Evaluation of Hierarchical Homogenization on Gassmann Equation and Analysis of Generated Superresolution Digital Rocks

Micro & Nano Mechanics Group, Stanford University

June 28, 2024

Hanfeng Zhai

Outline

- General method of HHM and workflow
- Benchmarking HHM with Gassmann Equation
- Analysis of sub-cube mechanics
- Statistical analysis of GAN generated rocks

Hierarchical Homogenization (HHM)

https://micronano.stanford.edu/research/digital-rock-physics

Hierarchical Homogenization (HHM)

Error analysis:

- HHM error decays as n⁻¹ (n is subcube size). 1.
- 2. HHM is more accurate than simple average over subcubes.

Admad *et al., JMPS*, 2023, <u>10.1016/j.jmps.2023.105268</u>

Outline

- General method of HHM and workflow
- Benchmarking HHM with Gassmann Equation
- Analysis of sub-cube mechanics
- Statistical analysis of GAN generated rocks

Gassmann Equation

Verification with Gassmann Eqn.

• Subcube size \mathbb{R}^{100} (729 subcubes)

Stiffness results: https://drive.google.com/drive/folders/1rGHjBuJ7NkypH_oPB2VhzCzuea_YNk5w

• Full rock size \mathbb{R}^{900} (CG)

Overall porosity: 22.20%

0.25 mm

• Full rock size \mathbb{R}^{900} (B1)

Overall porosity: 16.51%

Verification of Gassmann Equation (single sub-cube)

		Dry Roo	ck		
34.2106 4.0096 3.6662 0.4697 -0.2140 -0.0706 Voigt 14.6199	4.0096 37.7583 4.0362 1.2725 -0.1819 -0.3833 Reuss H 14.4892	3.6662 4.0362 36.1864 1.9262 -0.6563 0.3987 iill 14.554	0.4697 1.2725 1.9262 15.1915 -0.4254 -0.4918	-0.2140 -0.1819 -0.6563 -0.4254 12.8380 1.1448	-0.0706 -0.3833 0.3987 -0.4918 1.1448 13.6445
ear 14.7644	14.5370	14.650	0697517655548		
	Sa	turated	Rock		
36.8727 6.4455 6.1788 0.3356 -0.1944 -0.0887 Voigt lk 17.0806 ear 14.8245	6.4455 40.1218 6.3815 1.1324 -0.1395 -0.3994 Reuss H 16.9779 14.6066	6.1788 6.3815 38.7191 1.7826 -0.6493 0.4036 1111 17.0292 14.71	0.3356 1.1324 1.7826 15.2621 -0.4419 -0.5021 246648929053 5562604902011	-0.1944 -0.1395 -0.6493 -0.4419 12.9173 1.1517	-0.0887 -0.3994 0.4036 -0.5021 1.1517 13.7071

17.0806 GPa

----- Relative error: $\sim 0.2\%$

17.048701629439385 GPa

Verification of Gassmann Equation (full rock)

B1 Rock

Dry rock homogenized stiffness ${\color{black}\bullet}$

# Usi	ng Hill a	averged stiff	ness for each v	oxel	
	54.8578	5.2695	5.1178	-0.0459	0.2531
	5.2695	54.8454	5.2193	0.5716	-0.0390
	5.1178	5.2193	55.1103	0.5551	0.2730
	-0.0459	0.5716	0.5551	23.6241	0.0451
	0.2531	-0.0390	0.2730	0.0451	23.8118
	0.3895	0.3607	-0.0307	0.0006	0.1379
#	Voigt	Reuss	Hill		
bulk	21.78	08 21.77	717 21.77	622652334857	
shear	24.1	302 24.2	24.1	195828767984	

Saturated rock homogenized stiffness ${\color{black}\bullet}$

# Usi	ng Hill	averged	stiffness	for each	voxel	
	56.9083	7.	.1754	7.0207	-0.0861	0.2247
	7.1754	56.	.8839	7.1169	0.5105	-0.0534
	7.0207	7.	.1169	57.1436	0.4968	0.2387
	-0.0861	0.	.5105	0.4968	23.7093	0.0395
	0.2247	-0.	.0534	0.2387	0.0395	23.8945
	0.3473	0.	.3204	-0.0551	-0.0044	0.1294
#	Voigt	: Rei	155	Hill		
bulk	23.72	291	23.7225	23.	725798477931193	
shear	24.2	2083	24.1884	24	.1983623440763	

Verification of Gassmann Equation (full rock)

CG Rock

Dry rock homogenized stiffness

# Usir	ng Hill ave	rged stiffnes	s for each v	oxel	
Z	16.4706	4.6830	4.7652	-0.0067	0.2975
	4.6830	43.1597	4.7466	0.3434	-0.0197
	4.7652	4.7466	44.9472	0.2855	0.2974
-	-0.0067	0.3434	0.2855	18.5605	-0.1021
	0.2975	-0.0197	0.2974	-0.1021	19.4321
	0.1279	0.1129	-0.0377	0.0342	0.0477
#	Voigt	Reuss	Hill		
bulk	18.1075	18.0875	5 18.09	7490422500584	
shear	19.4208	19.392	19.4	06565448734984	

Saturated rock homogenized stiffness

# Using	g Hill aver	ged stiffnes	ss for each v	oxel	
48	8.7260	6.9552	6.9579	-0.0258	0.2653
E	5.9552	45.7082	7.0843	0.3042	-0.0373
6	5.9579	7.0843	47.3262	0.2494	0.2625
-6	0.0258	0.3042	0.2494	18.6368	-0.1086
(.2653	-0.0373	0.2625	-0.1086	19.5027
(0.1086	0.0964	-0.0405	0.0287	0.0421
#	Voigt	Reuss	Hill		
bulk	20.4172	20.4024	1 20.40	9818348140647	
shear	19.4900	19.463	35 19.4	76782084624787	

GeoDict Calculation

Verification of Gassmann Equation (sub-cube)

B1 Rock

Test: verification of Gassmann Eqn. for B1 rock using FFT-Goose for 1 subcube

- Subcube size: 75
- Porosity: 30.162%

Computation	time: ~1	week (MC3	single (IPU)
-------------	----------	-----------	----------	------

Ksat =
38.2214
6.3627
6.1803
0.4351
-0.7429
1.5590

FFT-Goose Calculation

Data available via (Rock_75_1.raw): <u>https://drive.google.com/drive/folders/18iJ1EgtYwQV9h3r0uV8FD1fN-fyVc0Qm</u>

Outline

- General method of HHM and workflow
- Benchmarking HHM with Gassmann Equation
- Analysis of sub-cube mechanics
- Statistical analysis of GAN generated rocks

• Different average methods - error analysis

- Voigt method is comparably ore accurate.
- Relative errors positively correlate with porosity.

Comparison with theory and results from literature.

Saxena et al., Marine and Petroleum Geology, 2017

The bulk modulus-porosity correlation of subcubes agrees well with the linear theory from literature.

Nur *et al., The Leading Edge,* 17(3):357–362, March 1998.

Different average methods - error analysis \bullet

Saxena et al., Marine and Petroleum Geology, 2017

The shear modulus-porosity correlation of subcubes agrees well with the linear theory from literature.

Nur *et al., The Leading Edge,* 17(3):357–362, March 1998.

Different average methods - error analysis \bullet

- The dry and saturated digital rocks follow the same trend on the shear-bulk modulus diagram. \bullet

Saxena et al., Marine and Petroleum Geology, 2017

• The shear modulus-bulk modulus correlation of subcubes agrees well with the linear theory from literature.

Outline

- General method of HHM and workflow
- Benchmarking HHM with Gassmann Equation
- Analysis of sub-cube mechanics
- Statistical analysis of GAN generated rocks

Generation of superresolution via machine learning

- 1. With prior knowledge and experimentations, porosity correlates negatively with stiffnesses.
- 2. We want to know how will generative superresolution change the mechanical properties of rocks.
- 3. Before applying HHM to do the calculation, we want to first check the gray-scale of the generated rocks.

Liu *et al., GRL,* 2022

Gray-scale value distributions of generated rocks

Comparative analysis on the gray-scale distribution for different superresolution rocks

- \mathbb{R}^{1600} and \mathbb{R}^{3200} rocks' gray-scale values' peaks are centered in ~150, there are a few rocks that have similar peaks with the original \mathbb{R}^{400} rock. \mathbb{R}^{800} rocks' gray-scale values' peaks are more randomly distributed.
- similar data distribution).

• One shall focus on analyzing the rocks that display peaks occur at the similar grayscale value with the original rock (they have

Porosities and thresholds of generated rocks

Statistical analysis of the numerical average of the generated rocks

- The generated gray-scale values are lower.
- \bullet (and hence the lowest modulus) before the numerical average.

Using the Otsu method, the \mathbb{R}^{1600} rock are less porous after the segmentation based on numerical average of the gray scale.

Based on our previous analysis, numerical average will decrease the porosity. One may expect that \mathbb{R}^{1600} rock is the most porous

Effects of numerical average on gray-scale values

Comparative analysis of the porosity & threshold for \mathbb{R}^{800} rocks before & after numerical average

- Due to the high computational burden for \mathbb{R}^{1600} and \mathbb{R}^{3200} rocks for segmentation from the Otsu method, here I only do a demonstration using the \mathbb{R}^{800} rock to illustrate how numerical averaging decreases the porosity of the rocks.

• The right subfigure also demonstrates that even after the numerical average the generated rocks generally display higher porosities.

Summary

- General method of HHM and workflow ullet
- **Benchmarking HHM with Gassmann Equation** lacksquare
 - GeoDict calculation satisfies Gassmann Eqn. For sub-cube & HHM
 - In-house FFT code calculation satisfies Gassmann Eqn. For sub-cube & HHM
- **Analysis of sub-cube mechanics** \bullet
 - Sub-cubes' mechanical properties agrees well with the theory proposed in the literature
- Statistical analysis of GAN generated rocks lacksquare
 - The gray-scale values of the generated rocks are pretty random