10−5 to

8.8·10−6, in units of the scaling factor mentioned in report 3. This emphasizes an important

point, to which we will return in Multiobjective Optimization; the robustness of the gradient-

based method is extremely poor for our particular problem, unless settings are chosen which

make it run much too slow.

Due to the extreme degree of non-linearity in our problem, local minima will likely be plen-

tiful and deep. This owes partly to the fact that the modelling of the heat transfer is from

the two-dimensional heat diffusion equation, where the heating time in worst case goes up

exponentially to the power of 2, as the solution of the time and position dependent temper-

ature is on a form similar to, K(t, x, y) = 1
(4πt)d/2

e−|x−y|2/4t 5.

First of all though, the magnetic aspect of the problem makes it extremely non-linear. The

model has been programmed with adaptive evaluation boundaries, and when the width of

the active material decreases, the magnetic flux6 can become extremely small if the bounds

on the variables allows for a more complete exploration. In our project, we were ambitious

and allowed for the dimensions of the active material to change by two orders of magnitude

5The two-dimensional behavior will come into play when the width of the active material becomes small compared to the
width of the yoke. Combined with a large thickness of active material, the power output becomes as good as 0

6to the square of which power is proportional

7

Multidisciplinary Design Optimization Assignment #3: Part (b)

for most of the optimization we have done. As a first order approximation, that causes a

change in the power output of a 104 on a linear scale. Furthermore, this is just the obvi-

ous consequence of only wrapping our coil around a smaller rod; much more impactful, and

unpredictable, is how the magnetic vector potential reacts to these changes. The curl will

stay the same but how much flux ends up being guided around in the ”magnetic circuit”

is highly susceptible to change in any geometric parameter and extremely complicated from

the perspective of the governing equations. The magnetic field is by nature divergence-less

and rotational. It is also highly adaptive to changing geometry under the right permeability

conditions, as it may condense many orders of magnitude.

Both power and efficiency depend on the magnetic simulation, and power furthermore de-

pends on the heating time.

The actual scaling to be used in multi objective optimization took this as a starting point at

was afterwards experimented with several times to get the best results for the multiobjective

optimization. In the end, the fastest computed Pareto front and the best results came from

running a multi-objective optimization based on a genetic algorithm, not a gradient-based

one. This was implemented with no scaling at all. With such a high degree of non-linearity

and unpredictable behavior, the genetic algorithm proved superior. As noted in report 3, it

was slower, but the results were also less prone to producing spurious conclusions.

2 Multiobjective Optimization

Select two objective functions for your project

Multiobjective optimization turned out to be extremely troublesome. At first, the AWS

and NBI methods were employed with SQP used for optimizing the weighted sum. This was

done in the two-dimensional spaces of efficiency and power output, efficiency and cost, and

power output and cost. We believe that both the AWS and NBI algorithms were successfully

implemented. However, despite our best efforts to tune these algorithms, we were unable to

get them to produce reasonable results within a reasonable time-frame and the algorithms

8

Multidisciplinary Design Optimization Assignment #3: Part (b)

took extraordinarily long times to run. We largely attribute this difficulty to the complicated

nature of our COMSOL-coupled objectives. The team concluded that MATLAB’s fmmincon

function and all of its algorithmic settings are poorly suited for our problem.

Multiobjective optimization of power output and cost turned out to be especially prob-

lematic. This could perhaps have been predicted from the start, although we must admit

that we were very optimistic at first. There are two main reasons for this, as we see it:

• Both objectives are extremely non-linear and the combination of them, even more so.

• Both objectives are largely co-directional up until a level of hard-to-resolve finesse, and

co-dependent by a myriad of mechanisms

The latter requires a bit of explanation. There are a few common features that will both

enhance the power output and the efficiency. As has been explained in report 2, both of them

scale with the total magnetic flux squared and will thus benefit from increased height of the

active material. They will also both benefit from having a larger permanent magnet. As

long as we can change variables and improve both objectives however, we are simply not at

Pareto optimum. Getting to the point where one of them will have to hurt the other turns

out to be a matter of finesse which was too much for simple optimization tools to be able to

resolve to a level of7.

Consider on the other hand yoke widths that are large. Then the heating time and the

heat input will be increased, as the heat diffusion becomes increasingly two-dimensional in

nature and more ”waste material” has to be heated up alongside the active material. At the

same time, this will mean that there is less fringing field, so that more magnetic flux can

be guided through the coil. Less fringing leads to more power output, which leads to more

efficiency. At the same time, increased heating time leads to less power output and increased

heat input leads to less efficiency. This is just taking the variation of one variable into con-

sideration and considering only the obvious effects, and some of the feedback mechanisms.

The optimum where the sign of the effect on one of the objectives differs from that one the

other will come down to the exact nature of the non-linearities and will be highly sensitive

7this is mainly a critique of fmincon

9

Multidisciplinary Design Optimization Assignment #3: Part (b)

to the state of all the other variables.

Neither NBI or AWS could produce reliable results for multiobjective optimization of power

and efficiency. We know that both of these methods do have their limitations and can pro-

duce erroneous results. Combined with the tendency of fmincon to produce spurious results

for these particular objective functions, it is not a huge surprise. AWS was implemented with

some success for optimizing efficiency and cost jointly. It was painfully slow though, and a

full and evenly space Pareto front will only be available the morning after the deadline of

this report.

The team turned back to revisit the use of a genetic algorithm, which had previously been

discarded due to its unreasonably large compute time. The number of function evaluations

needed to be reduced for a genetic algorithm to suit our needs. So, the team turned to MAT-

LAB’s documentation to understand why the GA performed more function evaluations than

there were population members in each generation. We found that while the GA handles

linear constraints without trouble, nonlinear constraints rapidly increase the computational

cost of the algorithm. Where one function evaluation takes place per population member in

each generation with linear constraints, nonlinear constraints ”confuse” the algorithm and

require many more function evaluations per individual. The constraints related to length and

width of our thermomagnetic generator are in fact already linear, but had been represented

as nonlinear in MATLAB previously. The volume constraint is nonlinear. For the sake of

experimentation, we relaxed the volume constraint entirely to explore the GA’s performance.

We may linearize the volume constraint later on, or remove it as we feel it may be unimpor-

tant in the scheme of our problem. Although we were able to make fmincon work for single

objective optimizations, the success largely came from our ability to run the sqp algorithm

many times and cherry pick the best results. To further reduce computing cost, we reduced

the resolution of the mesh for both the thermal and the magnetic COMSOL model. During

this process we were careful to not make the mesh so coarse that our objective functions

returned inaccurate results.

The genetic algorithm applied with only linear constraints quickly showed promising re-

sults in a timely manner. Where previously we had observed poor results with runs lasting

10

Multidisciplinary Design Optimization Assignment #3: Part (b)

-50 -40 -30 -20 -10 0

0

500

1000

1500

2000

2500

Concave

Utopia Point

Concave

Figure 1: The Pareto front for optimizing both the cost and power output module. This is exactly what
we would expect. As cost is being minimized with an eye for power too, there will be a common interest in
removing active material from the structure, which is both the most expensive and results in exponentially
larger heating times (exponentially smaller power outputs), but as power output becomes dominantly weighed,
it will be more advantageous to morph active material into a horizontally elongated structure, rather than
removing it, which hurts the magnetic flux and thus the power.

24 hours or more, we now could achieve reasonable results in less than 30 minutes. We first

confirmed with single objective optimizations that the genetic algorithm offered comparable

performance to fmincon with greater consistency. Then, we applied MATLAB’s gamultiobj()

function to our cost and power objectives and plot the resulting Pareto front in Figure 1.

We see that while cost is mostly linear with power, the optimal design does lie on a convex

point and corresponds to a final selected design vector of:

Yoke Width 0.0709

Yoke Height 0.3625

Permanent Magnet Height 0.1464

Active Material Height 0.1499

Gap Width 0.1313

And gives the results:

Cost = $1,694.4

Power = 33.8145

11

Multidisciplinary Design Optimization Assignment #3: Part (b)

The optimal point marked in Figure 1 This convex point could potentially be a result

of a high performing outlier from the optimization. However, we believe that the Pareto

front is likely accurate because the algorithm performed more than 5000 function evaluations

on a constant population of 35 individuals to gather the data. Had we realized that the

algorithm would run for so long, we would have reduced the function tolerance and increased

the population size to create a higher resolution curve. We plan to do this for the final

presentation and report. Note that while the cost axis represents accurate dollar amounts,

the power axis is on an arbitrary scale because per the setup of our problem, power is

multiplied by an unknown constant K. Note also that power is negative. This is because the

algorithm tries to minimize the objective, but we want to maximize power. Thus, we can

multiply power by -1 and represent maximum power by optimizing for the most negative

objective value. This approach is also taken with the efficiency objective. The following

settings were used to create Figure 1:

1 funcTol = 1e-4;

2 conTol = 1e-5;

3 popSize = 35;

4 crossoverRatio = 1.2;

5 crossoverFraction = .8;

6 maxStallGenerations = 50;

For gamultiobj(), the algorithm is set to stop when the geometric average change in

Pareto spread across all generations is less than the function tolerance divided by maximum

stall generations. The above settings resulted in an impractically long computation time, and

the algorithm was halted after approximately eight hours and the data was used to create

the Pareto front in Figure 1.

It is an easy matter to take a point and show that it is non-dominated, and luckily, this

can be shown for every single point on our Pareto front8. The chosen point is marked in

figure 2. This figure contains the explanation as to why the point is no-dominated in its

caption.

Using what we learned from the dual-objective optimization of cost and power, the team

revised the MATLAB scripts to create a Pareto front for all three objectives: power, cost,

and efficiency. The script and all helper functions used to create the three-objective Pareto

front are included in the Appendix. The same script was used with a modified objective

8- meaning that is actually a Pareto front

12

Multidisciplinary Design Optimization Assignment #3: Part (b)

Figure 2: Consider the green point on the Pareto front. This is clearly non-dominated, as can be shown
by drawing the blue arrows in the direction of decreasing cost and increasing power output. If we go along
that line, then we will only be able to go to points that have also increased in cost, or decreased in power,
respectively. The green point will thus always be optimal, as long as the particular weighing used to produce
it, is considered. For a particular niche in terms of weighing, no other point can beat it.

function to produce the two-objective optimization. The 3D Pareto front produced is shown

in Figure 3 and appears to be consistent with the 2D power-cost Pareto front when viewed

from its side. We attempted to rush the completion of this optimization and thus the result

does not show enough points along the Pareto front to draw a clear optimal line. The team is

excited to run the algorithm again with a higher population and lower tolerances to produce

a more complete graph for the final report and presentation.

Contributions

HW3:

• Q1: Mads: Writing & COMSOL/MATLAB integration, Problem formulation; Will:

COMSOL/MATLAB integration

• Q2: Hanfeng: Writing & graph, Heuristic algorithm, GA programming; Will: program-

ming that worked (Single objective GA), results generation, analysis and writing.

• Q3: Will: Main programming (cost, power output, and efficiency), figures generation

(running from main program) results generation, & revision. Mads: Results analysis,

13

Multidisciplinary Design Optimization Assignment #3: Part (b)

Figure 3: 3D Pareto front of power, efficiency, and cost. This was created with a rushed algorithm and did
not produce enough data points to be meaningful enough to draw conclusions from.

and writing. Hanfeng: Writing, programming & analysis for sensitivity analysis & single

objective optimization for cost, & graphic representation (schematics).

• General: Hanfeng: Beautiful figures (added by Will) & latex formatting. Putting up

website with results and project description

HW4:

• Q1: Hanfeng: Scaling for cost module & writing. Will: Programming for both modules,

editing & revising. Mads: scaling for the efficiency module & writing.

• Q2: Will: Programming NBI, programming MOO GA, optimization running, results

analysis, writing. Mads: Programming, results analysis, writing. Hanfeng: Schematic

& Graphic representation, revision.

• General: Mads: Discussion on optimization considerations, SQP AWS programming.

Will: Extremely labour intensive and productive programming (added by Mads). Han-

feng: Latex formatting & schematics and the figures

14

Multidisciplinary Design Optimization Assignment #3: Part (b)

Appendix

TherMaG gradoptim L single scaling.m: Script for exploring design variable scaling

of different objective functions.

1 clear

2 clc

3 close all

4

5 % starting point for optimization

6 x0 = [.05;.1;.05;.05;.05]; % default

7 x0cost = [.15;.15;.05;.05;.05]; % cost

8 x0power = [.05;.45;.25;.15;.15]; % power

9 x0efficiency = [.05;.45;.25;.15;.05]; % efficiency

10

11 TolF = 1e-6;

12 TolX = 1e-6;

13 TolCon = 1e-6;

14

15 % Set nondefault solver options

16 options = optimoptions(’fmincon ’,’Algorithm ’,’sqp’,’FunctionTolerance ’,TolF ,’StepTolerance ’,

TolX ,’ConstraintTolerance ’,TolCon ,’PlotFcn ’,{@optimplotfval , @optimplotfunccount });

17

18 % set upper and lower bounds

19 lb = [.001, .001, .001, .001, .001];

20 ub = [.5, .5, .5, .5, .5];

21

22 % make L scaling vectors

23 L = [1; 1; 1; 1; 1];

24

25 % make anonymous functions

26 powerFcn = @(input) powerFcnSingleL(input , L);

27 efficiencyFcn = @(input) efficiencyFcnSingleL(input , L);

28 costFcn = @(cost) objee_scaling(cost , L);

29

30 % constants

31 V_max = .125;

32 L_max = .5;

33

34 % set linear constraints

35 A = [0, 1, 0, 0, 0; 2, 0, 0, 0, 1; 0, -1, 1, 1, 0];

36 b = [L_max; L_max; 0];

37

38 tic;

39

15

Multidisciplinary Design Optimization Assignment #3: Part (b)

40 % run the optimization

41 % CHANGE THIS TO THE CORRECT VARIABLE

42 [solution ,objectiveValue ,exitflag ,output ,lambda ,grad ,hessian] = fmincon(costFcn ,x0,A,b

,[],[],lb ,ub ,[], options);

43

44 unscaledTime = toc;

45

46 %% Run the above section once , then only run this section to check new scaling vectors

47

48 L_efficiency = [1; 10^(-3.5); 10^(-4); 1; 10^(-3.5)];

49 L_power = [1; 1; 10^(-.5); 1; 1];

50 L_cost = [10^(-1.5); 10^(-1); 1; 1; 1];

51

52 fprintf(’No scaling: The best solution is efficiency = %.8f, corresponding to a design

vector of: \n’,objectiveValue);

53 fprintf(’\n’);

54 disp(solution);

55 fprintf(’\n’);

56 fprintf(’This solution had the following simulation output info: \n’);

57 fprintf(’\n’);

58 disp(output);

59

60 eigs = eig(hessian);

61 maxeig = max(eigs);

62 mineig = min(eigs);

63 conditionNumber = abs(maxeig/mineig);

64

65 fprintf(’The unscaled hessian is:\n’);

66 fprintf(’\n’);

67 disp(hessian);

68 fprintf(’The unscaled condition number is %d’,conditionNumber);

69

70 powerFcn = @(input) powerFcnSingleL(input , L_power);

71 efficiencyFcn = @(input) efficiencyFcnSingleL(input , L_efficiency);

72 costFcn = @(cost) objee_scaling(cost , L_cost);

73

74 tic;

75

76 % run the optimization again with the new scaling

77 % CHANGE THE FUNCTION TO THE CORRECT VARIABLE

78 [scaledSolution ,scaledObjectiveValue ,scaledExitflag ,scaledOutput ,scaledLambda ,scaledGrad ,

scaledHessian] = fmincon(costFcn ,x0 ,A,b,[],[],lb,ub ,[], options);

79

80 scaledTime = toc;

81

82 [realScaledPower , realScaledEfficiency] = efficiency_power_modules(scaledSolution);

16

Multidisciplinary Design Optimization Assignment #3: Part (b)

83 realScaledCost = objee(scaledSolution);

84

85 % CHANGE THIS TO THE RIGHT VARIABLE

86 realObjectiveValue = realScaledCost;

87

88 % CHANGE THIS TEXT TO THE RIGHT VARIABLE

89 fprintf(’Efficiency scaling: The best solution is efficiency = %.8f, corresponding to a

design vector of: \n’,realObjectiveValue);

90 fprintf(’\n’);

91 disp(scaledSolution);

92 fprintf(’\n’);

93 fprintf(’This solution had the following simulation output info: \n’);

94 fprintf(’\n’);

95 disp(scaledOutput);

96

97 eigs = eig(scaledHessian);

98 maxeig = max(eigs);

99 mineig = min(eigs);

100 scaledConditionNumber = abs(maxeig/mineig);

101

102 funcCountDiff = -(scaledOutput.funcCount - output.funcCount)/output.funcCount *100;

103 fvalDiff = -(realObjectiveValue - objectiveValue)/objectiveValue *100;

104 timeDiff = -(scaledTime - unscaledTime)/unscaledTime *100;

105

106 fprintf(’The scaled hessian is:\n’);

107 fprintf(’\n’);

108 disp(scaledHessian);

109 fprintf(’The scaled condition number is %d’,scaledConditionNumber);

110 fprintf(’\n’);

111 fprintf(’The scaled optimization found a %.2f percent smaller optimal value in the same

number of iterations and %.0f percent fewer function evaluations\n’,fvalDiff ,

funcCountDiff);

112 fprintf(’\n’);

113 fprintf(’The scaled optimization found a solution %.2f percent faster than the unscaled

optimization ’,timeDiff);

powerFcnSingleL.m: Helper function to return power.

1 function [power] = powerFcnSingleL(x,L)

2 [power ,~] = efficiency_power_modules_L_single_scaling(x,L);

3 end

efficiencyFcnScaling.m: Helper function to return efficiency.

1 function [efficiency] = efficiencyFcnSingleL(x,L)

2 [~, efficiency] = efficiency_power_modules_L_single_scaling(x,L);

3 end

17

Multidisciplinary Design Optimization Assignment #3: Part (b)

objee.m: The scaled objective function for running minimizing the cost of the TMG.

1 function f = objee(x)

2 % x = [h_A; w_gap; w_yk; h_yk; h_pm];

3 Gadolinium = 1.71553 e5; % $/m^3

4 Iron = 1.4804 e3; % $/m^3

5 Neodymium = 1.628 e5; % $/m^3

6 w_yk = 10^(-7)*x(1);%10^(-7)*

7 h_yk = 10^(1)*x(2);%10^(1)*

8 h_pm = x(3);%1*

9 h_A = 10^(1)*x(4);%10^(1)*

10 w_gap = 10^(-10)*x(5);%10^(-10)*

11 magnetArea = h_pm*w_gap;

12 activeMaterialArea = h_A*w_gap; % in reality , this would not be a solid mass

13 yokeArea = 2*w_yk*h_yk;

14 f = Gadolinium*activeMaterialArea + Iron*yokeArea + Neodymium*magnetArea;

15 end

geocon.m: The geometric constraint for running minimizing the cost of the TMG.

1 function [c,ceq] = geocon(x0)

2 x = x0;

3 inputmatrx = x;

4 h_A = inputmatrx (1);w_gap = inputmatrx (2);

5 w_yk = inputmatrx (3);h_yk=inputmatrx (4);h_pm=inputmatrx (5);

6

7 c(1) = h_yk *(2* w_yk + w_gap) - .125;

8 c(2) = h_yk - .5;

9 c(3) = (2* w_yk + w_gap) - .5;

10 c(4) = (h_A + h_pm) - h_yk;

11 ceq = [];

12 end

objee.m:

The unscaled objective function for running minimizing the cost of the TMG.

1 function f = objee(x)

2

3 Gadolinium = 1.71553 e5; % $/m^3

4 Iron = 1.4804 e3; % $/m^3

5 Neodymium = 1.628e5; % $/m^3

6

7 w_yk = x(1);

8 h_yk = x(2);

9 h_pm = x(3);

10 h_A = x(4);

11 w_gap = x(5);

12

18

Multidisciplinary Design Optimization Assignment #3: Part (b)

13 magnetArea = h_pm*w_gap;

14 activeMaterialArea = h_A*w_gap; % in reality , this would not be a solid mass

15 yokeArea = 2*w_yk*h_yk;

16 f = Gadolinium*activeMaterialArea + Iron*yokeArea + Neodymium*magnetArea;

17 end

TherMaG GA Multi.m: The script used to run multiobjective genetic algorithm opti-

mizations.

1 clear

2 clc

3 close all

4

5 % set upper and lower bounds

6 lb = [.001, .001, .001, .001, .001];

7 ub = [.5, .5, .5, .5, .5];

8

9 % set optimization options

10 funcTol = 10^(-2.5);

11 conTol = 1e-5;

12 popSize = 30;

13 crossoverRatio = 1.2;

14 crossoverFraction = .8;

15 maxStallGenerations = 5;

16

17 options = optimoptions(’gamultiobj ’, ...

18 ’CrossoverFcn ’,{@crossoverheuristic ,crossoverRatio },...

19 ’FunctionTolerance ’, funcTol , ...

20 ’PopulationSize ’, popSize , ...

21 ’CrossoverFraction ’, crossoverFraction ,...

22 ’ConstraintTolerance ’, conTol ,...

23 ’MutationFcn ’,{@mutationadaptfeasible },...

24 ’MaxStallGenerations ’, maxStallGenerations ,...

25 "PlotFcn", {@gaplotPareto , @gaplotgenealogy , @gaplotscorediversity , @gaplotrankhist ,

@gaplotstopping },...

26 ’Display ’,’diagnose ’);

27

28 % constants

29 V_max = .125;

30 L_max = .5;

31

32 % set linear constraints

33 A = [0, 1, 0, 0, 0; 2, 0, 0, 0, 1; 0, -1, 1, 1, 0];

34 b = [L_max; L_max; 0];

35

36 % run the GA

19

Multidisciplinary Design Optimization Assignment #3: Part (b)

37 [solution , fval , exitflag , output , population , scores] = gamultiobj(

@powerCostEfficiencyMulti ,5,A,b,[],[],lb,ub,options);

powerCostEfficiencyMulti.m: A helper function returning all three objective values

for optimization.

1 function [evaluation] = powerCostEfficiencyMulti(input)

2

3 [power , efficiency] = efficiency_power_modules(input);

4

5 evaluation = zeros (3,1);

6 evaluation (1) = power;

7 evaluation (2) = efficiency;

8 evaluation (2) = objee(input);

9

10 end

efficiency power modules.m: The objective function coupled with COMSOL to return

power and efficiency.

1

2 function [power , efficiency] = efficiency_power_modules(vector)

3

4 % define constants

5 Cp_A = 450;

6 Cp_everythingElse = 3.5433 e6;

7

8 % extract design parameters

9 w_yk = vector (1);

10 h_yk = vector (2);

11 h_pm = vector (3);

12 h_A = vector (4);

13 w_gap = vector (5);

14

15 % run models to get outputs for result calculations

16

17 % open the thermal comsol model and run the study

18 thermalModel = mphopen(’therm_assign_3.mph’);

19

20 % set basic thermal model parameters

21 thermalModel.param.set(’yoke_width ’,w_yk);

22 thermalModel.param.set(’permmag_height ’,h_pm);

23 thermalModel.param.set(’activemat_height ’,h_A);

24 thermalModel.param.set(’yoke_height ’,h_yk);

25 thermalModel.param.set(’actperm_width ’,w_gap);

26

20

Multidisciplinary Design Optimization Assignment #3: Part (b)

27 % run the thermal model

28 thermalModel.study(’std2’).run;

29

30 % extract the solution (end of the time array)

31 time = thermalModel.result.numerical(’pev1’).getReal ();

32 heatTime = time(end);

33

34 % run the thermal model to find integrated temperatures

35 integratedTemperaturesActive = thermalModel.result.numerical(’int1’).getReal ();

36 T_int_active = integratedTemperaturesActive(end);

37

38 integratedTemperaturesEverythingElse = thermalModel.result.numerical(’int2’).getReal ();

39 T_int_everythingElse = integratedTemperaturesEverythingElse(end);

40

41 % open the magnetic comsol model

42 magneticModel = mphopen(’simple_for_assign_3.mph’);

43

44 % set basic magnetic model parameters

45 magneticModel.param.set(’yoke_width ’,w_yk);

46 magneticModel.param.set(’permmag_height ’,h_pm);

47 magneticModel.param.set(’activemat_height ’,h_A);

48 magneticModel.param.set(’yoke_height ’,h_yk);

49 magneticModel.param.set(’actperm_width ’,w_gap);

50

51 % compute flux before (mu = 1)

52 magneticModel.param.set(’mu_r’ ,1);

53 magneticModel.study(’std1’).run;

54 fluxBefore = magneticModel.result.numerical(’int1’).getReal ();

55

56 % compute flux after (mu = 20)

57 magneticModel.param.set(’mu_r’ ,20);

58 magneticModel.study(’std1’).run;

59 fluxAfter = magneticModel.result.numerical(’int1’).getReal ();

60

61 % calculate results

62

63 % compute power result

64 deltaFlux = fluxBefore - fluxAfter;

65 power = -deltaFlux ^2/ heatTime *1e8;

66

67 % compute efficiency

68 efficiency = -deltaFlux ^2/(Cp_A*T_int_active + Cp_everythingElse*T_int_everythingElse)*1

e11;

69

70 end

21

Multidisciplinary Design Optimization Assignment #3: Part (b)

References

[1] Katoch, S., Chauhan, S.S. & Kumar, V. A review on genetic algorithm: past, present,

and future. Multimed Tools Appl 80, 8091–8126 (2021).

[2] Tabak, Daniel; Kuo, Benjamin C. (1971). Optimal Control by Mathematical Program-

ming. Englewood Cliffs, NJ: Prentice-Hall. pp. 19–20. ISBN 0-13-638106-5.

[3] fmincon Documentation. Mathworks, Inc. URL: https://www.mathworks.com/help/

optim/ug/fmincon.html#busp5fq-7

[4] First-Order Optimality Measure. Mathworks, Inc. URL: https://www.mathworks.com/

help/optim/ug/first-order-optimality-measure.html

[5] Professor Walter Murray, Systems Optimization Laboratory. Advanced Meth-

ods in Numerical Optimization. URL: https://web.stanford.edu/class/msande312/

restricted/OPTconditions.pdf

22

https://www.mathworks.com/help/optim/ug/fmincon.html#busp5fq-7
https://www.mathworks.com/help/optim/ug/fmincon.html#busp5fq-7
https://www.mathworks.com/help/optim/ug/first-order-optimality-measure.html
https://www.mathworks.com/help/optim/ug/first-order-optimality-measure.html
https://web.stanford.edu/class/msande312/restricted/OPTconditions.pdf
https://web.stanford.edu/class/msande312/restricted/OPTconditions.pdf

	Scaling
	Cost
	Efficiency and General Optimization Considerations

	Multiobjective Optimization

