Al for Good + AI for Science

 $Designing\ next\ generation\ biocompatible\ materials\ with$

 $Machine\ Learning+Multiscale\ \&\ Multiphysics\ Modeling$

Surrogate Model

Acquisition Function

HANFENG ZHAI

J² Lab, Cornell University

 $Contact info: {\tt jingjieyeo@cornell.edu}$

Goal & Objective Bacteria cells Biofouling

Biofilm stinks. We hope to find a way to get rid of it. Designing a new kind of nanosurface with computer simulation + ML is one.

Developed Toolbox Bayesian Optimization Design Space & Hyper-parameters Optimization Optimization Optimization Optimization Verification

PyLAMDO depends on the Python-LAMMPS interface for automating the simulation + optimization processes.

Finalize Design

Some Preliminary Results

Inferring biomass from roughness

Surrogate model — based designing

Mesoscale Modeling

Mesoscale modeling (i.e. DEM) accounts complex physics information.

Methodology

Bayesian Optimization

Bayesian optimization is a powerful tool in materials design.

Operator Learning

High Fidelity

Simulation

DeepONet can learning the mapping between functional spaces.

CornellEngineering

