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Molecular dynamics

For simple atomic system, MD simulation follows:

N 0
mir; = f,', f,' == —a—riu
where the forces f; are derived from potential energy U(rV), where rN = (r1,r2, ..., ry).

Here, the potential energy U from diiferent interactions, such as Upnon—_bonded,» Uintramolecular
etc., etc.

The MD algorithm for simulation can be written as

. _ Pi
ri=—,
mj

pi = f;

The energy (hamiltonian), takes the form H = KC 4+ U, and the kinetic energy takes the form
K(bM) = 31 Ipif?/2m;.
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There are two ways to calculate f and U:

® Computing the inter-atomic forces on the fly using QM, e.g. the Car-Parrinello MD.
(Accurate but expensive)

U= <Wo!H§5\‘Uo>, pdi = HES 0+ > Njo;
J
® Empirical potentials: efficient but unreliable. The Lennard-Jones potential:

o o 1
Vij = 46[(ﬁ)12 - (;)6]7 E=3 7
v v i#j

Question: How can we represent (approximate) a function of many variables?
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Density function theory

With the knowledge of statistical physics, the grand potential (free energy) takes the form
Q(p, T, V)= —Tlog=
where = is the grand partition function
oo
_ 1 H—uM
=, T,V)= ,\;_:0 MTr exp <—T>

The classical trace, Tr, represents the 6M-dimensional phase-space integral (the division by M!
compensates for double counting of many-body states of indistinguishable particles).
Taking the Hohenberg-Kohn theorem, the many-body Hamiltonian is

Hvg =K +V+U

where the potential energy V = 3" v(r;) is added. Argaman and Makov, 1999
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Hohenberg-Kohn theorem: an example

The functional derivative of Q2 gives the density distribution of particles:
n(r) = (p(r)) = 0Q/0ov(r), where p(r) = E,’\il d(r — r;) is the unaveraged density.
We thus define a new free energy depends on n(r), called the H-K free energy:

Frk[n(r)] = Q[v(r)] — /drn(r)v(r)

The partial & functional derivatives follows Legendre trans.: dFyx = —SdT — [ drv(r)dn(r)
The free energy functional takes the form:

Quln(F)] = Frx[n(r)] + / drn(r)v(r)

If the free energy function is minimized considering n(r), the following relation is obtained:

OFuk —
sn(r) (r)

Argaman and Makov, 1999
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DeePMD-kit: NN-based MD package

New paradigm:
@ quantum mechanics model — data generator
@ machine learning — parametrize (represent) the model
@ molecular dynamics — simulator

Issues (different from usual Al applications):
@ preserving physical symmetries (translation, rotation, permutation)
@ getting the “optimal data set”

Courtesy of Weinan E
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DeePMD: theory

In a MD system, the descriptive information of atom / given by neighbor j is constructed by
using either full information / radial-only information:

L X5 yi zj : .
—, =, =, =}, full information
(D8} = Rij” Rij” R Rjj

1
{—R }, radial — only information
»

The DNN that maps the descriptor D; to atomic energy is denoted by
Us(iy = Ny(i(Di)
Mathematically, DNN with N, hidden layers is a mapping

-/\/'s(i)(Di):Lg(uis o [,LV(’;) o Eiv(f;)*l o .. o0 Li(i)(Di)

Wang et al., 2017
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DeePMD

NN-based MD simulator that are able to speed up simulation w/ higher accuracy.

& GitHub, Inc. [US] | https://github.com/deepmodeling/deepmd-kit

Data DeePMD-kit
Generator Data  Train/Test Table of contents
DFT, AIMD, QMC, ... rawdata | @ + Install DeePMD-kit
a o Install tensorflow's Python interface
E \ 1 o o Install tensorflow's C++ interface
DeePMD-kit descriptors | T o Install xdrfile
MD support 12 g o Install DeePMD-kit
DeePMD 5 o Install Lammps' DeePMD-kit module
MD Interface Model networks = @ « Use DeePMD-kit
3 o Prepare data
Y o
Predictions o Train & model
o Freeze the model
o Run MD with Lammps
o Run path-integral MD with i-P|
TensorFlow lib DeePMD-kit lib © Run MD with native code
standard Tensor OP descript OP, force OP, + Codestructure
& Compt. Graph & virial OP " toense
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DeePMD results

(a) small molecules (b) MoS2 + Pt (c) CoCrFeMnNi HEA
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DeePMD results

Radial and angular distribution function of liquid water (PI-AIMD):
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DeePCG: theory

Considering a MD system where atom coordinates q = {q1, g2, ..., gan} € RN the
configuration distribution function is

p(a) = %e‘ﬂ V(@

where Z = [ e78Y(9) is the partition function.
The configurational distribution of the CG system is the projection of the configurational
distribution of the atomistic system onto the space of CG variables:

p(6) = SV V5(¢(q) - €)do

The probability distribution thus gives the CG potential & forces:
1
u(g) = —Elnp(& F(§) = =VeU(E)

Zhang et al., 2018
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DeePCG

The instantaneous loss function of the NN takes the

-‘w — &= L
)\lli L2 E" /\+ Llns(w) = L(W) + Y <Rl2(q)>q

Hidden layer EK dM i=1

<£' )= 05w EE s +08) with

[ Hidden layer £? ]
. E w 2
(£2), = $(Tz w2, (LY +b2) W . dM ’F +8U (5( ))| >

{ Hidden layer £} ]

(LHs =v(E wh o +b%)

[ o — J The gradient for the NN training obeys:

local frame trans.

dm
i) = > “{5 > IFi(€(aa)) + 0,0 (E(aa))
i=1

aeB
Zhang et al., 2018
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DeePCG results
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Weinan E’s works: a short intro

" The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these
laws leads to equations much too complicated to be soluble. ™

® Weinan's early works focuses on mathematics of multi-scale modeling, MD, & stochastic
problems in fluid mechanics, materials science, etc.

® \Weinan started working on mathematical basis of ML in recent five years, mainly on
supervised learning of multiscale problems.

® The early work on DL applied to MD was inspired by Behler and Parrinello, 2007, later
leads to the work of Deep potential — DeePMD, DeePCG, etc.

Claim: some are the author's own opinion, not authorized by W. E
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Early use of NN in MD

Behler and Parrinello. " Generalized Neural-Network Representation of High-Dimensional
Potential-Energy Surfaces”, PRL, 2007.
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Deep potential

O: @*2
C: @*7
H: o *10

total energy

C O H Cartesian coordinates

Zhang et al. "Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of
Quantum Mechanics ”, PRL, 2018.
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DeepPot-SE
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Zhang et al. "End-to-end Symmetry Preserving Inter-atomic Potential Energy Model for Finite

and Extended Systems”, NeuralPS, 2018.
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ML + scientific computing: what’'s more?
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Scientists has developed numerous theories & methods (mostly numerical) for different physical

problems at different scales.

Courtesy of Weinan E
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MD based scientific machine learning: a new paradigm?
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® ML has changed and will continue to change the way we deal with functions, and this will
have a very significant impact in computational mathematics.
® A reasonable mathematical picture for ML is emerging, from the perspective of numerical

analysis.
Courtesy of Weinan E
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The End
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