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ABSTRACT
Utilizing physical information to improve the performance of the conventional neural networks is becoming a promising research direc-
tion in scientific computing recently. For multiphase flows, it would require significant computational resources for neural network training
due to the large gradients near the interface between the two fluids. Based on the idea of the physics-informed neural networks (PINNs),
a modified deep learning framework BubbleNet is proposed to overcome this difficulty in the present study. The deep neural network
(DNN) with separate sub-nets is adopted to predict physics fields, with the semi-physics-informed part encoding the continuity equa-
tion and the pressure Poisson equation P for supervision and the time discretized normalizer to normalize field data per time step before
training. Two bubbly flows, i.e., single bubble flow and multiple bubble flow in a microchannel, are considered to test the algorithm. The
conventional computational fluid dynamics software is applied to obtain the training dataset. The traditional DNN and the BubbleNet(s)
are utilized to train the neural network and predict the flow fields for the two bubbly flows. Results indicate the BubbleNet frameworks
are able to successfully predict the physics fields, and the inclusion of the continuity equation significantly improves the performance of
deep NNs. The introduction of the Poisson equation also has slightly positive effects on the prediction results. The results suggest that con-
structing semi-PINNs by flexibly considering the physical information into neural networks will be helpful in the learning of complex flow
problems.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0079602

I. INTRODUCTION

Machine learning (ML) has achieved tremendous success in
the last decade due to the availability of big data and computer
resources. ML is the study of algorithms that allow computer
programs to automatically improve their performance through
experiences.1 AlphaGo bursts the public’s interest by showing the
huge potential of machine learning and artificial intelligence.2,3

The ML techniques are becoming a promising research method in
diverse scientific fields, specifically in genomics,4,5 public health,6–10

and medicine.11–14

Deep neural network (DNN), as one of the most prominent
tools of ML, has been adopted to tackle various physics prob-
lems, including turbulence,15 flow control,16 heat transfer,17 and
combustion.18 These deep learning applications have grown dras-
tically in recent years, mainly on learning physical equations and

inferring dynamics. Numerous frameworks have henceforth been
proposed, such as SINDy19 and PDE-FIND20 using sparse regres-
sion to identify the governing equations for nonlinear dynamic
systems; graph kernel network,21 Fourier neural operator,22 and
MeshfreeFlowNet23 using convolutional neural networks to learn
image mapping the physics fields; and deep potential,24 DeePMD,25

and DeePCG26 using deep neural nets to map the molecular
potentials at the microscale. In 2018, Raissi et al.27–29 proposed a
deep learning framework, called physics-informed neural networks
(PINNs), for identifying and inferring dynamics of physical sys-
tems governed by partial differential equations (PDEs). The strategy
of PINN can be simplified by encoding governing PDEs into the
loss function as a soft physics constraint, namely, the “physics-
informed” part. Regarding PINN, Lu et al. proposed DeepXDE,30 a
deep learning library for convenient implementation of PINNs; and
later DeepONet,31 numerical implementation of nonlinear neural
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networks operators,32 for learning and inferring nonlinear opera-
tors, which were later applied to electroconvection multiphysics33

and hypersonics.34

The PINN series has been developed to solve numerous prob-
lems, including the following: fractional PINNs for predicting frac-
tional PDEs; conservative PINNs for nonlinear conservation laws;35

extended PINNs, a PINN approach for space–time domain decom-
position;36 and parareal PINNs, a PINN solver decomposing a long-
time problem into many independent short-time problems super-
vised by an inexpensive/fast coarse-grained (CG) solver.37 PINNs
have achieved great success for predicting laminar flows,38 high
speed flows,39 and turbulence.40 Lin et al.41 applied the previously
mentioned DeepONet to predict bubble growth dynamics described
by the Rayleigh–Plesset (R–P) equation in the continuum regime
and dissipative particles dynamics (DPD) for the microscale.

Despite the significant development of the informed machine
learning42 architecture, the consideration of physical equations in
the loss function usually requires high order differentiation of phys-
ical quantities. Specifically, in two-phase flows, the phase value at the
interface between different fluids exhibits a drastic variation from 0
to 1, making the calculation of the gradient highly difficult. There-
fore, high-resolution training data would be a prior condition for the
success of the algorithm, especially for variables with high gradients.
This will greatly increase the amount of deep learning computation.
Furthermore, high-resolution data can hardly be obtained in many
experiments.

In the present study, we provide an engineering-orientated idea
to overcome this difficulty. Bubbly flows are considered to test the
algorithm as they are a kind of classic fluid mechanics problems with
a high gradient of density. Bubbly flows have widely been applied in
biomedical engineering, such as blood–brain barrier43–45 and drug
delivery.46,47 The bubble pinch-off effect confined in a microchan-
nel is one of the most studied phenomena in fluid mechanics,48–52

depicting deformation and movement of single bubble dynamics.
The flow with multiple bubbles displays complexity due to the
interactions between bubbles.53,54

Our work is inspired by the ideas of PINNs27 and the subse-
quent work using DeepONet to infer bubble dynamics by Lin et al.41

Instead of applying the full hydrodynamic equations to supervise
the training process, we aim to achieve satisfactory results based on
partial physical information. Specifically, we inserted only the fluid
continuity condition (divergence free of velocity) and the pressure
Poisson equation (denoted by P) into the loss function, which can
be described as a neural network with semi-physical information. A
modified version of PINNs, nominated as BubbleNet in this paper,
is proposed for this purpose.

The BubbleNet(s) with/without the Poisson equation are con-
sidered and trained in the present study. The advantages of the algo-
rithms are as follows: (1) To save computer resources, the gradient
computation from automatic differentiation55 of the phase func-
tion is avoided to some extent. (2) Both physical information and
conventional NN losses are encoded in the semi-physics-informed
network, allowing the framework to take advantage of deep learning
and physical equations during training. (3) In 2D or axisymmetric
flow, the velocities are inferred from a latent function (stream func-
tion), saving computation resources compared with inferring two
components of velocities separately. Another point that differs from
the traditional approach is the time discretized normalizer (TDN)

utilized for normalizing variables per time step to capture physics
information more accurately for the NN training.

This paper is arranged as follows: in Sec. II, to obtain the
training data, the conventional computational fluid dynamics (CFD)
software is utilized to simulate numerically two cases of the bubble
flow, i.e., the single bubble flow and multiple bubble flow through
a microchannel. Then, the numerical results are briefly discussed.
In Sec. III, we introduce the traditional DNNs and the BubbleNet
algorithms, respectively. Both networks are trained based on the
numerical results. We, hence, obtain the predictions of physical
quantities in bubble flows and analyze the absolute errors from
machine learning in Sec. IV. Finally, some conclusions of this study
are drawn in Sec. V.

II. NUMERICAL IMPLEMENTATION OF BUBBLE FLOWS
A. Problem formulation

Bubble flows are commonly encountered in numerous biolog-
ical applications. Two-phase flows (air and water) are governed by
the Navier–Stokes equation,

ρ(∂u
∂t
+ (u ⋅ ∇)u) = −∇p + μ∇2u, (1)

where ρ is the density of the fluid, u = (u, v) is the 2D velocity vector,
p is the fluid pressure, and μ is the dynamic viscosity.

In the present study, the level set algorithm is applied to bubble
flows in the microchannel to obtain the dataset for machine learn-
ing training. In the level set method, the interface between air and
water is represented by a certain level set or isocontours of a glob-
ally defined function, e.g., the level set function ϕ = ϕ(x, y, t) in 2D
spaces.56 In our system, ϕ is a smooth step function that equals zero
for water and one for air. Across the interface, there is a smooth tran-
sition from zero to one. Thus, the interface is defined by 0.5 in level
set ϕ.

The level set phase function ϕ takes the form

∂ϕ
∂t
+∇ϕ ⋅ u = F, (2)

where F includes terms with higher-order derivatives of ϕ, designed
to keep the interface compact.

Bubble flows involve interactions between two fluids with dif-
ferent physical properties. Here, we set ρl as the water (liquid)
density, ρg as the air (gas) density, μl as the water viscosity, and
μg as the air viscosity. The density and viscosity in the flow can be
connected through the level set function as follows:

ρ = ρl + ϕ(ρg − ρl),
μ = μl + ϕ(μg − μl).

(3)

To simulate the interfaces between liquid and gas, Eq. (2) can
be rewritten in the following form:

∂ϕ
∂t
+ u ⋅ ∇ϕ = γ∇ ⋅ (ϵls∇ϕ − ϕ(1 − ϕ)

∇ϕ
∣∇ϕ∣ ), (4)

where the terms on the left-hand side describe the motion of the
interface, while those on the right-hand side are necessary for
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TABLE I. The level set parameter ϵls value for both the two bubbly flow cases with
dense and coarse meshing, respectively.

ϵls Dense meshing Coarse meshing

Single bubble flow 0.430 4.382
Multiple bubble flow 0.083 0.299

numerical stability. γ is the reinitialization parameter, which deter-
mines the amount of reinitialization or stabilization of the level set
function, equal to 1 in our cases. ϵls is the parameter controlling the
interface thickness, which equals to the mesh largest size,56 as shown
in Table I.

The continuity equation for fluids is written as
∂ρ
∂t
+∇ ⋅ (ρu) = 0,

where for incompressible fluids, such an equation can be simpli-
fied to ∂yu + ∂xv = 0, i.e., the divergence free condition of velocity,
∇ ⋅ u = 0. As we will discuss later, our goal is to insert such a
condition into the neural networks (NNs) for better training and
predictions.

The geometric properties of interfaces can be described by
the unit vector normal to the interface n = ∇ϕ/∣∇ϕ∣ ϕ=0.5. The
curvature of the level set phase function ϕ can be calculated as
κls = −∇ ⋅ n∣ϕ=0.5. To simulate the bubble flows numerically, Eq. (4)
is discretized and solved for given boundary conditions (BCs), initial
conditions (ICs), and a specific space–time domain with meshing for
discretizations.

B. Numerical setup
Two cases are considered for investigations: (1) single bubble

flow and (2) multiple bubble flow, confined in a microchannel. For
the single bubble case, the initial diameter of the bubble is set to
be d = 4 μm, and the microchannel has a length of 15 μm and a

width of 5 μm. The pressure difference Δp = 10 Pa is imposed in
the axial direction to drive the flow, and the pressure at the end of
the channel is kept as constant pressure p0 = 799.932 Pa (6 mmHg),
corresponding to the pressure of the interstitial fluid in the human
brain57,58 and in lymph flow.59 The initial conditions (ICs) are set
as the pressure p0, with room temperature as 293.15 K, as shown in
Fig. 1(a). This numerical setup has been designed to simulate the
bubble transportation in brain vessels for the investigation of the
blood–brain barrier.43–45 Our model is inspired by the work of Miao
et al.,43 where a single bubble is confined in a microchannel with
both diameters ∼5 μm.

For the multiple bubble flow, 60 micro-bubbles, each micro-
bubble of diameter 3 μm, are randomly distributed in a 2D
microchannel with a length of 100 μm and a width of 50 μm, as
shown in Fig. 1(b). The BCs and ICs are the same as the single
bubble case. The moving mesh is adopted for spatial discretiza-
tion and computations. The single bubble flow case generates 24 182
meshes and the multiple bubble flow generates 75 302 meshes ini-
tially. For the single bubble case, the simulation is run for 5000 μs,
while for the multiple bubble case, the simulation is run for 3000 μs.
Re = ρUL/μ, where L is the characteristic length, is equal to the
microchannel’s width in our cases. The dynamic viscosity of the bub-
bly flow is denoted by μ. U = −R2/3 μ ⋅ dp/dx is the average velocity
of 2D Poiseuille flow. R = L/2 is the half width of the channel. The
Reynolds number Re is ∼0.007 for the single bubble case and 0.010
for the multiple bubble case.

To produce training datasets of the bubble flows in the
microchannel, the computational fluid dynamics (CFD) tech-
nique is utilized for 2D bubbly flow simulations, adopting the
time-dependent level set algorithms for modeling bubbles, using
COMSOL Multiphysics®.

In Sec. III, the numerical results obtained in CFD simulation
are used for training the NNs. However, as we claimed before, high-
resolution data will lead to a huge demand of computer resources
in NN training, which may not be available in experiments. For
this consideration, we only use a “coarsened” (∼1/10) dataset for

FIG. 1. Diagram of the two bubble flow cases. (a) Model for the single bubble flow case. The gray area indicates the initial position of the bubble, with diameter d = 4 μm,
and the blue area indicates the water. The bubble is constrained in a 2D microchannel with a length of 15 μm and a height of 5 μm. The pressure difference Δp = 10 Pa is
imposed between the two sides of the microchannel. The initial condition is given as a constant pressure of 799.932 Pa. The coordinate is centered at the left bottom point
of the microchannel. (b) Model for the multiple bubble flow case. The blue circles indicate 60 bubbles each with diameter d = 4 μm constrained in a 2D microchannel with
a length 100 μm and a height of 50 μm, with surrounding fluid of water. The BCs and ICs are the same as the single bubble flow case. The coordinates’ origin is located at
the central bottom point in (b).
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FIG. 2. Simulation results depicting the
bubble movement (liquid–gas interface)
of the single bubble flow. The bubble
deformation is illustrated at nine different
time steps, from 400 to 3600 μs with a
time interval of 400 μs.

training NNs. Therefore, we also perform CFD simulations for the
two bubble flows with coarse meshing (also ∼1/10 of the dense
meshing) for comparison, i.e., 2419 meshes for the single bubble flow
and 3766 meshes for the multiple bubble flow. In solving Eq. (4), ϵls
is related to the meshing size. Hence, ϵls is listed for the four cases in
Table I for reference.

C. CFD results
The single bubble motion in a microchannel is depicted in

Fig. 2, where the snapshots of bubbles are illustrated at nine dif-
ferent time steps, from t = 400 μs to t = 3600 μs with an interval
of Δt = 400 μs. It shows that the front side of the bubble flows for-
ward in a parabolic shape since the flow velocity is relatively higher
in the middle of the channel, while the rear side of the bubble is sig-
nificantly stretched due to viscous shear. The configuration of the

bubble is similar to the deformation of red blood cells traveling in a
microchannel reported by Tomaiuolo et al.60

The multiple bubbles’ motion indicates that bubbles tend to
collide and ruptured with each other, as shown in Fig. 3. The col-
lision of two “daughter” bubbles, which is demonstrated by the
contact of bubbles’ outer interface (light blue part), results in the
formation of bigger bubbles, as can be observed in every consecutive
inset. Such results are consistent with the numerical study of bubble
behaviors reported in Ref. 61.

In multiphase flow simulations, some numerical factors (i.e.,
meshing, BCs, ICs, and solvers) could cause losses of compo-
nents, leading to inaccurate results. To validate our simulations,
the liquid–gas volume ratio during the whole computation pro-
cess, signifying the conservation of the components, is shown in
Fig. 4 for both the single and multiple bubble cases, together with
the comparison with the simulations with coarse meshing. In our

FIG. 3. Snapshots of the multiple bubble flow at different time steps, from 100 to 3000 μs. The two-phase flow is depicted by the phase function ϕ, where ϕ = 0 for water
and ϕ = 1 for air.
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FIG. 4. Comparison of the liquid ratio [ϕl/(ϕl + ϕg)] between the CFD computation results of dense meshing (blue dots), those of coarse meshing (green dots), the
theoretical value (red dotted line) with respect to time t. Note that the vertical coordinates are plotted in the range of [0.65, 1] for comparison. (a) The liquid ratio of the
single bubble flow case. (b) The liquid ratio of the multiple bubble flow case.

cases, if A stands for the area (2D volume) of the bubbly flows,
the theoretical liquid ratio (or water ratio) can be estimated by
ϕ0 = Awater/(Awater + Aair). Initially, it has ϕ0 = 0.8324 for the sin-
gle bubble flow and ϕ0 = 0.915 for the multiple bubble flow case.
Based on Eq. (3), the liquid ratio of simulation can be represented as
ϕl/(ϕl + ϕg). Figure 4 shows that the simulations with dense mesh-
ing generally agree with the theoretical results (blue dotted lines),
with only subtle fluctuation around the theoretical value LG, vali-
dating the accuracy of our simulations. It is also found that the mass
conservation is almost kept for coarse meshing simulation of the sin-
gle bubble flow, yet an apparent liquid component loss is observed
for the multiple bubble flow. Therefore, fine meshing densities are
required for complex two-phase flow systems, especially for multiple
bubble flows.

III. DEEP LEARNING ALGORITHMS
In this section, we briefly introduce the basis of deep learning

and NNs. Then, we present our approach for using DNNs and our
framework BubbleNet to predict physical fields of bubbly flows.
Both the DNN and BubbleNet trained on the coarsened simulation
data and the bubble motion at a specific time are predicted.

A. Traditional DNNs
A neural network (NN) consists of input layers, hidden layers,

and output layers, fully connected within. DNNs are NNs with mul-
tiple hidden layers that are able to approximate nonlinear mapping
between function spaces.

Here, we apply a DNN with four sub-nets: Netu, Netv , Netp, and
Netϕ (see the Appendix) for predicting the physics fields u, v, p, and
ϕ, respectively. Each sub-net consists of 9 layers with 30 neurons for
each layer. The input quantities are the field data in the space–time
domain, namely, x, y, t. The Adam optimizer and the “L-BFGS-B”
optimization method are adopted in the training process. Each neu-
ron is activated by the tanh function. The maximum iteration for
“L-BFGS-B” optimization is 500 000.

To reduce the computational resources, the training data are
obtained by coarsening the CFD results with fine meshes, which is
given by interpolation

[xtrain, ytrain, ttrain]
= [x(1 : Δs : end), y(1 : Δs : end), t(1 : Δt : end)],

where Δs and Δt are the spatial and temporal intervals, respectively.
For the single bubble case, we obtain 2419 × 126 (space × time)
training data and 3766 × 101 for the multiple bubble case on the
spatial–temporal domain.

The coarsened dataset is then normalized using the
mapminmax function of MATLAB® before training. If the
coarsened data obtained from the simulation of the bubbly flow are
defined as U = (u, v, p, ϕ), the training data W can be obtained
through normalizing U. The function mapminmax normalization
operates the data by

W = U − Umin

Umax − Umin
, (5)

where Umax and Umin denote the maximum and minimum value
of the coarsened simulation data in the whole spatial–temporal
domain, respectively. Such a process can be simplified to a normal-
ization function N, written as W = N(U).

For the single bubble case, the DNNs are trained for 10000 iter-
ations on the normalized data, and we aim to predict the physics
fields at t = 2000 μs. For the single bubble case, the DNNs are trained
for 200 000 iterations on the normalized data, and the target time is
t = 1500 μs.

B. Semi-physics-informed neural networks
Physics-informed neural networks (PINNs), as introduced,

encode physics information into the loss function, imposing the NN
to approximate the real physics equations during training. The orig-
inal PINNs27–29 and their modified versions30,31 prefer to encode the
whole physics governing equations together with related BCs and
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ICs into the NN’s loss function. Such approaches have been exten-
sively studied and successfully applied to many physical systems, as
introduced in Sec. I. However, encoding full equations into the losses
might consume considerable computational resources in automatic
differentiation. Furthermore, for problems such as two-phase flows,
there essentially exists a drastic variation of level set function ϕ and
density at the interfaces between the two fluids, placing high demand
on the accuracy of the calculation of the gradient at and around the
interfaces. The inaccuracy of gradient calculation will lead to diffi-
culties in neural network training. In traditional CFD, this problem
is usually solved by increasing the grid density, which will inevitably
rise the training time of the neural network substantially. As Karni-
adakis et al.62 claimed, if plenty of data are trained on a NN, PINN
can be employed to approximate the time and spatial gradient so that
one can apply the model on such data to get a PDE expression. In
such a regime, the NNs are able to approximate data with good accu-
racy even with no physical guidance. In comparison, full physics are
preferred only at the regime of small data. In the present study, we
aim to predict the bubble flow with satisfactory results based on par-
tial physical information to reduce the computer resource required
for the flow field with high gradients.

Our algorithm BubbleNet encodes the continuity equation
of incompressible fluids and the pressure Poisson equation in the
inference process, namely, the semi-physics-informed neural net-
works, eliciting the latent function ψ for predicting the velocity
fields u, v,

u = ∂ψ
∂y

, v = −∂ψ
∂x

.

Thus, the continuum condition (divergence free of velocity),
∇ ⋅ u = 0, is automatically satisfied. Meanwhile, this reduces one
sub-net for 2D or axisymmetric flows, which saves considerable
computation resources for initialization and training. Furthermore,
the introduction of stream function avoids gradient calculation of
velocity vectors in the loss function, improving the efficiency of the
neural networks.

Simultaneously, the pressure Poisson equation is also included
within the losses to improve the accuracy of prediction, which
writes as

∇2p = ρ∇ ⋅ u
Δt
− ρ∇ ⋅ (u ⋅ ∇u) + μ∇2(∇ ⋅ u).

Both the processes are achieved through automatic differentiation
on the output physics fields.

1. Time discretized normalization (TDN)
In the present semi-PINN algorithm, Eq. (5) is still used as nor-

malized operator N acting on dataset U. However, different from the
traditional method, Umax and Umin are considered as the maximum
and minimum of the coarsened CFD data at each time step, respec-
tively, which is called time discretized normalization (TDN). The
reason for this treatment lies in the significant variation of physical
quantities in the flow field, as shown in Fig. 5. In Fig. 5, the varia-
tions of the maximum values of velocity magnitude, U =

√
u2 + v2,

and pressure, p, are depicted with respect to time. The TDN will be
helpful to eliminate the inaccuracy caused by these variations. The
training data, the optimization method, and the iterations are the
same for BubbleNet as in DNN.

2. Loss function
In the present framework, the mean squared error (MSE) is

used for computing the deviation of predictions and training data
in the loss function. If we use W to represent the normalized dataset
and W = (u, v, p, ϕ), then the loss function L takes the form

L = 1
m

m

∑
i=1
(Wpred(i) −Wtrain(i))

2 + 1
m

m

∑
i=1
(∇2p(i))

2
,

where Wpred is the predictions of the NN training and Wtrain is the
normalized training data obtained from CFD simulations. ∇2p(i)
denotes the pressure field in the training sets i. m is the training data
number.

The schematic for our proposed semi-PINN architecture
BubbleNet is shown in Fig. 6, and the details of the algorithm are

FIG. 5. The variations of the maximum value of velocity magnitude U and pressure p with time for the (a) single bubble flow (solid line) and (b) multiple bubble flow (dashed
line).
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FIG. 6. Schematic diagram of the deep learning framework BubbleNet, consisting of three sub-nets for inferring p,ψ,ϕ, respectively, each having 9 hidden layers and
30 neurons. The semi-physics-informed part infers velocities u, v with the automatic differentiation through the fluid continuity equation, and the pressure Poisson equation
is also inserted in the loss function. The time discretized normalizer is applied to normalize the training data per time step. The Poisson equation is represented by P (the
shaded purple part in the Diagram). The loss function consists of the residual of inferred p, u, v,ϕ, and the pressure Poisson equation P.

described in the Appendix, where we use three sub-nets: Netψ , Netp,
and Netϕ, to predict ψ, p, and ϕ, respectively, and compute the
velocities through automatic differentiations from ψ.

The variations of losses L in iterations of the DNNs and
BubbleNet for both the single bubble and multiple bubble simu-
lations are shown in Fig. 7. Figure 7(a) indicates traditional DNN
exhibits lower losses and with longer iterations for single bubble
case, while both BubbleNet(s) stop training at an earlier stage with
higher losses. The higher losses may be accounted for the additional
errors resulted from the physical information. Figure 7(b) shows that
BubbleNet exhibits lower losses with more iterations and training.

Yet, both DNNs display similar fluctuating losses (blue solid line in
Fig. 7). Both the BubbleNet(s) have similar magnitude and trends
in losses as indicated from the red solid lines and black dotted lines.
The consideration of the Poisson equation P has only minor effects
on the variation of the losses with time.

IV. RESULTS OF MACHINE LEARNING
A. Single bubble flow

For the single bubble flow case, both DNN and BubbleNet(s)
are used to predict its physical variables, with comparison to the

FIG. 7. The variations of losses L in iterations of the DNNs and BubbleNet for (a) the single bubble and (b) multiple bubble simulations. The blue solid line represents
the losses of DNN, the red solid line represents for the losses of BubbleNet with no Poisson equation inserted, and the black dotted line denotes the losses of the
BubbleNet with the Poisson equation.
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2D CFD simulations results at t = 2000 μs. The predicted physics
fields u, v, p,ϕ are shown in Fig. 8. BubbleNet(s) outperforms tradi-
tional DNN on approximating the physical trends on the velocity
fields. One advantage of BubbleNet(s) origins from the applica-
tion of TDN. To eliminate the negative effects during learning
induced by the significant variation of the physical quantities with
time, as shown in Fig. 5, enforcing a normalization on the time
domain is obviously helpful. In comparison, normalization on the
whole temporal–spatial domain results in inaccuracy in capturing
the features of velocities at a specific time.

The consideration of physical information has benefited the
prediction from the neural networks, even with only a coarse dataset.
The BubbleNet with P approximates quantities more accurately
than BubbleNet without P for the two velocities fields, as com-
pared with the third and fourth columns in Fig. 8, which will be
further discussed through analyzing the absolute errors of the pre-
dictions. This can be ascribed to the fact that the Poisson equation
in the losses serves as an “inner supervision” on Netp, allowing the
NN to train on the other physical variables (u, v,ϕ) on their corre-
sponding sub-nets more comprehensively. Including more physics
is possible to further improve the performance of the networks. This
result supports our idea that the semi-PINN, i.e., the combination
of physical information and traditional neural networks, could be
flexible in the construction of the network framework, obtaining sat-
isfying results meeting engineering needs, especially when acquiring
a huge amount of training data is impossible.

Both the DNN and BubbleNet (without P) display good accu-
racy on the phase function ϕ and also on the overall numerical

magnitudes of the pressure gradient. However, they do not success-
fully capture the bubble shape feature details in the pressure field, as
shown in the third row in Fig. 8. To overcome this defect, the Poisson
equation is included in the BubbleNet for supervision. However,
this has only a negligible influence on the results. This is because the
subtle differences in pressure magnitude depicting the bubble shape
are too small compared with the large pressure range ([800, 810]
shown in the third row of Fig. 8). Such detailed features missing in
pressure will be discussed further. As for the prediction regarding ϕ,
the relatively large variation from 0 to 1 is easier to be detected by
the NN, as shown in the fourth column of Fig. 8.

To quantitatively compare the performance of the algorithms,
the absolute error ∣ϵ∣ of predictions are estimated in the present
study. U is the coarsened CFD simulation results [u, v, p,ϕ]. Upred is
the prediction obtained from deep learning, and the absolute error
is defined by

∣ϵU∣ = ∣Upred − U∣. (6)

The averaged error ∣ϵU∣ = ∑
m
i=1(∣ϵU ∣)

m is also calculated to evaluate the
algorithms.

The absolute errors corresponding to the four physical quan-
tities ∣ϵu∣, ∣ϵv ∣, ∣ϵp∣, ∣ϵϕ∣ for the single bubble flow are shown in
Fig. 9. It can be found that both BubbleNet(s) display higher accu-
racy on the predictions of all the variables from the absolute errors,
which confirms our observations in Fig. 8. The BubbleNet with P
exhibits lower errors than BubbleNet without P on the velocities,

FIG. 8. The comparison of the physical quantities u, v, p,ϕ obtained from the CFD simulation results (coarsened), DNN, and BubbleNet(s). The four rows illustrate the four
physical fields, respectively. The first column is the coarse training data based on the CFD simulation results. The other columns illustrate the predicted physical quantities
from the traditional DNN and BubbleNet(s).
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FIG. 9. The comparison of the absolute errors ∣ϵu∣, ∣ϵv ∣, ∣ϵp∣, ∣ϵϕ∣ between DNN and BubbleNet (with and without P) for the single bubble flow case. The four rows
describe the errors of the predictions for the four physical quantities u, v, p,ϕ.

as indicated in the third and fourth columns of Fig. 9. However, sig-
nificant improvement is not observed on the pressure and the phase
function. To quantitatively demonstrate this result, the average abso-
lute errors ∣ϵU∣ are computed from Eq. (6), as shown in Table II. It
indicates that ∣ϵu∣ and ∣ϵv ∣ are remarkably reduced for BubbleNet
with P, whereas ∣ϵp∣ and ∣ϵϕ∣ remain nearly unchanged for both
BubbleNet(s) in Table II. Together with the visualization in Fig. 9,
it can be deduced that the two BubbleNet(s) display approximately
the same accuracy on the two physical quantities. This implies that
the auxiliary physics-informed part P mainly improves the accu-
racy on the velocities yet not directly on the pressure field. It might
be inferred more accurately if we increase the density of the train-
ing dataset since the second-order differentiation is requested in the
Poisson equation.

TABLE II. The mean value of the absolute errors of the three deep learning
frameworks for the single bubble flow case.

∣ϵu∣ ∣ϵv ∣ ∣ϵp∣ ∣ϵϕ∣

DNN 9.8832 × 10−4 5.1092 × 10−4 0.5817 0.0113
BubbleNet
without P 1.2869 × 10−4 3.9572 × 10−5 0.2105 0.0019
BubbleNet with P 8.5603 × 10−5 3.0938 × 10−5 0.2167 0.0018

In summary, considering the effect of P on the results of the
prediction, we can further expand our previous hypothesis that
the “physics-informed” part serves as inner supervision to that the
additional inner supervision may not have direct influences on its
corresponding values or sub-net (Netp in our case) but is helpful to
improve the overall accuracy of the predictions.

B. Multiple bubble flow
The multiple bubble flow is more complicated to be predicted

due to its significant variation in physical variables, especially for
small training sets. From predictions of the deep learning frame-
works shown in Fig. 10, it can be found that generally BubbleNet(s)
performs more accurately than the traditional NN, particularly on
the level set function. It is not surprising that DNN fails to estimate
the level set function due to its remarkable variation in the training
set.

As for the prediction of the velocity vector, BubbleNet(s)
basically predict the general trend of its change, especially for the
y-component, but apparently with undesired fluctuations in its hor-
izontal component. The introduction of the continuity condition
greatly improves the prediction of the velocity in y-direction. How-
ever, due to the small magnitude of velocity in this direction, the
error caused by the derivation of the stream function on the coarse
grid also leads to some deviation in the estimation of the velocity in
x-direction. In contrast, the DNN is better at estimating the hori-
zontal velocity but displays a larger deviation in the vertical velocity,
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FIG. 10. The comparison between the predicted physical quantities u, v, p,ϕ from the CFD simulation results (coarsened), DNN, and BubbleNet for the multiple bubble
flow. The four rows indicate the results for velocity u, v, p,ϕ, respectively. The first column indicates the coarsened training data and the CFD simulation results. The other
columns illustrate physical quantities from the traditional DNN and BubbleNet(s).

which reveals the advantages of the adoptions of TDN and physi-
cal equations in the inner supervision. Consideration of the pressure
Poisson equation for supervision in the BubbleNet does not lead to
significant improvement in the results, which can be observed in the
third and fourth columns in Fig. 10.

Quantitative error analyses for the multiple bubble flow are
provided in Table III, which indicates that the inclusion of the
physical equations in BubbleNet(s) is beneficial to improve the
accuracy of prediction of the vertical velocity, pressure, and level
set function. However, the error in the estimation of the hori-
zontal velocity increases due to the reason we mentioned above.
Moreover, different from the single bubble case, there are only neg-
ligible differences between the two BubbleNet(s). This implies that
to get results that meet engineering needs, we may only need to

TABLE III. The mean value of the absolute errors fields of the three deep learning
frameworks for the multiple bubble flow case.

∣ϵu∣ ∣ϵv ∣ ∣ϵp∣ ∣ϵϕ∣

DNN 3.0235 × 10−4 3.8237 × 10−4 0.5725 0.3492
BubbleNet
without P 0.0015 7.6516 × 10−5 0.2525 0.0061
BubbleNet with P 0.0015 7.7402 × 10−5 0.2481 0.0075

consider part of the physical information in the neural network
instead of full Navier–Stokes equations. This will profoundly reduce
the computational resources requested for neural network train-
ing. Further quantitative analysis of the effect of the quantities of
required physics information for the training of PINNs might be a
promising topic.

The level set function is crucial to identify the structures and
dynamics of bubbles. It is impressive that BubbleNet(s) present
remarkable accuracy in the prediction of ϕ for the complex flow, in
which ∣ϵϕ∣ reduces by several orders after the continuous equation
is imposed. It could be difficult for traditional NNs due to the large
gradient on the surface and the small training dataset, especially on
coarse grids. This manifests the advantage of the present algorithm
in its simplicity and accuracy.

Both the DNN and BubbleNet(s) succeed in approximating
the horizontal variation of the pressure field, and the results obtained
by the BubbleNet(s) are more accurate, as shown in the third row
in Fig. 10 and Table III. However, both algorithms miss the subtle
variations in pressure field caused by the bubble(s) movement, as in
Figs. 8 and 10, although the pressure Poisson equation is utilized for
supervision.

To explain pressure information deprivation, the distribution
of p at a targeted time is depicted in Fig. 11, where the original
data of CFD (with dense meshing), the coarsened CFD data for NN
training (training), DNN, and BubbleNet(s) predictions are plot-
ted on the normalized space domain X for the two bubbly flow

AIP Advances 12, 035153 (2022); doi: 10.1063/5.0079602 12, 035153-10

© Author(s) 2022

D
ow

nloaded from
 http://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/5.0079602/16466993/035153_1_online.pdf

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 11. The comparison of the pressure distribution for both the two bubbly flow cases. The black dotted lines illustrate the original CFD numerical results, with dense
meshing. The blue dotted lines represent the coarsened CFD data used for neural network’s training. The red dotted lines stand for the results of the traditional deep neural
networks. The blue dotted lines and the pink dotted lines correspond to the BubbleNet’s predictions without and with the Poisson equation, respectively. (a) Single bubble
flow. (b) Multiple bubble flow.

FIG. 12. The overall mean relative errors for both the single and multiple bubble flow cases [shown in (a) and (b)] predicted by the three different deep learning models
(DNN and BubbleNets with and without P), respectively. The black dashed line denotes the relative error of 10%.

cases. Here, X represents for the normalized form of the space field
X = [(x1, y1), (x2, y2), . . . , (xn, yn)], and n is the number of mesh-
ing elements. In the right-top corner of Fig. 11(a) (marked with the
red circle), a crater-like shape (pointed out by blue arrows), which
describes the structure of the single bubble, can be found for the two
CFD datasets, whereas it is absent in all the predicting results. The
present DNN and BubbleNet(s) fail to capture this subtle feature
containing important physical information in pressure. A similar
phenomenon is also observed in Fig. 11(b) for multiple bubble flow.
The data coarsening might be partly accounted for this “feature
losing,” yet increasing data density will inevitably lead to a rise in
computational resources. Another more promising strategy might
be improving the network structure in the present study, i.e., using
U-Net, GAN, ConvLSTM, etc., which have been successfully applied
to turbulence investigations.63

To specify our objective for providing the engineering-oriented
predicting models, the overall relative errors of the two bubble flow
cases are analyzed, which is defined as

∣¯̂ϵ∣ = 1
m

m

∑
i=1
∣Upred − U

U
∣,

where U denotes the coarsened CFD simulation results and m is the
total number of extracted data points. As shown in Fig. 12, it can be
found that both BubbleNet(s) predictions errors are less than 10%
(the black dashed lines in Fig. 10), indicating that BubbleNet(s) can
be adopted as general acceptable engineering deep learning models.

V. CONCLUSIONS
In the present study, both traditional DNN and semi-PINN

framework BubbleNet are applied for inferring and predicting the
physics information of bubbly flow. To obtain the training dataset,
two-dimensional simulations by the conventional CFD software are
conducted for the single and multiple bubble flows. We briefly ana-
lyze their flow fields and find that the liquid mass ratio remains
nearly constant during the whole computation, which verifies the
reliability of our computations.

The deep learning framework BubbleNet proposed in this
investigation consists of the DNN with three sub-nets for predict-
ing different physics fields (specifically ψ, p,ϕ): the semi-physics-
informed part with the fluid continuum condition, the pressure
Poisson equation P encoded, and the time discretized normalizer
(TDN), which are adopted to normalize physical variables per time
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step before training. The purpose of constructing this architec-
ture is to avoid high order differentiation if the full hydrodynamic
equations are encoded into the loss function, which will lead to
difficulty in reducing the differential error due to the large gradi-
ent near the liquid–gas interface in bubbly flows. The BubbleNet
framework with and without P are considered separately to reveal
how physics information works in neural networks. Considering the
high resolution of flow fields can sometimes hardly be obtained,
and the training dataset is intentionally coarsened through inter-
polation from the original CFD simulation results to reduce the
computational consumption of machine learning.

The effectiveness of the BubbleNet(s) is demonstrated from
training the coarsened data obtained for the two bubbly flow cases.
The results indicate that the BubbleNets are of ability to predict
the physics more accurately than the traditional DNNs in which the
absolute errors of the physical quantities ∣ϵ∣ decrease profoundly,
especially for multiple bubble flow. TDN is also helpful to improve
the accuracy of the algorithm, which indicates that a proper char-
acteristic scale is crucial in machine learning, especially for small
datasets. The inclusion of the Poisson equation has a limited effect
on reducing errors of machine learning.

In summary, although the deep neural network encod-
ing full hydrodynamic equation might be more accurate in

prediction, the present BubbleNet, which is essentially an
engineering-orientated semi-PINN, has the advantages in simplic-
ity, computational efficiency, and flexibility. This raises an intriguing
question that deserves to be pursued in the future, namely, that we
can optimize the network performance by selectively introducing
physical information into the neural network.
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ALGORITHM 1. DNN for predicting bubble dynamics.

1: class DeepNeuralNet(self , x, y, t, u, v, p,ϕ, layers)
2: (x̂, ŷ, t̂, û, v̂, p̂, ϕ̂) = UPDATE(x, y, t, u, v, p,ϕ)
3: ( ˆweights, ˆbiases, ˆlayers) = self .INITIALIZENN(weights, biases, layers)
4: self .Loss = MSE[(u − upred) + (v − vpred) + (p − ppred) + (ϕ − ϕpred)]
5: upred = self .Netu(x, y, t)
6: vpred = self .Netv(x, y, t)
7: ppred = self .Netp(x, y, t)
8: ϕpred = self .Netϕ(x, y, t)
9: Optimization method ’L-BFGS-B’ and optimizer: Adam
10: def INITIALIZENN(self , layers)
11: Initialize all the weights and biases for Netu, Netv, Netp, Netϕ.
12: def NEURALNET(self ,weights, biases)
13: Build NN for u, v, p,ϕ with four sets of weights and biases.
14: def {Netu, Netv, Net, Netϕ} (self , x, y, t)
15: {u, v, p,ϕ} = self .NEURALNET(x, y, t,weights, biases)
16: def TRAIN(self , iterations)
17: Obtain training time and Losses; train the NN with Adam optimizer.
18: def PREDICT {u, v, p,ϕ} (self , iterations)
19: {upred, vpred, ppred,ϕpred} = self . sess.run(x, y, t)
20: Input = {x, y, t}, output = {u, v, p,ϕ}
21: Hidden layers = [30 neurons × nine layers]
22: Load fields data of micro-bubble system dynamics simulation.
23: Set training sets = {xtrain, ytrain, ttrain, utrain, vtrain, ptrain,ϕtrain, layers} =MaxMinScaler(Simulation data)
24: model = DEEPNEURALNET(training sets)
25: model.TRAIN(#Iterations)
26: Set target prediction time as tpred
27: Obtain {upred, vpred, ppred,ϕpred} = model.PREDICT(x, y, t) at tpred.
28: Save all the data and post-processing.
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ALGORITHM 2. BubbleNet: Semi-PINN for microbubble dynamics.

1: class BubbleNet(self , x, y, t, u, v, p,ϕ, layers)
2: (x̂, ŷ, t̂, û, v̂, p̂, ϕ̂) = UPDATE(x, y, t, u, v, p,ϕ)
3: ( ˆweights, ˆbiases, ˆlayers) = self .INITIALIZENN(weights, biases, layers)
4: self .Loss = MSE[(u − upred) + (v − vpred) + (p − ppred) + (ϕ − ϕpred)] + MSE[Poisson]
5: {upred, vpred, ppred,ϕpred} = self .\{Netψ , Netp, Netϕ\}(x, y, t)
6: Optimization method ’L-BFGS-B’ & optimizer: Adam
7: def INITIALIZENN(self , layers)
8: Initialize all the weights & biases for Netψ , Netp, Netϕ.
9: def NEURALNET(self ,weights, biases)
10: Build NN for ψ, p,ϕ with four sets of weights and biases.
11: def {Netψ , Netp, Netϕ} (self , x, y, t)
12: {ψ, p,ϕ} = self .NEURALNET(x, y, t,weights, biases)
13: u = ∂yψ & v = −∂xψ, Poisson = ∂xxp + ∂yyp
14: def TRAIN(self , iterations)
15: Obtain training time and Losses; train the NN with Adam optimizer.
16: def PREDICT {u, v, p,ϕ} (self , iterations)
17: {upred, vpred, ppred,ϕpred} = self . sess.run(x, y, t)
18: Set training sets = {xtrain, ytrain, ttrain, utrain, vtrain, ptrain,ϕtrain, layers} = TimeDiscretizedNormalization(Simulation data, time step)
19: model = BUBBLENET(training sets)
20: model.TRAIN(#Iterations)
21: Rest procedures same as Algorithm 1

APPENDIX: ALGORITHMS FOR DNN
AND PHYSICS-INFORMED NEURAL NETWORK

The algorithms for DNN and Physics-Informed Neural
Network used in this paper are here attached as Algorithms 1 and
2. In Algorithm 1, we use the MaxMinScaler to represent the usual
normalization method. For the single bubble case, the number of
iterations is equal to 104, and the number of iterations 2 × 105 for
the multiple bubble case. For the single bubble case, tpred = 2000 μs;
for the multiple bubble case, tpred = 1500 μs. The four sub-nets
Netu, Netv , Netp, Netϕ are executed on four separate def functions.
The codes are run on tensorflow 1.15.0.
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