TherMaG: Engineering Design of Thermo-Magnetic Generator with Multidisciplinary Design Optimization

Will Hintlian, Mads Berg, Hanfeng Zhai

CORNELL UNIVERSITY

December 2, 2021

CONTENT

- Background & Motivation
- **Project Description**
- **Problem Formulation**
- Modeling & Simulation

- Single-objective Optimization
- Multi-objective Optimization
- **Recommendations**
- Summary & Future works

Background & Motivation

Source: NBC News


```
Source: Wikipedia
```


Ahmed et al., Int. J. Ener. Res., 2021

Kishore and Priya, Renew. Sust. Ener. Rev., 2021 21

Source: Forbes

CornellEngineering

BEST AVAILABLE COP UNITED STATES PATENT OFFICE.

NIKOLA TESLA, OF SMILJAN, LIKA, AUSTRIA-HUNGARY.

THERMO-MAGNETIC MOTOR.

SPECIFICATION forming part of Letters Patent No. 390,121, dated January 15, 1889. Application filed March 30, 1886. Serial No. 197,115. (No model.)

Source: Google Patent

Project Description

• **PROBLEM:** Design of Thermo-Magnetic Generator

- Consists of active materials, yoke, permanent magnet
- Generate energy from temperature induced magnetic field change

• GOAL: Provide insights for NextGen clean energy

- Numerous research addressed on electrochemical, hydrogen, nuclear, and other forms of clean energies
 Image acquire
- Very few tackles possible applications of TMG
- METHOD: Utilize the power of numerical simulation
 - Black box code
 - Platform for connecting commercial softwares
 - Optimization toolbox in MATLAB

Image acquired and reproduced from Waske et al., Nat. Ener., 2018

CornellEngineering

Image acquired and reproduced from Wikimedia commons and comsol.com

Problem Formulation

Design Variables	Modules	Description	Lower Bounds	Nominal	Upper Bounds
w_{yk}	Therm., Magn., Cost	Yoke Width	0.01	0.05	0.5
h_{yk}	Therm., Magn., Cost	Yoke Height	0.01	0.4	0.5
h_A	Therm., Magn., Cost	Active Material Height	0.01	0.1	0.5
h_{pm}	Therm., Magn., Cost	Permanent Magnet Height	0.01	0.1	0.5
w_{gap}	Therm., Magn., Cost	Gap Width	0.01	0.15	0.5

Problem Formulation

•	Constraints $g(z)$	$\mathbf{x}, \mathbf{p}) = [g_i(\mathbf{x}, \mathbf{p})]^T,$	i=1,,3 - No equality constraints
	Effect of Constraints	Туре	Bound
	Maximum device height	Inequality Constraint	$h_{yk} - L_{\max} < 0$
	Maximum device width	Inequality Constraint	$\left(2 \cdot w_{yk} + w_{gap}\right) - L_{\max} < 0$
	Maximum device volume	Inequality Constraint	$h_{yk} \cdot \left(2 \cdot w_{yk} + w_{\text{gap}}\right) - V_{max} < 0$
	No overlap	Inequality Constraint	$h_A + h_{pm} - h_{yk} < 0$

• Parameters $\mathbf{p} = p_i$

-		
$V_{max} = 0.125m^2$	$L_{max} = 0.5m$	

Item	Physical properties	Unit	Value
Material of Active Material	Magnetic permeabilities, thermal diffusivity, heat capacity, price	[H/m], [m^2/s], []/(kg*K)], USD/m^2	(4 Pi 10^-7, 80 Pi 10^-7), built-in,1.7e5
Material of Permanent Magnet	Magnetic permeabilities, thermal diffusivity, heat capacity, rem. flux density, price	[H/m], [m^2/s], []/(kg*K)], [T], USD/m^2	built-in, built-in,built-in, 1.3,1.4e3
Material of Yoke	Magnetic permeabilities, thermal diffusivity, heat capacity, price	[H/m], [m^2/s], []/(kg*K)], [T], USD/m^2	built-in, built-in, built-in, 1.63e5
Ambient conditions	Temperature, magnetic permeability	[K], [H/m]	300, 4 Pi, 10^-7

Physical Modeling

- Total power output
 - $P = K \cdot \Delta \Phi^2 \cdot t^{-1}$
 - ${\cal K}\,$ Proportionality constant
 - t Time
 - Φ Magnetic flux

• Energy efficiency of the TMG system $\eta = G \cdot \frac{\Delta \Phi^2}{\int_{\delta V} C_V \cdot (T - 293.15K) dV}$ GProportionality constant C_V Heat capacity TTemperature

Modeling & Simulation

 w_{yk}

Total

magnetic flux

in "cool" state

Neodynum

remanent flux

"Hot" magnetic

permeabilities

magnetic

permeabilities

density

Image acquired and reproduced from Waske et al., Nat. Ener., 2018

Disciplines: 3 Run time:~10s-5min

ICOMSOL ᆀ

N^2 Diagram

(\mathbf{x}, \mathbf{p})	Geo. design var. & material cost	Geo. design var. & thermal param.	Geo. design var. & magnetic param.			
	Cost					Device cost
		Thermal		Exergy expense per cycle	Heating time per cycle	
			Magnetic	Power generated per cycle	Power generated per cycle	
				Efficiency		Efficiency
					Power output	Power output
						$\mathbf{J}(\mathbf{x},\mathbf{p}), \ \mathbf{g}(\mathbf{x},\mathbf{p})$

Model Validation

ARTICLES	nature
https://doi.org/10.1038/s41560-018-0306-x	energ

Energy harvesting near room temperature using a thermomagnetic generator with a pretzel-like b magnetic flux topology

Anja Waske^{1,2,3}, Daniel Dzekan^{1,2}, Kai Sellschopp ^{1,2,4}, Dietmar Berger¹, Alexander Stork^{1,2}, Kornelius Nielsch^{1,2} and Sebastian Fähler ^{1,1}

Single-objective Optimization: Design of Experiments

Single-objective Optimization: Design of Experiments

Single-objective Optimization: Gradient Algorithms

Single-objective Optimization: Gradient Algorithms

Optimization completed: The relative first-order optimality measure, 1.426149e-10, is less than options.OptimalityTolerance = 1.000000e-06, and the relative maximum constraint violation, 0.000000e+00, is less than options.ConstraintTolerance = 1.000000e-06.

Single-objective Optimization: Genetic Algorithms

Single-objective Optimization: Genetic Algorithms

Comparing the DoE and Full Optimizations:

Multiobjective Optimization

Cost	Power output	Efficiency
\$166.3520	9220.7153	1650.3051

% set optimization options funcTol = 1e-4; conTol = 1e-5; popSize = 100; crossoverRatio = 1.2; crossoverFraction = .8; maxStallGenerations = 2;

Multiobjective Optimization: Walking the Pareto Front

Final Recommendations: 3 Objective Optimization

Final Recommendations: 3 Objective Optimization

Performance per Dollar along the Pareto Front

Summary & Takeaways

- Gradient-based methods are mathematically more rigorous and consumes less computational resources
- Heuristic methods are handy and powerful for some black box simulations and general engineering applications
- Each of us has gotten a taste of applying MDO algorithms to engineering problems and hopes to use them more
- We leave the course armed with tools and knowledge to begin applying MDO techniques after graduation!

Next Steps

- Implementing meshing of the TMG as design variables will provide a more comprehensive geometric design
- Include modules for fluid mechanics, wire coils, pumps, etc. for a more comprehensive system model
- Build up 3D simulation model for TMG design and optimization
- Consideration of different materials properties
- Manufacture the TMG in a lab

Q & A

