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ABSTRACT
Machine learning-based inverse materials discovery has attracted enormous attention recently due to its flexibility in dealing with black box
models. Yet, many metaheuristic algorithms are not as widely applied to materials discovery applications as machine learning methods. There
are ongoing challenges in applying different optimization algorithms to discover materials with single- or multi-elemental compositions
and how these algorithms differ in mining the ideal materials. We comprehensively compare 11 different optimization algorithms for the
design of single- and multi-elemental crystals with targeted properties. By maximizing the bulk modulus and minimizing the Fermi energy
through perturbing the parameterized elemental composition representations, we estimated the unique counts of elemental compositions,
mean density scan of the objectives space, mean objectives, and frequency distributed over the materials’ representations and objectives.
We found that nature-inspired algorithms contain more uncertainties in the defined elemental composition design tasks, which correspond
to their dependency on multiple hyperparameters. Runge–Kutta optimization (RUN) exhibits higher mean objectives, whereas Bayesian
optimization (BO) displayed low mean objectives compared with other methods. Combined with materials count and density scan, we propose
that BO strives to approximate a more accurate surrogate of the design space by sampling more elemental compositions and hence have lower
mean objectives, yet RUN will repeatedly sample the targeted elemental compositions with higher objective values. Our work sheds light on
the automated digital design of materials with single- and multi-elemental compositions and is expected to elicit future studies on materials
optimization, such as composite and alloy design based on specific desired properties.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0177266

I. INTRODUCTION

Designing materials with desired tailored properties has always
been a key goal in human society, from metallurgy, biomedicine,
energy storage, to nanotechnology. Traditionally, most research
studies conducted in the field of designing materials with multi-
elemental compositions rely on costly experimental synthesis and
time-consuming trial-and-error processes. Advances in computa-
tional engineering can greatly accelerate materials design efficiency.
To achieve the design goal, many optimization methods were devel-
oped for the design process. These methods can be categorized as
first and zeroth orders, where the first-order optimization meth-
ods are gradient-based methods, such as gradient descent and

Newton–Raphson, that rely on the problem being first-order dif-
ferentiable. The first-order methods are widely applied to topology
optimization coupled with finite element methods for mechanical
design, including classical problems such as the design of beams1

and trusses.2 However, the primary drawback of first-order opti-
mization is that the differential form of the problems may not
exist, or be easily obtained, in many (or most) real-world appli-
cation scenarios. In many cases, the governing equations for the
problem do not exist as differentiable forms. Moreover, first-order
optimization tends to get “trapped” in local optima close to the ini-
tial design, which heavily relies on prior physical understanding of
the problem to ameliorate. Hence, metaheuristic optimization meth-
ods, such as genetic algorithms and particle swarm optimization,

APL Mater. 12, 021107 (2024); doi: 10.1063/5.0177266 12, 021107-1

© Author(s) 2024

 07 February 2024 03:28:45

https://pubs.aip.org/aip/apm
https://doi.org/10.1063/5.0177266
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0177266
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0177266&domain=pdf&date_stamp=2024-February-5
https://doi.org/10.1063/5.0177266
https://orcid.org/0000-0003-1511-7597
https://orcid.org/0000-0002-6462-7422
mailto:hz253@cornell.edu
mailto:hongxiahao@microsoft.com
mailto:jingjieyeo@cornell.edu
https://doi.org/10.1063/5.0177266


APL Materials ARTICLE pubs.aip.org/aip/apm

are more flexible and adaptive to complex problem domains. These
characteristics enable metaheuristics to be applicable to multi-
scale materials design problems, such as molecular simulations,
machine learning (ML) surrogates, and density functional the-
ory calculations. For example, molecular dynamics (MD) simu-
lations model the interactions of particles based on interatomic
potentials,3,4 DFT simulations calculate the energy based on pseudo-
potentials for the Hamiltonian,5 and ML surrogates represent the
material’s structure–property map with a neural network.6 In these
situations, obtaining first-order derivatives is either an extremely
taxing task or may even be intractable. To overcome these chal-
lenges, recent literature highlights the utility of metaheuristics for
elemental composition design, in contrast to gradient-based opti-
mizations. For example, Ramprasad and co-workers developed
genetic algorithm methods coupled with deep learning surrogate
models for designing polymer dielectrics7 and used similar strate-
gies to design polymers with high glass transition temperatures
and bandgaps.8 Winter et al. combined machine learning surro-
gates with particle swarm optimization (PSO) to design drugs.9
Weiel et al. used PSO to select parameters in molecular dynamics
simulations.10

Many machine learning methods exist for design optimiza-
tion, and two of the most widely applied methods are Bayesian
optimization (BO) and deep reinforcement learning (DRL). BO
leverages Gaussian process regression (GPR) to fit a surrogate
model of the design space and leverages Bayesian statistics to iter-
atively improve the accuracy of such a surrogate by sampling more
points via an acquisition function. BO is frequently applied in
materials design. For example, Shin et al. combined the microme-
chanical experiments and BO to design spiderweb nanomechanical
resonators.11 Chen and co-workers developed a series of BO frame-
works for mechanical design and elemental composition design
using finite element simulations,12 molecular simulations,13,14 and
machine learning surrogate models.15,16 Zhai and Yeo combined
BO and individual-based modeling of bacteria to design antimi-
crobial nanosurfaces.17 In another popular method, DRL utilizes a
deep neural network (DNN) as an agent to interact with the envi-
ronment to receive rewards from different output properties and
learn the best strategy to achieve the design goal. When applying
DRL for materials design, the evaluations of the material proper-
ties are treated as the environment for the agent to learn the correct
policy to achieve the design goal. For instance, Gu and co-workers
developed a DRL framework for designing tough graphene oxide18

and continuum composite materials.19 Barati Farimani and co-
workers developed DRL frameworks for porous graphene for water
desalination.20

Can these optimization methods be uniformly applied to the
same problem and how do they differ? To answer these ques-
tions, benchmark studies are urgently needed. One particular reason
for the urgency is efficiency. Optimization methods are intended
to improve the efficiency of the design problems. However, when
companies or research groups want to employ design optimiza-
tion for their problems of interest, it is of utmost importance to
select optimization methods that are best suited to their specific
problems. Selecting ideal optimization methods from the massive
amount of the existing literature is non-trivial: one may fall into
the “trial-and-error” trap, and the efficiency of solving the problem
is significantly reduced. Moreover, ML-based studies for materials

design are often focused on either large-scale molecular structures
(i.e., polymers) or continuum structures. This is in part because it
is easier to extract structure–property relationships for larger struc-
tural bodies in the context of continuum modeling, where first-order
derivatives are easy to obtain. Specifically, for materials composed of
multiple elements, many studies leverage molecular graphs or use
natural language processing to find this structure–property map.
In contrast, while there are some studies on the design of small
molecules using language representation with generative models,21

a huge gap exists in applying general optimization methods for
designing such multi-elemental compositions. Therefore, following
our previous discussion, the specific problem to be posed herein is
how different optimization methods differ in the context of materials
design.

To address these challenges, we propose and conduct a bench-
mark study by designing a framework to implement many state-
of-the-art optimization methods. We benchmark many widely
employed metaheuristic optimizations, including Bayesian opti-
mization, genetic algorithms, particle swarm optimization, and
simulated annealing. We further compared novel optimization
methods, such as the arithmetic optimization algorithm and
Runge–Kutta optimization, for a total of 11 different optimization
algorithms. We took advantage of the large number of open-source
software applications for computational elemental composition
design, including pymatgen,22 Materials Project,23 matminer,24 and
mealpy.25 The material evaluations are enabled by surrogate models:
pretrained graph neural network models to predict the elemen-
tal compositions’ properties based on input graph structure. The
general schematic of our study is shown in Fig. 1. We begin with
inspiration from the general premise of industrial or fundamen-
tal research problems: one needs to design elemental compositions
based on specific applications. Given this application, the targeted
physical properties must be identified based on the design require-
ments, such as high toughness or low thermal conductivity. Based
on these targeted applications and properties, the design problem
can then be formulated mathematically together with the corre-
sponding optimization algorithms. The design space can be explored
to extract the optimal elemental compositions from the materials
database(s). Here, we will mainly focus on the optimization process
[Figs. 1(c)–1(e)] to propose simplified target material properties and
focus on the algorithmic implementations and benchmarking. The
significance of this work lies in that there is a lack of studies that
evaluate the performance of different optimization methods, in con-
trast with the abundance of published literature that applies specific
optimization methods for tailored materials design tasks. Our study
may benefit future research in the following ways: (1) Researchers
can select different algorithms that correspond well with their poten-
tial applications based on our evaluation results, and (2) researchers
can use or refer to our framework and benchmark other optimiza-
tion algorithms of their interest. Our major contributions are to
(1) propose a framework that can implement different algorithms,
which generalizes the materials’ inverse design tasks, (2) evaluate
different optimization methods based on defined metrics, and (3)
highlight ideal algorithms for different potential applications based
on our evaluations. Some results were unexpected: the commonly
employed BO did not stand out in terms of mean objective evalu-
ation, while surprisingly RUN outperformed both the stability and
objective evaluations.
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FIG. 1. General overview of the materials design process. (a) Schematic for defining the intended industrial application. (b) The process of identifying the desired material
properties, such as high bulk modulus and low Fermi energy. (c) The schematic for formulating a digital design optimization problem using numerical models to discover or
design elemental composition with the desired properties. (d) Different optimization methods use exploration/exploitation strategies to generate a design space for exploring
the best materials. (e) The optimal elemental compositions are extracted from the design space exploration and are ready for real-world applications. In this study, we focus
on formulating an optimization framework that enables the application of the most current popular optimization methods to search for desired elemental compositions and
compare different optimizations based on specific metrics. Finally, the “mined” elemental compositions are analyzed.

This paper is articulated as follows: We present an overview
of the underlying methodology, describe the workflow of connect-
ing machine-learned models of materials properties with different
optimization methods, and benchmark the results obtained from
11 different optimization algorithms in Sec. III. We then discuss
the algorithms that are developed to perform the automated opti-
mizations in Sec. IV. A detailed explanation of the methodolo-
gies employed is presented in Sec. II, and further information is
contained in the supplementary material.

II. METHODS
A. Inverse optimization framework
1. Problem formulation

Our goal is to benchmark design optimization algorithms for
inverse elemental composition design, in which we formulate the
problem as maximizing an objective function corresponding to
materials properties. We benchmark using a model problem of max-
imizing the bulk modulus while simultaneously minimizing the
Fermi energy. While not specific to any applications, our prototype
model is useful for benchmarking and unveiling the characteristics

of different optimization algorithms for elemental composition
design and discovery. To maximize an objective function, 𝒥, as
a single-objective optimization problem, which is defined as the
difference between the bulk modulus and the Fermi energy, 𝒥 = K
− EFermi,

argmax
natom , ξn , η

𝒥 = K − EFermi,

where
K, EFermi =MEGNet(𝒢Θ), → 𝒢 = Ω(natom, ξn, η);

Θ = [natom, ξn, η]
subject to

natom ∈ [1, 4] or ≡ 1, ξn ∈ [0, 100], η ∈ [0, 100].

(1)

Here, the problem is defined as a discrete constrained optimization
problem. The input graph structure 𝒢 is related to the properties
K and EFermi, which can be considered as a forward mapping.
The forward mapping of fast property predictions is enabled based
on the graph neural network structure MatErials Graph Network
(MEGNet).26 Further details are provided in Sec. II and the
supplementary material.
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The optimization problem can be solved using various
optimization algorithms. Here, we explored 11 different state-
of-the-art optimizations to conduct benchmarking for materials
discovery. The methods include Bayesian optimization,27 deep
reinforcement learning,28 genetic algorithm,29 particle swarm opti-
mization,30 hybrid gray wolf optimization,31 (hybrid-improved)
whale optimization algorithm,32 ant colony optimization,33 dif-
ferential evolution,34 simulated annealing,35 bees optimization,36

arithmetic optimization,37 and Runge–Kutta (RUN) optimization.38

These algorithms fall into two main categories: machine learning-
based optimization and metaheuristic optimization [Figs. 2(b) and
2(c)]. We use different strategies to perturb Θ to maximize 𝒥, which
will be elaborated in Sec. II and the supplementary material. Here,
we consider single- and multi-element composition optimization
scenarios. For single-element composition optimization, the design
variable natom is restricted to 1, and there are only two tunable design
variables ξn and η. For multi-element composition optimization, the
screened elemental compositions contain natom ∈ [1, 4]. The mate-
rials libraries as indicated in Fig. 2 consist of a series of MP IDs,
and the randomly generated η is used to select the corresponding
MP ID.

Following the discussion from Eq. (1), the optimization is
benchmarked and connected through the material evaluations. We
utilize MEGNet for materials properties evaluation mainly for two
considerations: (1) Fast inference: by using the pretrained MEGNet
model (mp-2019.4.1), the properties can be obtained “on the fly”
given the input graph structure, getting rid of the lengthy computa-
tional process via traditional numerical methods such as molecular
dynamics (MD) or density functional theory (DFT). (2) Better
screenability of the design space. Given the pretrained MEGNet
model, one can infer the corresponding properties given the gener-
ated input graph 𝒢, hence allowing the evaluation of a large amount
of “untouched” materials. Meanwhile, due to the lack of existing data
for the properties of many potential materials, one may not directly

obtain the properties given the input elements just from a query. In
addition, due to the lack of pseudo- and/or interatomic potentials,
MD or DFT calculations may not be conducted. Here, we employ
MEGNet due to its reported accuracy and stability. As reported
by Chen et al.,26 the MAE for the prediction of Fermi energy and
bulk modulus is around 0.028 and 0.05, respectively. MEGNet is
not the only option for materials properties inference; other exist-
ing frameworks with a competitive performance include CGCNN,39

MODNet,39 H-CLMP(T),40 and crystal graph attention networks.41

Since our focus is on optimization methods, we do not emphasize
the surrogate model evaluations. Notably, many recent studies focus
on materials property prediction benchmarks.42,43

For this problem, the inverse optimization problem is to
directly perturb the graph structure such that the materials’ prop-
erties can be tailored. However, it is difficult to represent different
materials’ graph structures containing different elemental numbers
in the same dimensions for optimization. Hence, we parameter-
ize the graph structure 𝒢 = 𝒢Θ so that the algorithms tune the
design variables Θ = [natom, ξn, η] to change the elemental com-
position 𝒢Θ. Here, as visualized in Fig. 2(a), the optimization
begins with a variable natom, as the number represents different
types of elements in the elemental compositions. We may denote
the different atoms in the elemental compositions as the atomic
dimensions. Associated with this natom,we define a random num-
ber distributed in [0,100] as ξn to assign atomic types to the
atomic dimensions, which we may define as the material basis.
For example, if the atomic dimension natom = 3, we may obtain
an element basis from ξn like {C–H–O}. Given this material basis,
one can generate a list of potential elemental compositions from
the Materials Project, for which we denote the materials library. One
can then use η to select the candidate elemental compositions from
the materials library. If following our previous example, the mate-
rials library may look like {CH3O, C2H6O, C3H6O, . . .} and our
selected material may be C2H6O. For how ξn and η determine the

FIG. 2. Schematic for optimization benchmarking and different optimization algorithms employed in this study. (a) Workflow for discovering elemental compositions by
combining graph neural network (GNN) surrogate models with defined design variable randomization to select optimal elemental compositions with targeted materials
properties. See Sec. II and the supplementary material for details. (b) Schematic for optimization through metaheuristic algorithms, starting with a set of random particles (or
population) sampled in the design space, to iteratively update and eventually cluster around globally optimal values, indicating the search for elemental compositions with
desired properties. (c) Bayesian optimization methods for elemental composition discovery, seeking to build a surrogate model of the design space by employing Gaussian
process regression and searching for the next material evaluations based on an acquisition function. Optimal elemental compositions can be extracted from the design space
surrogate.
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atomic graph structure 𝒢 in the algorithm, please refer to Extension
on Problem Formulation in the supplementary material.

2. Workflow automation
One of the main contributions of our work is the development

of an optimization framework that is flexible for many implemen-
tations of state-of-the-art optimization methods. The key point in
such a framework is the automation of the optimization, where the
update of the next set and the current set of materials evaluation is
connected. The automation is enabled through the graph neural net-
work surrogate model as formulated in Eq. (1), the MEGNet. The
whole workflow can be simplified to the following expression:

(

evaluation
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
MEGNet(Θn+1)Θn+1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

exploration

search
ÐÐ⇀↽ÐÐ

feedback

IOA(Θn,

evaluation
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
MEGNet(Θn); PIOA)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
exploitation

, (2)

where IOA stands for “inverse optimization algorithm.” Assuming
that the algorithm evaluates the nth set of elemental compositions
with the design variable Θn, obtaining the corresponding properties
MEGNet(Θn), and by employing the hyperparameters PIOA speci-
fied by different optimization methods, one then obtain the design
variables for the next set of evaluation Θn+1, for which the eval-
uated properties MEGNet(Θn+1) then feed back to the IOA and
iteratively search for the next set. This loop allows one to get rid
of the traditional “trial-and-error” approach and only need to set
the hyperparameters to obtain the optimal elemental compositions
given the targeted properties.

The algorithmic flow chart is visualized in Fig. 3 [Eqs. (1) and
(2)]. The formulated basic optimization method is shown in the
right block, while the materials generation and evaluation processes
are laid out in the left blocks. In our approach, the algorithm is
initialized and repeated based on different random seeds for the
five attempts in Fig. 5. The hyperparameters for each algorithm
are provided in the supplementary material and were selected from
commonly used default values for each algorithm.

B. Optimization algorithms
1. Bayesian optimization

The core of machine learning (ML)-based optimization algo-
rithms is to employ the explored materials data to fit a surrogate
assisting the optimization process. Here, there are two main ways
of adopting ML methods for design optimization: (1) building up a
surrogate model of the design space for final exploration, namely the
Bayesian optimization method; (2) utilizing a deep neural network
(DNN) to learn the interactions of input elemental compositions
and their corresponding material properties, which can be consid-
ered as the interaction of actions and their environment in which
this DNN is considered as an “agent.” This method is known as deep
reinforcement learning. The detailed mathematical formulation and
derivations are shown in the Machine Learning Based Algorithms
and Metaheuristic Optimization in the supplementary material.

For approach (1), following the formulated problem in Eq. (1),
we now assume that the optimization algorithm is initiated
by a set of m materials evaluations from MEGNet: K1, K2, K3,
. . . , Km, (EFermi)1, (EFermi)2, (EFermi)3,. . . , (EFermi)m = MEGNet
(Ω(Θ1), Ω(Θ2), . . . , Ω(Θm)); one then obtains data that lie in the
mapping of M : Θ→ 𝒥, in which we assume that M exists and is
continuous. Here, this M represents the design space, i.e., the pro-
jection from the input design variables to the objectives. M can be
approximated using the Gaussian process regression (GPR) from the
generated data in the materials evaluation, which can be simplified
to the following form:

(𝒥1,𝒥2,𝒥3, . . . ,𝒥m) = GP(Θ1, Θ2, . . . , Θm; pGP), (3)

where pGP are all the hyperparameters involved in setting up the
regression model, elaborated in detail in the supplementary material.
Given a surrogate model of the design space built from GPR, one
can improve the accuracy of such a surrogate by iteratively sampling
more points. The core of BO here would be the strategies to sample
the next set of material evaluations from Θ.

The next set of design variables Θnext is selected via maximizing
the acquisition function 𝒜,

Θnext = argmax 𝒜(Θ1, . . . , Θm, 𝒥1, . . . ,𝒥m; pAq), (4)

FIG. 3. Algorithmic flow chart for the optimization framework, corresponding to Eqs. (1) and (2) and Fig. 2.
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where we use the upper confidence bound as the acquisition function
(see Bayesian Optimization in the supplementary material). BO uti-
lizes GPR and acquisition function to efficiently sample the design
space for a more accurate approximation toward the formulated
optimization goal (max𝒥).

2. Metaheuristic optimization
Metaheuristic optimization is a family of optimization tech-

niques that are used to find the optimal solution by exploring a large
search space. They are often inspired by natural processes or social
behavior, such as animal behavior (e.g., ant, whale, and wolf), physi-
cal process (i.e., annealing of metals), biological processes (i.e., gene
mutation), or fundamental mathematics.

Metaheuristic algorithms are typically applied to complex opti-
mization problems where traditional methods are either not feasible

or inefficient. They are highly flexible and can be adapted to a wide
range of problem domains, in which elemental composition design
is our target scenario. Metaheuristics are often considered as “black
box” optimization methods, as they do not require knowledge of
the problem structure. More specifically, they do not require the
existence of the first-order differentiation form of the governing
equations of the problem.

If we assume the simplest form, one can simplify and interpret
the metaheuristic optimization process by sampling a set of random
particles in the design space and the optimization process refers to
the update of these sampled particles (for the generalization of this
form, see Extension on Problem Formulation in the supplementary
material). The update rules may be inspired by different natural pro-
cesses, corresponding to the optimization methods employed. If one
assumes that there are a total of d dimensions of the problem domain

FIG. 4. Objective properties exploration, objective value evaluation, and targeted design space count for benchmarking different optimization methods for single- and multi-
element composition design cases. (a1) Overall design space benchmarking for the 11 different optimization schemes used, marked in different colors for the single-element
composition design (for the projections in 2D, please refer to Fig. S6 in the supplementary material). (b1) The distribution (for the five repeated experiments) and mean
values of the overall material counts during the evaluation processes. (c1) The distribution (for the five repeated experiments) and mean values of the scanned material
evaluation densities (see Sec. II and Density Scan in the supplementary material for the calculation of “mean density”) during the evaluation processes. (Related details can
be found in the analysis of Fig. S7 in the supplementary material.) (a2) Overall design space benchmarking for the multi-element composition design (refer to Fig. S6 in
the supplementary material). (b2) The distribution and mean values of the overall material counts. (c2) The distribution and mean values of the scanned material evaluation
densities. The white triangular dots are the mean values for the 11 evaluations in both (b) and (c). The corresponding numbers are marked on top of the bar plot for both (b)
and (c). BO, GA, PSO, GWO, HIWOA, ACO, DE, SA, BOA, AOA, and RUN denote the Bayesian optimization, genetic algorithm, particle swarm optimization, hybrid gray
wolf optimization, hybrid-improved whale optimization algorithm, ant colony optimization, differential evolution, simulated annealing, bees optimization algorithm, arithmetic
optimization algorithm, and Runge–Kutta optimization, respectively.
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and denotes the rule as ℛ, the update rules for the ith particle
write

Xd
i ← Xd

i +ℛ(X
d
i , Xd

j , pMH), (5)

where X is the location of the particle and the ith particle’s loca-
tion may be related to its adjacent particle(s) j. pMH denotes the
hyperparameters employed in the metaheuristic optimization. Here,
we only present the generalized form to identify the key essence of

metaheuristics (for the details of each algorithm, see Metaheuristic
Optimization in the supplementary material).

III. RESULTS
A. Elemental composition design benchmarks

Figure 4 shows the benchmarks of the 11 different inverse opti-
mization algorithms (IOAs) and their objective properties explo-
rations [column (a)], the distribution of the material evaluation

FIG. 5. Statistical evaluations of the optimization processes. (a1) The distribution of the mean objective values (from five attempts) for the 11 evaluated optimization algorithms
for single-element composition cases. Different colors mark different attempts, as indicated in the legend in the top-right corner of this figure. The white triangular dots stand
for the mean values of the five attempts. The “mean objectives” are calculated as ∑ (objectives)

attempts
per optimization attempt (under the same random seed). (b1) The frequency

distributions (i.e., repeated evaluations) using kernel fits of different objective values for the 11 different optimization algorithms (for details, see Sec. II and Additional Results
in the supplementary material). Note that the original data distribution is shown in the top left corner of the inset. (a2) The distribution of the mean objective values for the
11 evaluated optimization algorithms for multi-element composition cases, where the white triangular dots are the mean values. (b2) The frequency distributions of different
objective values for the 11 optimization algorithms.
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numbers with the corresponding mean values [column (b)], and the
distributions of scanned density with the overall mean values [col-
umn (c)], for both the single- (row 1) and multi-element (row 2)
composition design cases. In the objective distributions, different
IOAs are marked in different colors, and the corresponding opti-
mization methods are abbreviated. Here, the materials count repre-
sents the total number of unique elemental compositions scanned
by the different IOAs. The mean densities of objective spaces are
computed to estimate the repetitive evaluations of the same ele-
mental compositions by computing the mean value of the density
scan space (see Sec. II and the supplementary material). Both met-
rics help us understand the “strategy” of different algorithms when
they scan the chemical design space to search for the ideal elemental
compositions.

There are five major findings from Fig. 4. (1) Comparing (a1)
and (a2), the scanned objective spaces are smaller for GWO com-
pared with other optimization methods for both the single- and
multi-element composition design cases. For the single-element
composition design case: (2) the evaluated elemental composition
numbers are similar for most methods, whereas SA and AOA
are observably smaller. Both GWO and SA display relatively high
variances compared with other methods. (3) The mean scanned
densities are relatively higher for the SA and AOA methods, with
both displaying higher variances. Both SA and AOA possess higher
variances. For the multi-element composition design cases: (4)
RUN has the lowest evaluated elemental composition numbers.
GWO and BWO have the highest variances. (5) For the mean
scanned densities for multi-element compositions, GWO and RUN
have the highest evaluated elemental composition numbers and
variances.

From Fig. 5, we can draw five key observations. (1) When
comparing (a1) and (a2), the mean objective distributions differ for
the single-element and multi-element composition design cases. (2)
For single-element design, GA, SA, and RUN display high mean
objective values. SA and RUN also exhibit relatively low variances.

GWO shows relatively high mean objectives but with higher vari-
ances, while BO demonstrates a stable performance with a low mean
objective value and low variance. (3) DE and AOA exhibit repet-
itive scans in the same composition region, indicating a tendency
to get “trapped” in a local space. This aligns with their relatively
lower mean objectives in (a1). Moving on to multi-element design,
RUN achieves the highest mean objective values with low variances.
GA, GWO, and BWO show higher variances. (4) AOA and SA
again exhibit repeated scanning of the same elemental compositions,
suggesting a tendency for optimization methods to get trapped in
local composition spaces. (5) When considering both single- and
multi-element cases, different optimization algorithms demonstrate
similar elemental composition search strategies, as evidenced by
similar frequency distributions.

To further quantitatively support our observations on the
uncertainties of different optimizations for repeated elemental com-
position design experiments in Figs. 4 and 5, Tables I and II show the
variances among different experiments per different optimizations.
Both Table I and Fig. 4 show that the materials count variances are
very different for single- and multi-element compositions, due to the
very limited single-element compositions existing in the chemistry
table. For the multi-element composition design, BO has the low-
est variance and GWO has the highest variance of materials count,
with GWO’s variance ∼7398 times higher than BO. Other than that,
GWO’s variance is ∼27 times higher than that of RUN of materials
count. GA and AOA have approximately the same level of uncer-
tainty for materials count. The relative magnitude of the variances
of the materials count and the mean density scan does not follow the
exact same trend. Yet for multi-element composition design, GWO
still exhibits the highest variance, with 366.93% higher than that of
BO and 9992.08% higher than that of BO. Generally, it can still be
deduced from Table I that, for both single- and multi-element com-
position design, nature-inspired algorithms (i.e., GA, GWO, and
BWO) display relatively higher variances, indicating higher uncer-
tainties, which will be further discussed in Sec. IV. Table II further

TABLE I. Variances for the five repeated experiments of different optimization algorithms for single- and multi-element com-
position design cases, expressed with single-digit precision. Note that MC denotes “materials count” and MDS stands for
“mean density scan.” The four columns correspond to Figs. 4(b) and 4(c). For better presentation, we rescale the variances
of MDS 100 times larger (indicated in the form ×10−2).

Optimization
MC

(single-element)
MDS

(single-element)
MC

(multi-element) MDS (multi-element)

BO 0.2 6.5 × 10−2 104.3 10.1 × 10−2

GA 0.3 42.9 × 10−2 179 704.5 101.7 × 10−2

PSO 1.7 28.9 × 10−2 12 575.7 7.1 × 10−2

GWO 14.3 13.3 × 10−2 771 728.3 1019.3 × 10−2

BWO 0.7 26.0 × 10−2 402 679.3 131.2 × 10−2

ACO 0 9.7 × 10−2 427.3 15.8 × 10−2

DE 0 79.6 × 10−2 73 394.7 56.8 × 10−2

SA 45.2 3576.7 × 10−2 19 843.8 12.5 × 10−2

BOA 0.2 8.4 × 10−2 29 907.2 5.2 × 10−2

AOA 5.8 1156.6 × 10−2 150 198.5 44.1 × 10−2

RUN 0 1098.7 × 10−2 27 895.5 218.3 × 10−2
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TABLE II. Mean objective values and variances for the five repeated experiments of different optimization algorithms for
single- and multi-element composition design cases, expressed with single-digit precision. Note that MO denotes “mean
objective” and Vr stands for “variances.” The four columns correspond to Fig. 5(a). For better presentation, we rescale the
variances of MDS 100 times larger (indicated in the form ×10−2).

Optimization
MO

(single-element)
Vr

(single-element)
MO

(multi-element)
Vr

(multi-element)

BO 91.9 58.7 × 10−2 84.5 57.5 × 10−2

GA 97.2 1097.1 × 10−2 91.0 3726.5 × 10−2

PSO 93.0 90.7 × 10−2 84.0 8.8 × 10−2

GWO 96.8 580.6 × 10−2 89.8 3816.3 × 10−2

BWO 94.9 838.0 × 10−2 91.0 3719.7 × 10−2

ACO 92.5 148.3 × 10−2 84.0 307.5 × 10−2

DE 94.2 557.5 × 10−2 89.2 593.5 × 10−2

SA 97.6 81.5 × 10−2 82.6 145.8 × 10−2

BOA 93.9 404.5 × 10−2 87.3 314.1 × 10−2

AOA 94.7 840.2 × 10−2 83.6 523.2 × 10−2

RUN 96.7 429.3 × 10−2 92.8 166.6 × 10−2

FIG. 6. Extracted elemental composition evaluations for the optimization benchmarking. (a) The top ten elemental compositions extracted from the single-element design
case. (b) The top ten elemental compositions extracted from the multi-element composition design case. (c) The top ten chemical compounds extracted from the multi-
element composition design case. (d) The normalized frequency (see Additional Results in the supplementary material for the extended analysis for frequency evaluations of
optimizations) for different extracted elemental compositions under the single-element composition design case. The top inset dots stand for the projection of the normalized
frequency in the range [1, 2.5]. (e) The normalized frequency under the multi-element composition design case. The top inset dots stand for the projection of the normalized
frequency in the range [10, 45].
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TABLE III. Assessment and conclusion from the comparison results for optimization methodologies benchmarked. Note that
the (dis)advantages concluded from the previous results may be subjective. Note that the “low selectivity” for RUN indicates
that the variance is relatively low compared with DE and AOA.

Optimization Advantages Disadvantages Potential use

BO Low variances Low objective Large-scale materials exploration
GA High objectives High variances Targeted materials selection
PSO Low variances Low objective Large-scale materials exploration
GWO High objective High variances Not recommended
BWO High objective High variances Not recommended
ACO Low variances Low objective Large-scale materials exploration
DE Decent objective Relatively high Not recommended

variances
SA High selectivity Problem-specific Not recommended
BOA Decent objective Low selectivity Not recommended
AOA High selectivity High variance Targeted materials selection
RUN High objective Low selectivity Materials exploration and design

and stable

confirms the observation that nature-inspired algorithms present
higher uncertainties. For both single- and multi-element compo-
sition design cases, GA, GWO, and BWO show evidently higher
variances of the mean objectives than those of other optimizations.
For the single-element composition design, GA presents 155.56%
and 1093.8% relatively higher variances, GWO presents 35.24%
and 531.77% relatively higher variances and BWO presents 95.20%
and 811.86% relatively higher variances than those of RUN and
BO, respectively. For the multi-element composition design, GA
presents 2136.79% and 6380.87% relatively higher variances, GWO
presents 2190.70% and 6537.04% relatively higher variances, and
BWO presents 2132.71% and 6369.04% relatively higher variances
than those of RUN and BO, respectively.

From Fig. 6, we can derive five main observations. (1) Com-
paring (a) and (b), we observe that the top evaluated elemental
compositions are similar. (2) The majority of the top chemical
compounds are binary alloys, consisting of elements present in the
top single-element compositions, such as Cs, Ce, Ba, and others.
(3) RUN demonstrates effective scanning strategies and consis-
tently converges toward local optimal elemental compositions. (4)
SA demonstrates similar search strategies as RUN, evidenced by
the high normalized frequency along the materials list. (5) BO
appears to struggle in identifying the “ideal” elemental composi-
tions and tends to scan the same region repeatedly, indicating a
potential trap in the local optimal area. From Figs. 4–6, we have
also added qualitative comparison and suggested potential appli-
cations in Table III. Since the overall goal is to design materi-
als digitally with low uncertainty and targeted desired properties
quantified through objectives, therefore, low variance, and high
mean objectives can be viewed as “advantages” of the algorithm.
“Targeted materials selection” is recommended due to repeated
materials sampling, and “large-scale exploration” is recommended
based on more materials candidates sampled with decent objective
values.

Among all the metrics we evaluated, it can be deduced that
RUN achieved superior optimization results compared with the

others (Figs. 4 and 5; Tables I and II). This out-performance may
be due to several reasons: (1) RUN is free of hyperparameters. The
update process of RUN does not depend on fine-tuned hyperparam-
eters, making it more robust especially for highly nondeterminis-
tic situations like elemental composition design. (2) The updating
strategies of RUN are very different from those of other meth-
ods. The RUN optimization searches for the next set of evaluations
by mimicking the update strategies of Runge–Kutta’s discretiza-
tion of differential equations (see the supplementary material),
which are fundamentally different from other metaheuristic meth-
ods. (3) From (2), the enhanced solution quality (ESQ) mechanism
is well suited for our formulated elemental composition discov-
ery cases. In the authors’ original proposal,38 the ESQ mechanism
is employed to avoid the local optimal solutions and increase the
convergence speed. In our case, as the material evaluation num-
bers are fixed at 5000, the faster convergence induced by ESQ
enables the robust performance of the RUN algorithm in our bench-
mark cases. Further comprehensive characteristics are discussed
in Sec. IV.

IV. DISCUSSION
Based on the results presented earlier, our findings raise several

intriguing questions, for which we proffer the following discussions.
First, we observe variations in the performance of different opti-
mization algorithms across the two elemental composition design
scenarios, such as the contrasting results of material counts and
the mean density of RUN and AOA [Figs. 4(b) and 4(c)]. One
explanation is that the algorithm effectiveness is problem-specific.
Moreover, the optimization methods may also be sensitive to the
dimensionality of the problem such that changing from single-
element to multi-element composition design induces the change
of metrics evaluation shown in Figs. 4 and 5. In addition, in the
case of single-element composition design, the limited number of
available elemental compositions can impact the performance of cer-
tain algorithms, potentially influencing their search capabilities. An
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interesting observation pertains to the consistent success of the RUN
algorithm in achieving high mean objective values in both problem
scenarios, especially in the second case [Fig. 5(a)]. This achievement
can be attributed to the fact that the sampling strategy employed
by RUN is hyperparameter-free and adept at storing informa-
tion, which proves advantageous in handling high-dimensional
spaces.

Another intriguing finding is that BO exhibits lower mean
objectives accompanied by low variances in both cases. This trend
becomes more apparent when considering Figs. 5(b) and 6(e). A
plausible explanation would be that BO is sampling a wider range
of diverse elemental compositions during the optimization process.
This behavior can be attributed to the uncertainty-based sampling
strategy employed by BO, which facilitates the exploration of a
diverse design space and aids in constructing a more accurate sur-
rogate model. AOA tends to repeatedly sample similar elemental
compositions over an extensive number of evaluations [Fig. 5(b)].
This behavior suggests that AOA may become trapped within a spe-
cific region of the design space, necessitating further investigation
to understand the underlying causes and identify potential reme-
dies. Finally, we explore the major disparity in the performance
of SA between the two elemental composition discovery cases. A
possible explanation for this discrepancy is that SA is sensitive
to the dimension of the optimization problem, leading to its dif-
ferent performances tested from the designed metrics in Figs. 4
and 5.

Each optimization algorithm demonstrates unique character-
istics and strategies that contribute to its specific outcomes. The
low variances of the objectives in Fig. 5 could be explained by
BO’s low dependence on hyperparameters. BO aims to approximate
an accurate surrogate model to optimize the objective, resulting
in small mean objective values. This strategy utilizes uncertainty-
based sampling, which decreases the overall objective value. The low
uncertainty and variance in the final results are attributed to the
small number of hyperparameters and the large sampling base. In
addition, BO exhibits high material counts, as observed in Fig. 4(b).
GA heavily relies on hyperparameters, such as mutation, offspring
generation, and randomization (for details, see the supplementary
material). A strong dependence on hyperparameters leads to high
uncertainty in the mean objective values for both cases [Figs. 5(a1)
and 5(a2)]. Moreover, GA repeated the samples of the same ele-
mental compositions once ideal properties are detected, resulting in
high sampling density compared with BO, PSO, and other related
methods [Figs. 5(b1) and (b2)]. Meanwhile, PSO exhibits a lower
uncertainty and variance as it has fewer hyperparameters, con-
tributing to its more stable performance, as depicted in Figs. 5(a1)
and (a2).

GWO is similar to GA in terms of hyperparameter dependency,
resulting in a high uncertainty and sampling density focused on
specific objective regions (Fig. 5). Notably, GWO displays a higher
uncertainty even in material counts and mean density, which dif-
ferentiates it from GA (Fig. 4). Similarly, BWO exhibits a high
uncertainty in mean objective values [Fig. 5(a)], which may also be
attributed to its dependence on hyperparameters and very similar
searching strategies of mimicking animal dynamical behavior. How-
ever, BWO displays more material counts and less sampling density
scan [Figs. 4(b) and 4(c)], potentially attributed to the setting of the
encircling prey parameter, which enhances the sampling stability.

ACO employs continuous probability-based sampling, resulting in
relatively less uncertainty in the mean objective values [Fig. 5(a)].
ACO has similar mean objective values as BO and PSO while exhibit-
ing lower sampling density scans [Fig. 4(c1)], indicating that ACO
avoids oversampling the same regime for the single-element com-
position design case. DE algorithmically operates as a variant of
GA, yielding comparable mean objective results [Fig. 5(a)]. With
fewer hyperparameters compared to GA, DE exhibits a lower uncer-
tainty [Fig. 5(a)]. The evolutionary strategies of DE demonstrate
similar material counts to GA, as shown in Fig. 4, and repeated
sampling for favorable materials, as depicted in Fig. 6. The per-
formance of SA is observed to be more problem-specific, as both
the material counts and density scan vary per different design cases
[Figs. 4(b), 4(c), and a5(a)]. SA exhibits a low uncertainty for the
mean objective values [Fig. 5(a)] due to fewer hyperparameters and
the implementation of a Markov chain for the acceptance–rejection
sampling criteria (for details, see the supplementary material). BOA
shares similarities with GWO and BWO in terms of high uncertainty
in the mean objectives [Fig. 5(a)] and low material counts for the
multi-element composition design [Fig. 4(b2)], as they use particle-
based, animal behavior-inspired search criteria (for details, see the
supplementary material). However, BOA exhibits a relatively lower
variance [Fig. 5(a)], indicating a lower dependence on, and having
fewer, hyperparameters.

AOA uses a distinct searching strategy based on mathemati-
cal symbolized operations. AOA exhibits a high uncertainty with
relatively low mean objectives [Fig. 5(a)]. AOA tends to oversam-
ple the local regime, leading to low material counts [Fig. 5(b)].
This behavior can be attributed to a large number of hyperpa-
rameters and the overdependence on certain factors, such as MOA
and MOP (for details, see Arithmetic Optimization Algorithm in the
supplementary material), resulting in a scaling factor that under-
estimates previous locations. Finally, RUN achieves high objectives
with a low uncertainty and avoids oversampling in specific objective
regions (Fig. 5). The material count is sensitive to dimensional-
ity, yet all dimensions yield successful search results, as judged by
the high overall mean objectives [Fig. 5(a)]. RUN is characterized
by being hyperparameter-free, incorporating numerous intermedi-
ate hyperparameters to increase the dimensionality of the iteration
scheme, and relying on previous solutions for updates based on
search history. Following our previous discussion on RUN’s ESQ
search mechanism and being hyperparameter-free, we would like
to examine why RUN had outperformed other algorithms by hav-
ing high objective values and low uncertainties. RUN employs an
update scheme that has four update parameters,44 each containing
randomization coefficients45 and are connected. This randomization
and “parameter-connection” could help explain the low uncertainty
observed in our numerical experiments. For the high objective,
RUN’s ability to avoid local optima as reported by Ahmadianfar
et al.38 could be a possible explanation, in which they contend that
the adaptive mechanism employed to update the parameter and the
ESQ are the main mechanisms that assure a good transition from
exploration to exploitation.

V. CONCLUSION
In this paper, we propose a framework that can incor-

porate most state-of-the-art optimization algorithms to perform
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multi-elemental composition discovery and design for crystals. Our
framework parameterizes the input elemental graph structure to tai-
lor the corresponding bulk modulus K and Fermi energy EFermi.
The key goal is to conduct a comprehensive benchmark for many
of the state-of-the-art optimization methods and provide further
insights for future implementation of these algorithms for elemental
composition design. We optimized both single- and multi-element
composition discovery cases for maximized K and minimized EFermi
by formulating a single objective optimization. We benchmarked
11 different inverse optimization algorithms by fixing the material
evaluations. We found that GA, GWO, and BWO exhibit higher
variances and BO and RUN display generally lower variances
for materials count, density scan (Table I), and mean objectives
(Table II). We further conclude that nature-inspired algorithms con-
tain more uncertainties in elemental design cases, which can be
attributed to the dependency on hyperparameters. RUN exhibits
higher mean objectives, whereas BO displayed low mean objec-
tives compared with other optimization methods. Combined with
materials count and density scan, it is proposed that BO sam-
ples more elemental compositions aiming to approximate a more
accurate surrogate of the design space and, hence, has lower
mean objectives, yet RUN will repeatedly sample the discovered
optimal elemental compositions for the successful search strategy
[Figs. 5(b), 6(d), and 6(e)]. We also proffer detailed discussions
on the exhibited results that correspond to each optimization’s
characteristics.

SUPPLEMENTARY MATERIAL

See the supplementary material for the extension for our prob-
lem formulation for detailed explanations. We provide further
details on hyperparameters and basic derivation for the 12 opti-
mization algorithms employed (the 11 employed optimizations for
repeated experiments with deep reinforcement learning). We prof-
fer some additional results in supplementary to our proposition in
the main article.
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