
Scientific machine learning: Weinan E’s works
A short review

Hanfeng Zhai

Department of Mechanics, Shanghai University
www.hanfengzhai.net

April 27, 2021

1 / 21

www.hanfengzhai.net

Overview

1. Molecular dynamics

2. Density function theory

3. DeePMD

4. DeePCG

5. Deep learning for physics: Weinan E

2 / 21

Molecular dynamics

For simple atomic system, MD simulation follows:

mi r̈i = fi , fi = − ∂

∂ri
U

where the forces fi are derived from potential energy U(rN), where rN = (r1, r2, ..., rN).
Here, the potential energy U from diiferent interactions, such as Unon−bonded, Uintramolecular,

etc., etc.
The MD algorithm for simulation can be written as

ṙi =
pi

mi
, ṗi = fi

The energy (hamiltonian), takes the form H = K+ U , and the kinetic energy takes the form
K(bN) =

∑N
i=1 |pi |2/2mi .

3 / 21

MD approach

There are two ways to calculate f and U :

• Computing the inter-atomic forces on the fly using QM, e.g. the Car-Parrinello MD.
(Accurate but expensive)

U =
〈

Ψ0|HKS
e |Ψ0

〉
, µφ̈i = HKS

e φi +
∑

j

Λijφj

• Empirical potentials: efficient but unreliable. The Lennard-Jones potential:

Vij = 4ε[(
σ

rij
)12 − (

σ

rij
)6], E =

1

2

∑

i 6=j

Vij

Question: How can we represent (approximate) a function of many variables?

Courtesy of Weinan E

4 / 21

Density function theory

With the knowledge of statistical physics, the grand potential (free energy) takes the form

Ω(µ,T ,V) = −T logΞ

where Ξ is the grand partition function

Ξ(µ,T ,V) =
∞∑

M=0

1

M!
Tr exp

(
−H− µM

T

)

The classical trace, Tr, represents the 6M-dimensional phase-space integral (the division by M!
compensates for double counting of many-body states of indistinguishable particles).

Taking the Hohenberg-Kohn theorem, the many-body Hamiltonian is

HMB = K + V + U

where the potential energy V =
∑M

i=1 v(ri) is added. Argaman and Makov, 1999

5 / 21

Hohenberg-Kohn theorem: an example

The functional derivative of Ω gives the density distribution of particles:
n(r) = 〈ρ(r)〉 = δΩ/δv(r), where ρ(r) =

∑M
i=1 δ(r − ri) is the unaveraged density.

We thus define a new free energy depends on n(r), called the H-K free energy:

FHK [n(r)] = Ω[v(r)]−
∫

drn(r)v(r)

The partial & functional derivatives follows Legendre trans.: dFHK = −SdT −
∫
drv(r)δn(r)

The free energy functional takes the form:

Ωv [n(r)] = FHK [n(r)] +

∫
drn(r)v(r)

If the free energy function is minimized considering n(r), the following relation is obtained:

δFHK
δn(r)

= −v(r)

Argaman and Makov, 1999
6 / 21

DeePMD-kit: NN-based MD package

Period 3: Integrating machine learning with physical modeling Molecular modeling

How can we represent (approximate) a function of many variables?

New paradigm:

quantum mechanics model – data generator

machine learning – parametrize (represent) the model

molecular dynamics – simulator

Issues (di↵erent from usual AI applications):

preserving physical symmetries (translation, rotation, permutation)

getting the “optimal data set”

July 16, 2019 14 / 58

Courtesy of Weinan E

7 / 21

DeePMD: theory

In a MD system, the descriptive information of atom i given by neighbor j is constructed by
using either full information / radial-only information:

{Dα
ij } =

{ 1

Rij
,
xij
Rij
,
yij
Rij
,
zij
Rij
}, full information

{ 1

Rij
}, radial− only information

The DNN that maps the descriptor Di to atomic energy is denoted by

Us(i) = Ns(i)(Di)

Mathematically, DNN with Nh hidden layers is a mapping

Ns(i)(Di) = Louts(i) ◦ LNh

s(i) ◦ L
Nh−1

s(i) ◦ ... ◦ L1s(i)(Di)

Wang et al., 2017
8 / 21

DeePMD

NN-based MD simulator that are able to speed up simulation w/ higher accuracy.

Period 3: Integrating machine learning with physical modeling Molecular modeling

DeePMD-kit

Towards realization of a general platform for ML-based PES modeling.

interfacing state-of-the-art deep learning and MD packages: TensorFlow, LAMMPS, i-PI;

parallelization: MPI/GPU support.

Comp. Phys. Comm., 2018: 0010-4655 (https://github.com/deepmodeling/deepmd-kit))

July 16, 2019 20 / 58

Courtesy of Weinan E
9 / 21

DeePMD results
Period 3: Integrating machine learning with physical modeling Molecular modeling

Case 1: accuracy is comparable to the accuracy of the data

July 16, 2019 18 / 58Courtesy of Weinan E 10 / 21

DeePMD resultsPeriod 3: Integrating machine learning with physical modeling Molecular modeling

Case 2: structural information of DFT water

Radial and angular distribution function of liquid water (PI-AIMD):

Distribution of the Steinhardt order parameter Q̄6:

July 16, 2019 19 / 58

Courtesy of Weinan E 11 / 21

DeePCG: theory

Considering a MD system where atom coordinates q = {q1, q2, ..., qdN} ∈ RdN , the
configuration distribution function is

p(q) =
1

Z
e−βV (q)

where Z =
∫
e−βV (q) is the partition function.

The configurational distribution of the CG system is the projection of the configurational
distribution of the atomistic system onto the space of CG variables:

p(ξ) =
1

Z
e−βV (q)δ(ξ(q)− ξ)dq

The probability distribution thus gives the CG potential & forces:

U(ξ) = − 1

β
lnp(ξ), F (ξ) = −∇ξU(ξ)

Zhang et al., 2018
12 / 21

DeePCG
4

FIG. 2: Schematic plot of the sub-network structure for the
CG particle i. Di (see definition in text) is the input and Ui

is the output. In this sub-network, data flow from the input
layer (Di) to the output layer (Ui) through K hidden layers,
where each layer is a composition of a linear transformation
and a piecewise nonlinear operation ψ(· · ·). We use the hy-
perbolic tangent for the nonlinear function ψ. This procedure
is adopted for all the hidden layers. In the final step going
from the last hidden layer to Ui, only the linear transforma-
tion is applied.

tions. There have been many efforts in this direction [40–
42]. Of particular interest is a simple formula proposed
by Ciccotti et al. [40], in which a set of dN -dimensional
vectors bj(q) that satisfy

∇qξi(q) · bj(q) = δij , i, j = 1, . . . M, (5)

is introduced. Then the mean force on ξi(q), namely the
negative gradient of U(ξ) with respect to the position of
the i-th CG particle, can be expressed as

Fi(ξ) = −∂iU(ξ) = 〈Fi(q)〉ξ=ξ(q), (6)

with an instantaneous force estimator

Fi(q) = −bi(q) · ∇qV (q) +
1

β
∇q · bi(q). (7)

Here 〈· · · 〉ξ=ξ(q) denotes conditional expectation over the
equilibrium distribution of the system restricted to the
hypersurface ξ = ξ(q). To train the DeePCG model one
needs to minimize the so-called loss function with respect
to the model parameters w. The most natural choice of
loss function in terms of force-matching is

L̂(w) =
1

dDM

D∑

n=1

dM∑

i=1

∣∣Fi(ξn) + ∂iU
w(ξn)

∣∣2, (8)

where D is the number of configurations of CG variables
ξn in the dataset and the mean force Fi(ξn) is estimated
with Eq. (6). We notice that the sample of CG con-
figurations in Eq. (8) is very general in the sense that it
does not need to be an equilibrium sample at the ther-
modynamic conditions of the atomistic simulation. For
example, the sample could include, in an enhanced way,
accessible CG configurations that have a small proba-
bility of occurrence at the thermodynamic conditions of
interest, such as in the case of rare events. We stress,
however, that the sampling of the microscopic degree
of freedom orthogonal to ξ in Eq. (6) must be done at
the appropriate thermodynamic conditions. In practice,
the different configurations ξn in the dataset can be ex-
tracted from unconstrained MD or Monte Carlo (MC)
simulations of the microscopic atomistic model at differ-
ent temperatures.

The above straightforward approach is not convenient
when the conditional expectation values in Eq. (6) re-
quire computationally expensive constrained/restrained
simulations. In this situation we find it more conve-
nient to approximate the ensemble average 〈· · · 〉q with

the average (1
D

∑D
n=1 · · ·) over the configurations ξn (see

Eq. (10) below). The latter average does not require
constrained/restrained simulations, but it requires ξn to
be extracted from equilibrium atomistic simulations at
the temperature selected in Eq. (1). Then the mean force
Fi in the loss function (8) can be replaced by the instan-
taneous force Fi. In other words, this corresponds to
using an instantaneous version of the loss function

L̂ins(w) =
1

dDM

D∑

n=1

dM∑

i=1

∣∣Fi(ξn) + ∂iU
w(ξn)

∣∣2. (9)

With a sufficiently large representative dataset, we ex-
pect that the ensemble average of the difference between
predicted and instantaneous forces should be approxi-
mated quite well by L̂ins(w), i.e.:

Lins(w) :=
1

dM

dM∑

i=1

〈∣∣Fi(ξ(q)) + ∂iU
w(ξ(q))

∣∣2〉
q

(10)

≈ L̂ins(w).

This amounts to an ergodicity requirement for the atom-
istic system and is always valid if the system samples an
equilibrium thermodynamic state.

By definition, L̂ins(w) is much easier to compute than

L̂(w). Below we argue that L̂ins(w) is also a valid loss
function to optimize CG potential. To see this, note that
the instantaneous force can be viewed as the mean force
plus a random error R, which depends on the microscopic
configuration q, i.e.,

Fi(q) = Fi(ξ(q)) + Ri(q). (11)

By using Eq. (6), the average 〈Ri(q)〉ξ=ξ(q) in the con-
strained ensemble vanishes, so the average 〈Ri(q)〉q also

The instantaneous loss function of the NN takes the
form:

Lins(w) = L(w) +
1

dM

dM∑

i=1

〈R2
i (q)〉q

with

L(w) :=
1

dM

dM∑

i=1

〈|Fi (ξ(q)) + ∂iU
w(ξ(q))|2〉

The gradient for the NN training obeys:

l(w) :=
1

dM

dM∑

i=1

1

|B|
∑

α∈B
|Fi (ξ(qα)) + ∂iU

w(ξ(qα))|2

Zhang et al., 2018

13 / 21

DeePCG results

6

pare DeePMD and AIMD configurations in terms of the
O-O radial distribution function (RDF), O-O-O angu-
lar distribution functions (ADFs), and the distributions
of two averaged local Steinhardt parameters (defined in
Appendix A) [50], respectively. It is observed that the
configurations sampled by DeePMD are in almost per-
fect agreement with the AIMD data. Therefore, when
considering the oxygen configurations, training with the
data generated by DeePMD is essentially indistinguish-
able from that with data generated by AIMD.

Now we construct the DeePCG model. We use oxygen
as the CG particle. We define the local environment of
an O atom with the same cutoff radius adopted in the
DeePMD model, i.e., Rc = 6Å. We use the full radial
and angular information for the 16 CG particles clos-
est to the particle at the origin (see, e.g., particle j in
Fig. 1), while retaining only radial information for all the
other particles within Rc, (see, e.g., particle k in Fig. 1).
Next, the local environment of each CG particle defines a
sub-network, and we use 4 hidden layers with decreasing
number of nodes per layer, i.e., 120, 60, 30, and 15 nodes
from the innermost to the outermost layer, to construct
the corresponding contribution to the CG potential.

The training process minimizes L̂ins(w) defined in
Eq. (9). The force on each oxygen in the atomistic model
serves as the instantaneous estimator Fi in Eq. (7). We
employ the stochastic gradient descent method with the
Adam optimizer [51] to update the parameters of each
layer, with a batch size of 4 and a learning rate that ex-
ponentially decays with the training step. In our current
implementation, the training process requires 15 hours on
a ThinkPad p50 laptop computer with an Intel Core i7-
6700HQ CPU and 32 GB memory. The DeePMD-kit [52]
is used for optimizations and MD simulations of both the
DeePMD and the DeePCG models.

After training, we perform an NVT simulation on the
CG variables. The initial snapshot for this simulation is
taken directly from a snapshot selected along the AIMD
trajectory. The CG force is generated directly by ana-
lytical gradient of the CG potential, the volume and the
temperature are the same of the AIMD simulation, and
the temperature is controlled using a Langevin thermo-
stat with a damping time τ = 0.1ps. In addition, using
the same strategy, we perform an NVT simulation on 512
CG variables, where the only difference is that the num-
ber of CG variables and the size of the simulation region
are 8 times larger than those of the AIMD simulation.

IV. DISCUSSION

In Figs. 3, 4, and 5, we show that the DeePCG model
reproduces very well the oxygen correlation functions
of the atomistic DeePMD model and, by extension, of
the underlying AIMD model. In addition to compar-
ing 2- and 3-body correlations, as done in standard pro-
tocols [19, 20], we also perform tests on how well the
DeePCG model preserves higher order distribution prop-

0.0

1.0

2.0

3.0

g(
r)

AIMD
DeePMD
DeePCG

DeePCG (large sys.)

-0.10

-0.05

0.00

0.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

g(
r)

- g
AI

M
D
(r)

r [nm]

FIG. 3: Upper panel: the O-O RDFs of liquid water from
AIMD and DeePMD for a system with 64 water molecules,
and from DeePCG simulation for systems with 64 and 512
CG particles; lower panel: the deviations of DeePMD and of
two DeePCG models relative to the AIMD result.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

 0 0.2 0.4 0.6 0.8 1

P(
θ)

rc = 0.27 nm
AIMD

DeePMD
DeePCG

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

 0 0.2 0.4 0.6 0.8 1

P(
θ)

θ / π

rc = 0.456 nm

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

 0 0.2 0.4 0.6 0.8 1

rc = 0.37 nm

0.0
0.1
0.2
0.3
0.4
0.5
0.6

 0 0.2 0.4 0.6 0.8 1
θ / π

rc = 0.60 nm

FIG. 4: The O-O-O ADFs of liquid water from AIMD,
DeePMD, and DeePCG simulations. The results for four dif-
ferent cutoff radii are provided.

erties. In this regard, we calculate the sample averaged
local Steinhardt bond order parameters q̄4 and q̄6, and
find satisfactory agreement between the DeePCG and
DeePMD models.

In the example that we discussed above we use L̂ins(w)
to optimize a CG model of water. We find that to base
the optimization on L̂(w) defined in Eq. (8) is signifi-
cantly less efficient. This is because when the oxygens are
the CG variables, very long constrained simulations using
Eq. (6) are required to sample exhaustively the allowed
configurations of the hydrogen bond network (HBN).
Typically, when the oxygen positions are fixed, as in a
constrained simulation, different HBN configurations are
compatible with the fixed oxygen configurations, but it
takes a very long time, typically of the order of a few
nanoseconds, for the system to sample different HBN

6

pare DeePMD and AIMD configurations in terms of the
O-O radial distribution function (RDF), O-O-O angu-
lar distribution functions (ADFs), and the distributions
of two averaged local Steinhardt parameters (defined in
Appendix A) [50], respectively. It is observed that the
configurations sampled by DeePMD are in almost per-
fect agreement with the AIMD data. Therefore, when
considering the oxygen configurations, training with the
data generated by DeePMD is essentially indistinguish-
able from that with data generated by AIMD.

Now we construct the DeePCG model. We use oxygen
as the CG particle. We define the local environment of
an O atom with the same cutoff radius adopted in the
DeePMD model, i.e., Rc = 6Å. We use the full radial
and angular information for the 16 CG particles clos-
est to the particle at the origin (see, e.g., particle j in
Fig. 1), while retaining only radial information for all the
other particles within Rc, (see, e.g., particle k in Fig. 1).
Next, the local environment of each CG particle defines a
sub-network, and we use 4 hidden layers with decreasing
number of nodes per layer, i.e., 120, 60, 30, and 15 nodes
from the innermost to the outermost layer, to construct
the corresponding contribution to the CG potential.

The training process minimizes L̂ins(w) defined in
Eq. (9). The force on each oxygen in the atomistic model
serves as the instantaneous estimator Fi in Eq. (7). We
employ the stochastic gradient descent method with the
Adam optimizer [51] to update the parameters of each
layer, with a batch size of 4 and a learning rate that ex-
ponentially decays with the training step. In our current
implementation, the training process requires 15 hours on
a ThinkPad p50 laptop computer with an Intel Core i7-
6700HQ CPU and 32 GB memory. The DeePMD-kit [52]
is used for optimizations and MD simulations of both the
DeePMD and the DeePCG models.

After training, we perform an NVT simulation on the
CG variables. The initial snapshot for this simulation is
taken directly from a snapshot selected along the AIMD
trajectory. The CG force is generated directly by ana-
lytical gradient of the CG potential, the volume and the
temperature are the same of the AIMD simulation, and
the temperature is controlled using a Langevin thermo-
stat with a damping time τ = 0.1ps. In addition, using
the same strategy, we perform an NVT simulation on 512
CG variables, where the only difference is that the num-
ber of CG variables and the size of the simulation region
are 8 times larger than those of the AIMD simulation.

IV. DISCUSSION

In Figs. 3, 4, and 5, we show that the DeePCG model
reproduces very well the oxygen correlation functions
of the atomistic DeePMD model and, by extension, of
the underlying AIMD model. In addition to compar-
ing 2- and 3-body correlations, as done in standard pro-
tocols [19, 20], we also perform tests on how well the
DeePCG model preserves higher order distribution prop-

0.0

1.0

2.0

3.0

g(
r)

AIMD
DeePMD
DeePCG

DeePCG (large sys.)

-0.10

-0.05

0.00

0.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

g(
r)

- g
AI

M
D
(r)

r [nm]

FIG. 3: Upper panel: the O-O RDFs of liquid water from
AIMD and DeePMD for a system with 64 water molecules,
and from DeePCG simulation for systems with 64 and 512
CG particles; lower panel: the deviations of DeePMD and of
two DeePCG models relative to the AIMD result.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

 0 0.2 0.4 0.6 0.8 1

P(
θ)

rc = 0.27 nm
AIMD

DeePMD
DeePCG

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

 0 0.2 0.4 0.6 0.8 1

P(
θ)

θ / π

rc = 0.456 nm

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

 0 0.2 0.4 0.6 0.8 1

rc = 0.37 nm

0.0
0.1
0.2
0.3
0.4
0.5
0.6

 0 0.2 0.4 0.6 0.8 1
θ / π

rc = 0.60 nm

FIG. 4: The O-O-O ADFs of liquid water from AIMD,
DeePMD, and DeePCG simulations. The results for four dif-
ferent cutoff radii are provided.

erties. In this regard, we calculate the sample averaged
local Steinhardt bond order parameters q̄4 and q̄6, and
find satisfactory agreement between the DeePCG and
DeePMD models.

In the example that we discussed above we use L̂ins(w)
to optimize a CG model of water. We find that to base
the optimization on L̂(w) defined in Eq. (8) is signifi-
cantly less efficient. This is because when the oxygens are
the CG variables, very long constrained simulations using
Eq. (6) are required to sample exhaustively the allowed
configurations of the hydrogen bond network (HBN).
Typically, when the oxygen positions are fixed, as in a
constrained simulation, different HBN configurations are
compatible with the fixed oxygen configurations, but it
takes a very long time, typically of the order of a few
nanoseconds, for the system to sample different HBN

Zhang et al., 2018

14 / 21

Weinan E’s works: a short intro

Paul Dirac

”The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these
laws leads to equations much too complicated to be soluble. ”

• Weinan’s early works focuses on mathematics of multi-scale modeling, MD, & stochastic
problems in fluid mechanics, materials science, etc.
• Weinan started working on mathematical basis of ML in recent five years, mainly on

supervised learning of multiscale problems.
• The early work on DL applied to MD was inspired by Behler and Parrinello, 2007, later

leads to the work of Deep potential → DeePMD, DeePCG, etc.
Claim: some are the author’s own opinion, not authorized by W. E

15 / 21

Early use of NN in MD

Behler and Parrinello. ”Generalized Neural-Network Representation of High-Dimensional
Potential-Energy Surfaces”, PRL, 2007.

16 / 21

Deep potential

(a)

x

z

y

z y

x

O: *2

H: *10

C: *7

(b) (c)

Figure 1: Schematic diagram of Deep Potential, using C7O2H10 as an illustrative example. (a)
Transformation from global to local reference frame for a Carbon atom; (b) The sub-network

structure for atom C1. We use the notion ~x
pC1q
rAis to represent the coordinates of the atom Ai in

the list of neighbors of atom C1. The atoms Ai are assigned to di↵erent groups corresponding
to the di↵erent atomic species. Within each one of these groups the atoms are listed in order of
increasing distance from C1; (c) the full structure of the Deep Potential network.

2 Results

Deep Potential framework. Our goal is to formulate a general and direct end-to-end rep-

resentation of the potential energy surface that uses the atomic configurations directly as the

only input data. The main challenge to achieve this goal is to design a deep neural network that

obeys the important symmetries of the system, like it was achieved, for instance, with the convo-

lutional neural network in pattern recognition problems21. Besides the usual translational and

rotational symmetries, we also have the permutational symmetry. We represent the potential

energy surface by following the steps that are schematically indicated in Fig. 1.

For a system of N atoms, our neural network consists of N small, almost independent, copies.

Each copy is a sub-network corresponding to a di↵erent atom in the system. The size of the

input data for a sub-network is at most 4Nc, where Nc is the number of atoms within the adopted

3

Zhang et al. ”Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of
Quantum Mechanics ”, PRL, 2018.

17 / 21

DeepPot-SE

(b)

gener. local. env. mat.

fitting net.
feature. mat.

(b1)

(b2)

embed. mat.

(b3)

(c)
2
4
6

g(
r)

-1

0

1

ax
is

filt
er

s

-1

0

1

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

co
or

d.
 fi

lte
rs

r[A]

coord. mat. total ener.

local. env. mat. local. ener.(a)

(c1)

(c2)

(c3)

Figure 1: Schematic plot of the DeepPot-SE model. (a) The mapping from the coordinate matrix
R to the PES E. First, R is transformed to local environment matrices {Ri}N

i=1. Then each Ri is
mapped, through a sub-network, to a local “atomic” energy Ei. Finally, E =

P
i Ei. (b) The zoom-in

of a sub-network. (b1) The transformation from Ri to the generalized local environment matrix
R̃i; (b2) The radial part of R̃i is mapped, through an encoding network, to the embedding matrix
Gi1 2 RNi⇥M1 and Gi2 2 RNi⇥M2 ; (b3) The M1 ⇥ M2 symmetry preserving features, contained
in Di, are given by the matrix product of (Gi1)T , R̃i, (R̃i)T , and Gi2. (c) Illustrative plot of the
embedding function Gi, taking Cu as an example. (c1) radial distribution function g of the training
data; (c2) M2 (=4) axis filters, defined as the product of Gi2 and s(r), as functions of r; (c3) 6 out of
M1 (=80) coordinate filters, defined as the product of Gi1 and s(r), as functions of r.

Translation and Rotation. For each object i, the symmetric matrix

⌦i ⌘ Ri(Ri)T (6)

is an over-complete array of invariants with respect to translation and rotation [21, 22], i.e., it contains
the complete information of the neighboring point pattern of atom i. However, this symmetric matrix
switches rows and columns under a permutational operation.

Permutation. Theorem 2 of Ref. [20] states that any permutation symmetric function f(r) can
be represented in the form ⇢(

P
i �(ri)), where �(ri) is a multidimensional function, and ⇢(...) is

another general function. For example,

X

i

g(ri)ri (7)

is invariant under permutation for any scalar function g.

3.3 The DeepPot-SE sub-networks

As shown in Fig. 1, we construct the sub-networks in three steps. First, the relative coordinates
Ri 2 RNi⇥3 are mapped onto generalized coordinates R̃i 2 RNi⇥4. In this mapping, each row of
Ri, {xji, yji, zji}, is transformed into a row of R̃i:

{xji, yji, zji} 7! {s(rji), x̂ji, ŷji, ẑji}, (8)

4

Zhang et al. ”End-to-end Symmetry Preserving Inter-atomic Potential Energy Model for Finite
and Extended Systems”, NeuraIPS, 2018.

18 / 21

ML + scientific computing: what’s more?

Figure 1: Representative physical models at di↵erent scale and their most important
modeling ingredients.

1. Generalized hydrodynamics [3]. The idea is to use symmetries, conservation laws,
and the second law of thermodynamics to extract as much definitive information
about the dynamics as possible, and model the rest using linear constitutive re-
lations. A successful example is the Ericksen-Leslie equations for nematic liquid
crystals, which works reasonably well in the absence of line defects [4].

2. The weakly nonlinear theory and gradient expansion trick. This is an idea cham-
pioned by Landau. It has been successfully used in developing models for phase
transition, superconductivity, hydrodynamic instability, and a host of other inter-
esting physical problems.

3. Asymptotic analysis. This is a mathematical tool that can be used to systematically
extract simplified models by exploiting the existence of some small parameters. For
example, Euler’s equation can be derived this way from the Boltzmann equation in
the limit of small Knudsen number.

4. The Mori-Zwanzig formalism. This is a general strategy for eliminating unwanted
degrees of freedom in a physical model. The price to be paid is that the resulting
model becomes nonlocal, for example, with memory e↵ects. For this reason, the
application of the Mori-Zwanzig formalism has been limited to situations where the
nonlocal term is linear. An example is the generalized Langevin equations [5].

5. Principal component-based model reduction. This is a broad class of techniques used
in engineering for developing simplified models. A typical example is to project the
original model onto a few principal components obtained using data produced from

3

Scientists has developed numerous theories & methods (mostly numerical) for different physical
problems at different scales. Courtesy of Weinan E

19 / 21

MD based scientific machine learning: a new paradigm?

Figure 2: Illustration of the neural network architecture for a system of N atoms. From
Ref. [17].

To demonstrate the importance of preserving the symmetry, we show in Figure 3 the
comparison of the results with and without imposing symmetry constraints. One can
see that without enforcing the symmetry, the test accuracy of the neural network model
is rather poor. Even a poor man’s version of enforcing symmetry can improve the test
accuracy drastically.

A poor man’s way of enforcing symmetry is to remove by hand the degrees of freedom
associated with these symmetries. This can be accomplished as follows [19, 17]:

• enforcing rotational symmetry by fixing in some way a local frame of reference. For
example, for atom i, we can use its nearest neighbor to define the x-axis and use
the plane spanned by its two nearest neighbors to define the z-axis, thereby fixing
the local frame.

• enforcing permutational symmetry by fixing an ordering of the atoms in the neigh-
borhood. For example, within each species we can sort the atoms according to their
distances to the reference atom i.

This simple operation allows us to obtain neural network models with very good accuracy,
as shown in Figure 3 (a).

The only problem with this procedure is that it creates small discontinuities when the
ordering of the atoms in a neighborhood changes. These small discontinuities, although
negligible for sampling a canonical ensemble, show up drastically in a microcanonical
molecular dynamics simulation, as can be seen in Figure 3 (b).

To construct a smooth potential energy model that satisfies all the symmetry con-
straints we have to reconsider how to represent the general form of symmetry-preserving
functions. The idea is to precede the fitting network in each subnetwork by an embed-
ding network that produces a su�cient number of symmetry-preserving functions. In this
way the end model is automatically symmetry-preserving. The PES generated this way
is called (the smooth version of) Deep Potential [20]. MD driven by Deep Potential is
called DeePMD. The idea of embedding network is fairly general and can be used in other
situations where symmetry is an important issue [21, 22].

12

Figure 4: Schematic plot of one iteration of the DP-GEN scheme, taking the Al-Mg sys-
tem as an example. (a) Exploration with DeePMD. (a.1) Preparation of initial structures.
We start from stable crystalline structures of pure Al and Mg, compress and dilate the
stable structures uniformly to allow for a larger range of number densities, and then ran-
domly perturb the atomic positions and cell vectors of all the initial crystalline structures.
Surface-related structures are generated with rigid displacement. Based on configurations
of pure metal we also generate random alloy structures. (a.2) Canonical simulation at a
given temperature. (b) Labeling with electronic structure calculations. (c) Training with
the DP model. From [26].

ied, Deep Potential achieves an accuracy comparable to that of the underlying DFT. As
a second example, we show the results of using Deep Potential to study the structural
information of liquid water (see Figure 6). One can see that the results for the radial
and angular distribution functions are comparable to the results from ab initio MD. As
a third example, combined with the state-of-art high performance computing platform
(Summit), molecular dynamics simulations with ab initio accuracy have been pushed to
systems of up to 100 million atoms, making it possible to study more complex phenom-
ena that require truly large-scale simulations [27, 28]. An application to nanocrystalline
copper was presented in Ref. [28]. Deep Potential and DP-GEN have been implemented
in the open-source packages DeePMD-kit [29] and DP-GEN [30], respectively, and have
attracted researchers from various disciplines.

For other related work, we refer to [31, 32, 33].

14

• ML has changed and will continue to change the way we deal with functions, and this will
have a very significant impact in computational mathematics.
• A reasonable mathematical picture for ML is emerging, from the perspective of numerical

analysis.
Courtesy of Weinan E

20 / 21

The End

21 / 21

	Molecular dynamics
	Density function theory
	DeePMD
	DeePCG
	Deep learning for physics: Weinan E

