
Computational Mechanics
https://doi.org/10.1007/s00466-025-02604-6

ORIG INAL PAPER

Stress predictions in polycrystal plasticity using graph neural networks
with subgraph training

Hanfeng Zhai1

Received: 22 August 2024 / Accepted: 22 January 2025
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract
Numerical modeling of polycrystal plasticity is computationally intensive. We employ Graph Neural Networks (GNN) to
predict stresses on complex geometries for polycrystal plasticity from Finite Element Method (FEM) simulations. We present
a novel message-passing GNN that encodes nodal strain and edge distances between FEM mesh cells, and aggregates to
obtain embeddings and combines the decoded embeddings with the nodal strains to predict stress tensors on graph nodes. The
GNN is trained on subgraphs generated from FEM mesh graphs, in which the mesh cells are converted to nodes and edges
are created between adjacent cells. We apply the trained GNN to periodic polycrystals with complex geometries and learn the
strain-stress maps based on crystal plasticity theory. The GNN is accurately trained on FEM graphs, in which the R2 for both
training and testing sets are larger than 0.99. The proposed GNN approach speeds up more than 150 times compared with
FEM on stress predictions. We also apply the trained GNN to unseen simulations for validations and the GNN generalizes
well with an overall R2 of 0.992. The GNN accurately predicts the von Mises stress on polycrystals. The proposed model
does not overfit and generalizes well beyond the training data, as the error distributions demonstrate. This work outlooks
surrogating crystal plasticity simulations using graph data.

Keywords Polycrystal plasticity · Stress · Graph neural networks · Finite element method · Constitutive behavior

Contents

1 Introduction .
2 Crystal plasticity .

2.1 Mechanistic model and problem formulation
2.2 Material parameters and data generation

3 Message-passing graph neural networks
3.1 Message-passing on edges for nodal inference
3.2 Model framework and training algorithm

3.2.1 Subgraph sampling and training
3.2.2 Training algorithm

4 Results and discussions .
4.1 Training and testing results
4.2 Analysis on finite element meshes
4.3 Deployment on validation dataset
4.4 Limitations of the proposed method

5 Summary and conclusions .
AppendixA Data preparation .

AppendixA.1 Graph conversion methods
AppendixA.2 Finite element implementation of crystal plasticity

AppendixB Graph neural networks

B Hanfeng Zhai
hzhai@stanford.edu

1 Department of Mechanical Engineering, Stanford University,
Stanford, CA 94305, USA

AppendixB.1 Training procedure
AppendixB.2 Model characterization

AppendixC Additional results .
AppendixC.1 Predictions from GNN
AppendixC.2 Discussions on loading-coupled directions . . .
AppendixC.3 Error distribution for stress components

References .

List of symbols
v̄ Imposed velocity vector on the surface
F Deformation gradient tensor
f Body force
p Material parameters
⊕

Aggregation operator
x Current configuration
γ̇ α Shearing rate of the α slip system
γ̇0 Fixed-state strain rate scaling coefficient
ġα Strength of the α slip system
�i j Edge link length between mesh cells
ε Lagrangian strain tensor
εe Elastic strain
ε p Plastic strain
D̂p′

Plastic deformation rate
L̂p Plastic velocity gradient

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-025-02604-6&domain=pdf
http://orcid.org/0000-0003-1511-7597

Computational Mechanics

m̂α Normal to the slip plane for the α slip system
p̂α Symmetric part of the Schmid tensor for the α slip

system
q̂α Skew part of the Schmid tensor for the α slip system
ŝα Slip direction for the α slip system
Ŵp Plastic spin
C Stiffness tensor
M Number of edges in a graph
N Number of nodes in a graph
cind Connection indices of the subgraph
Fe Elastic portion of deformation gradient tensor
Fp Plastic portion of deformation gradient tensor
hi j Node information on edge i− j
hi Node information on node i
r∗ Lattice rotation
v Velocity vector of a point in the current configuration
ve Elastic stretch
X Reference configuration
G Graph object
L Loss function for the optimization problem
Mi j Message information obtained on edges
N(i) Neighboring node list for node i
� MLP outside the message-passing layer on nodes
φ MLP within the message-passing layer
MLP Multi-layer perceptron
MSG Message function to pass message from nodes to

edges
σvM von Mises stress
τ Shear stress

 Output decoded information on nodes
ξtrain Subgraph ratio of the full graph
E Edges of graph
g0 Initial slip system strength
gs Saturation strength
h0 Strength hardening rate coefficient
m Fixed-state strain rate sensitivity
n Nonlinear Voce hardening exponent
NG Number of training graphs
V Vertices of graph
Vsub Vertices (nodes) of subgraph

1 Introduction

Plasticity refers to the permanent deformation of solid mate-
rials under external load, of which has been researched for
more than 100 years. The earliest efforts include works of
von Mises [1] and Huber [2] to phenomenologically capture
yield criteria. The flow process describes the post-yielding
behavior, in which dislocation plays a significant role. Accu-
rate predictions of plastic deformation are crucial for various
practical applications, such as optimizingmetal forming pro-
cesses [3], designing materials with specific properties, e.g.,

fatigue resistance [4]), controlling semiconductor intercon-
nects [5], and controlling metal 3D printing processes [6].
These applications demand accurate and efficient digital
twins characterizing crystal plasticity.

Due to decades of effort in understanding plasticity, con-
structing the constitutive model for polycrystals is still an
active and ongoing research area due to (1) There are various
ways to pose plasticity mechanisms characterizing the plas-
tic deformation in continuum models such as temperature
and rate dependence, anisotropy, etc. [7–9]; (2) By nature,
plasticity is a multiscale problem, where numerous mech-
anisms contribute to the overall plastic behavior, such as
single crystal dislocation [10], inter-grain friction [11], and
grain boundary interactions [12],making it a challenging task
to craft plasticity models integrate phenomena occurring at
various scales; (3) The high computational expense associ-
ated with accurately simulating polycrystal plasticity using
numericalmethods such as finite elements [13–15]. The com-
putational cost is mainly attributed to the path dependence
and nonlinear nature of plasticity.

The recent developments of data-driven modeling for
physical models could potentially task the high compu-
tational cost and surrogate plasticity models, considering
their demonstrated success in fluid mechanics [16, 17], heat
transfer [18, 19], and design optimization [20–22]. In the
subgrain scale, mechanical responses can be predicted by
combining machine learning and dislocation simulation data
[23, 24]. It has also been shown convolutional neural net-
works (CNN), graph neural networks (GNN), and general
regression methods (e.g., Ridge, Lasso) can be applied to
molecular dynamics (MD) simulations to predict mechani-
cal responses and correspondingmaterial properties [25–27].
Based on grain representations, GNN has been used to pre-
dict the magnetic properties of polycrystalline graphs [28].
Using experimental data, mechanical responses can be pre-
dicted from 2D images of static structures and CNN [29] or
graph convolutional networks [30]. Pagan et al. [31] demon-
strated that GNN can learn the anisotropic elastic response
of alloys. In the continuum scale, CNN has been used to pre-
dict stress-strain responses [32]. GNN has been used to learn
mesh-based time-dependent PDEs [33]. Notably,Mozaffar et
al. [34] demonstrate that recurrent neural networks can learn
path-dependent plasticity, and Fuhg et al. [35] show that par-
tially input convex neural networks can predict plane stress
macroscopic yield as a function of crystallographic texture.

This paper aims to demonstrate the capability of GNN
in capturing the mechanical responses of polycrystals in the
plastic regime, with two key innovations: (1) Handling com-
plex geometry in polycrystal plasticity, and (2) Leveraging
subgraph training for more efficient learning. Using open-
source polycrystal generation and finite element method
(FEM) software, Neper & FEPX to generate meshes and
conduct numerical simulations of periodic polycrystals [36,

123

Computational Mechanics

37], the goal is to develop accurate and generalizable surro-
gate plasticity models based on finite element calculations
[38, 39]. Developing such surrogate models has three main
challenges: (1) The generated finite element meshes have
varying degrees of freedom (DoF) for different polycrystal
geometries. Traditional regression tools, such as Gaussian
processes or neural networks, typically rely on a fixed num-
ber of training points. (2) The spatial connectivity between
finite element mesh cells preserves important physical fea-
tures, i.e., physical properties are passed between adjacent
mesh cells during the finite element calculations. Matrix-
baseddata struggles to preserve suchgeometric relationships.
(3) The data size is large; each 10-grain polycrystalmesh con-
tains approximately 10,000 mesh cells, making the training
a computationally expensive task.

To tackle the first problem, we propose usingGNN to han-
dle data with different DoFs. Since GNN can be trained on
graphswith different numbers of nodes&edges,mesheswith
different sizes can be potentially handled. This also helps us
solve the second problem since GNN can handle the connec-
tivity within the data. The connections between mesh cells
preserve the spatial feature of the polycrystals. We gener-
ate graphs in which cells are converted to nodes where the
adjacent cells are connected. To tackle the third problem, we
propose training the GNN on subgraphs of finite element
meshes. In this paper, we hope to combine the proposed
approaches and explore stress predictions on polycrystals
using GNN.

The paper is arranged as follows: In Sect. 2 we present
the formulation of the crystal plasticity model and the data
generation process. In Sect. 3 we present the mathematical
model and training details of the message-passing GNNs,
explaining the details of subgraph sampling and training,
with additional explanations of the mesh-graph data con-
version process. In Sect. 4 we present the results of the
predictions on training and testing sets, analysis of comparing
GNN with FEM, and further deployment on unseen datasets
as validation. We briefly conclude the paper in Sect. 5.

2 Crystal plasticity

2.1 Mechanistic model and problem formulation

Crystal plasticity models are employed [40], in which we use
the general theory following Han et al. and the FEM imple-
mentation in FEPX [37, 41]. We begin with the deformation
gradient tensor, defined as F = ∂x

∂X , can be decomposed into
elastic and plastic parts:

F = FeFp = ver∗Fp

where the elastic gradient tensor can be decomposed to lattice
rotation r∗ and elastic stretch ve. Fp pertains plastic slip. x is
the current configuration andX is the reference configuration.
The general schematic of the theory is illustrated in Fig. 1.

The polycrystal will generate a stress field distribution σ .
Under loading, the local form of the equilibrium equation
writes:

∇ · σ + f = 0

where σ is the Cauchy stress (or simply termed “stress”). f
is the body force vector, in our implementation f = 0. The
relationship between the Cauchy stress and the shear stress
writes:

τ = (
det

(
ve
))

σ

For elastic deformations, the stress-strain relationship can
be expressed as the generalized Hooke’s law, which can be
written as the

σ = Cεe (1)

where C is the elastic moduli tensor (or stiffness tensor).
C = [Ci j

]
contains elastic constants to be specified in the

simulation.
After yield, the stress contributes to plastic flow,which can

described by restricted slip. Here, L̂p is the plastic velocity
gradient, which can be written in terms of the plastic slip:

L̂p = ˙(Fp)
(
Fp)−1 (2)

The Lagrangian strain tensor contains both the elastic and
plastic contributions and can expressed in terms of elastic
and plastic strain tensors:

ε = 1

2

(
FeTFe − (

Fp)−T (Fp)−1
)

= εe + ε p

Using Schmid tensor’s symmetric and skew part, the plas-
tic deformation gradient in Eq. (2) can be written in terms of
slip using Schmid tensor’s symmetric and skew parts:

L̂p = D̂p′ + Ŵp

where

D̂p′ =
∑

α

γ̇ αp̂α, and Ŵp = ˙(r∗)
(
r∗)T +

∑

α

γ̇ αq̂α

(3)

123

Computational Mechanics

Fig. 1 Schematic diagram for
the decomposition in different
configurations in crystal
plasticity formulation. The
visualization is inspired by Refs.
[37, 41]

Here, p̂α and q̂α are defined as

p̂α = p̂α(q) = sym(ŝα ⊗ m̂α)

q̂α = q̂α(q) = skw(ŝα ⊗ m̂α)
(4)

where ŝα and m̂α are the slip directions obtained after the
kinetic decomposition visualized in Fig. 1. Note that the sym-
metric and skew parts are expressed as:

sym(·) = 1

2
[(·) + (·)]T

skw(·) = 1

2
[(·) − (·)]T

γ̇ α is the slip system shearing rate. Here, the shearing rate
relates to the resolved shear stress τα via an assumed power
law relationship:

γ̇ α = γ̇0

(|τα|
gα

) 1
m

sgn(τα) (5)

where γ̇0 is the fixed-rate strain rate scaling coefficient, m is
the rate sensitivity exponent. The resolved shear stress τα is
the projection of the crystal stress tensor onto the slip plane
(in that particular slip direction) obtained via the Schmid
tensor’s symmetric part (Eq. (4)):

τα = tr
(
p̂ατ ′)

The evolution of slip system strength gα can be charac-
terized by hardening modulus h0 and the initial strengths
following a power law:

ġα = h0

(
gs(γ̇) − gα

gs(γ̇) − g0

)n

γ̇

where n is the nonlinear Voce hardening exponent. gs(γ̇) is
the initial slip system saturation strength. g0 is the initial slip

system strength. γ̇ is calculated as the summation of the slip
shearing rates, related to resolved shear stresses (Eq. (5)):

γ̇ =
∑

α

∣
∣γ̇ α

∣
∣

For the FEM implementations of this method, some
numerical details are summarized in Appendix A.2.

The boundary conditions (B.C.s) can be specified via

v(x) = v̄

as the velocity B.C.s. In our implementation in FEPX [37],
we apply fixed strain rate in x-direction, ε̇xx = 10−3 s−1,
which only acts on the vx components. The applied strain
rates in other directions are all set to be zero.

2.2 Material parameters and data generation

The rate sensitivity exponent in Eq. (5) is set to be m =
0.02. We employ an isotropic hardening type. The fixed-rate
strain rate is γ̇0 = 1. The simulation targets a total strain of
εxx = 0.01, where the strain increment per step is 0.001.
We generate 90 10-grain periodic polycrystals, in which the
mesh is generated via Neper [36]. We used body-centered
cubic (BCC) crystals with elastic constants C11 = 236.9
[GPa], C12 = 140.6 [GPa], and C44 = 116.0 [GPa]. The
hardeningmodulus h0 = 391.90 [MPa] and the slip strengths
are g0 = 200& gs = 335 [MPa], respectively. The nonlinear
Voce hardening exponent is n = 1. The 90 simulation results
are then converted to graphs, of which 80% (72 graphs) are
selected for the training, and the remaining (18 graphs) are
considered as the testing sets. See Refs. [37, 42] for details
and related FEM implementation.

In our formulation, we hypothesize that the finite element
meshes can be formulated as a graph G = G(V , E). V ∈ R

N

123

Computational Mechanics

Fig. 2 Schematic illustration of the procedures for converting FEM
meshes to graphs. FEM element cell centroids are treated as nodes, and
neighboring cells (sharing 3 common nodes for‘tetra10’ elements)
share an edge

& E ∈ R
M are vertices and edges of the graph,1 where

V = V (εi �→ σi) are the node features (on the finite ele-
ment mesh node i) and E = E

(
�i j

)
(Euclidean distances of

mesh cells, on edge i- j that connects nodes i & j). M & N

are the number of edges and nodes. Each cell of the finite ele-
ment mesh is considered a node. The edges are constructed
according to the connectivity of the nodes. To enhance train-
ing efficiency, the strain data is rescaled by multiplying 104,
and the Euclidean norms are rescaled by multiplying 103,
making all the feed in-out data have a similar scale with the
stress data (∼ 103). Figure 2 indicates how the finite ele-
ment meshes are converted to graph data for training. For the
created tetra10mesh for polycrystals, the centroids were
converted to graph nodes (or vertices). For two adjacentmesh
cells sharing 3 common nodes (or one mesh edge), an edge
is being created on the graph.2 Similar approaches are also
employed formultiscale plasticity and topology optimization
[43, 44]. Some discussions on this graph conversion method
are provided in Appendix A.1.

Here, we aim to learn the nodal map from total strain to
stress, i.e., M : ε ∈ R

6 �→ σ ∈ R
6. We want to use the

GNN to surrogate the model M. By converting the mesh to
graphs, one can construct mapping for polycrystals of irreg-
ular complex geometries since the learning is independent of
the dimensions of the data. The overall strain-stress map for
the physics-based model can be simplified in a form:

σ FEM
i ≡ σi (x) = M ([εi (x),F];p) (6)

where p = (C, g0, gs, h0,m, n, ...) subsumes all the related
material parameters used in the simulation. The modelM(·)
takes strain εi and the configurational map F, and p as input

1 We are using the terms vertex and node interchangeably in this
manuscript.
2 Note that this also respects the conformality in finite element mesh.

and predict stress σi according to the equations presented
above.

In Eq. (6), σi contains six stress elements are defined
as {σ1, σ2, σ3, σ4, σ5, σ6} ≡ {σ11, σ12, σ13, σ22, σ23, σ33} ∈
R
6 (same for the strain components) for the overall stress

& strain tensor elements in the FEM implementation. Note
that {x, y, z} and {1, 2, 3} are used interchangeably in the
subscripts.

3 Message-passing graph neural networks

3.1 Message-passing on edges for nodal inference

Message-passing GNN learns the data relationship on graphs
by passing themessage from edges to nodes (vertex) and con-
ducting nonlinear regression (using multi-layer perceptron,
MLP) in the feature space. One begins with preparing the
“messages” on edges, where the accumulated nodal message

M̃ε

i j (on edge) and edge message M̃�

i j for edge i− j can be
written as:

M̃ε

i j = MSG(n)({εini , εinj }), M̃�

i j = MSG(e)({�i j }) (7)

where M̃ε

i j ∈ R
M×6 (passing the information of strains ε)

and M̃�

i j ∈ R
M×1 (information of Euclidean distances �).

Here, 6 and 1 are the feature space dimensions for nodes and
edges. εini and εinj are the nodal strains (input property) for
nodes i & j ; and �i j are the edge input property, i.e., themesh
link length of edge i− j .

The nodal end edgemessages are passed to the embedding
dimension via two separate MLPs and output h(n)

i j and h(e)
i j

with dimension R
M×emb.

⊕
j is the aggregation operator

that sums over the neighboring node and edge information for
node i . The predicted embedding output is then concatenated
into h̃i j , with dimension R

M×(2emb):

h(n)
i j = MLP(n- Enc)(M̃ε

i j), h(e)
i j = MLP(e- Enc)(M̃�

i j),

h̃(n)
i =

⊕

j∈N(i)

({
h(n)
i j

})
, h̃(e)

i =
⊕

j∈N(i)

({
h(e)
i j

})

(8)

whereN(i) stands for the neighboring node list for node i . To
pass the prediction on nodes, aggregation is being conducted
for the decoded information in the message-passing layer.
The output is then concatenated and fed into the decoding
MLP:

i = MLP(Dec)
({

h̃(n)
i , h̃(e)

i

})

123

Computational Mechanics

Fig. 3 General schematic of the
workflow for using GNN to
learn polycrystal plasticity.
Virtual polycrystals are
generated using FEPX. It is
converted to mesh graphs based
on finite element cells. The
subgraphs are extracted to train
the GNN. The GNN is then
deployed to surrogate
polycrystal plasticity
simulations

This process is the message-passing from edges to nodes.
This aggregation is being done in the embedding dimension
and the output
i ∈ R

N×1 is the properties on the node. The
prediction follows an “equation-MLP” using the given nodal
information and decoded edge information (on the node):

σ̃i = MLP(Eqn)
({

εini ,
i

})
(9)

where σ̃i ∈ R
N×6 are the final stress predictions for the

supervised learning target, which is the optimization goal
σ̃i ∼ σi .

The training uses mean-squared error (MSE) as the objec-
tive L parameterized by trainable variables
 for supervised
training. dim() denotes the dimension of the given data. The
optimization problem writes:

argmin

L(
),

L = 1

dim(σ)

∑

i∈dim(σ)

(σ̃i − σi)
2 (10)

whereMSE is being calculated on all the nodes on the graph,
dim(σ) = N. For a graph, dim() indicates the number of
nodes.

To summarize, from Eqs. (7)∼(9), the overall model can
be simplified as a surrogate model for the ε �→ σ map:

σGNN
i ≡ σ̃i = �

⎛

⎝εini ,
⊕

j∈N(i)

φ
({

εini , εinj

}
, �i j

)
⎞

⎠ (11)

where � and φ represent (combination of) different MLPs.
This formula follows the generalized formula for message-
passing GNN. The prediction is estimated based on the
comparison of stresses predicted by GNN and FEM denoted

in Eqs. (6) and (11). The performance of the model is evalu-
ated using the coefficient of determination (denoted as R2),
which quantifies how well the predicted stress values from
the GNN model match the true FEM values. The R2 score is
calculated as:

R2 = 1 −
∑

N

i=1(σ
FEM
i − σGNN

i)2

∑
N

i=1(σ
FEM
i − σ FEM)2

where σ FEM
i are the stress values predicted by the FEM

model, σGNN
i are the stress values predicted by the GNN

model,σ FEM is themean value of the true FEMstress values,
and N is the number of data points. The R2 value typically
ranges from 0 to 1, with a value of 1 indicating perfect agree-
ment between the predicted and true values, and avalue closer
to 0 indicating poor prediction performance.

3.2 Model framework and training algorithm

Figure 4 illustrates the general architecture of our message-
passing GNN. The node and edge-encoding layer takes in
the nodal and edge properties on edge i− j , and output h(n)

i j

and h(e)
i j , which are then being operated by the aggregation

operator to pass the properties from edges to nodes to obtain
h̃(n)
i and h̃(e)

i in the embedding dimension (Eq. (8)). The con-

catenated output
{
h̃(n)
i , h̃(e)

i

}
(∈ R

N×2emb) is then sent to the

decoding layer to
i ∈ R
N×1.
i and node input property εi

are then being concatenated and input to the equation layer
to give the prediction that aims to approximate σi (Eq. (9)).
The subscripts ()mn denote the elements in the stress & strain
tensors, and ()i j denotes the connection of nodes in graphs.

There is 1 hidden layer for the message-passing MLP (φ)
and equation MLP (�) respectively. The hidden dimension

123

Computational Mechanics

Fig. 4 The general architecture for the GNN. The node-encoding layer
takes the strains on neighboring nodes for the input edges, and the edge-
encoding layer takes the mesh cell link length (i.e. Euclidean norm of
mesh cells). The combined outputs are then fed input to the embedding

space (R2emb).
{
h2emb
i j

}(n)

and
{
h2emb
i j

}(e)
are the decoded nodal and

edge information in the embedding space. The output data is then fed
input to the decoding layer that maps R2emb to R

4. The output of the
decoding layer is then passed to the message-passing operator (i.e.

⊕
),

where the decodedmessages are passed on nodes. The edge information
on nodes {εmn}i are then combined to put into the equation layer, to
predict the corresponding stress components {σmn}i

of the MLP emb = 31. As noted, the input and output
dimensions are 6, that is, εi �→ σi , i = 1, 2, · · · , 6. ReLU
activation function is used for � and tanh activation func-
tion is used for φ. Note that data is “activated” twice in φ for
node- and edge-encoding layers respectively. Since there is
only one hidden layer, the simple and light GNN model also
effectively prevents the issue of oversmoothing [45]. More
details of the model can be seen in Appendix B.

3.2.1 Subgraph sampling and training

Wepropose trainingGNNon subgraphs to learn themapping.
Let Gsub = Gsub(Vsub, Esub) denote the subgraph extracted
from the full graph G with randomly selected nodes, where
Vsub ⊆ V & Esub ⊆ E . Within Vsub, let V̂sub be all the
subgraph nodes that preserve full edges compared with G.
V̂sub\Vsub are the nodes that lose edges during the subgraph
extraction process. Each finite element mesh graph contains
∼ 105 nodes in our implementation. For effective and effi-
cient training of GNN, we propose training GNN on the
subgraph, in which only the V̂sub and the connected edges are

considered in the loss calculation, L = MSE
(
Gsub

(
V̂sub

))
.

V̂sub can be selected by comparing the number of edges per
node of Gsub and G (based on the global node index). The fil-
tered node indices (termed as connection indices) are denoted
as cind. One then uses cind to select “active nodes” to train
based on the loss function.

Figure 5 illustrates the details of the subgraph training
method to capture mapping on nodes. Based on a full graph
converted from FEM meshes (Fig. 2), one first extracts the
subgraph from full graph,3 and then filter out the active nodes
according to the connection index cind, exampled as i , j , k
in Fig. 5 to train according to the loss function. To help the
GNN to be more comprehensively trained according to this
method,wepropose presample the subgraphs before training,
as shown in Fig. 6. For a given full graph G to be trained on
N epochs, one sample of all the subgraphs in the training sets
for the i-th epoch asG(i)

sub. Essentially, for a full graphG being
trained, the GNN is “seeing” new subgraphs for each epoch,
in which it preserves the local feature (i.e., the constitutive
map from strain to stress in our case) of the full graph.

3.2.2 Training algorithm

The training algorithm is shown in Algorithm 1. Finite ele-
ment mesh-based graphs are stored in the form of Torch
Geometric tensors, containing nodal (ε & σ) and edge
properties (�). Subgrahs are extracted based on the train-
ing ratio ξtrain, specifying the ratio of the number of nodes
selected from the full graph G. We use ξtrain = 0.5 for our
training.4 We pre-sample a set of subgraphs in the training set
for each epoch and prepare a list of sampled subgraphs BG

for training implementation. Under each epoch, the unique
subgraph sets per that epoch will be selected, in which the
active nodes are selected based on cind and fed into the loss
function (Eq. (10)). Adam optimizer is selected for gradient-
based optimization. The model is being trained on the 72
graphs for 1000 epochs. Accompanying our subgraph sam-
pling and training method, we use a double loop structure
to first loop the subgraph batch sampled per epoch and then
loop over each subgraph to learn the local feature map (strain
to stress) on the subgraphs. This hierarchical training enables
the GNN to learn on the subgraph generated from different
polycrystals at each model evaluation step, i.e., iteration.

4 Results and discussions

4.1 Training and testing results

Figure 7 displays the overall results of the model training and
testing. The left subfigure shows the prediction evaluations
on the training set, while the right subfigure shows the predic-
tion evaluations on the testing set. Both subfigures illustrate a
high degree of correlation between the predicted and bench-
mark values, with R2 values of 0.993 and Pearson correlation
coefficients of 0.996. The red dashed lines represent the ideal

3 For details one could refer to torch_geometric.utils.subgraph.
4 Half of the graph nodes are sampled from the full graph.

123

https://pytorch-geometric.readthedocs.io/en/2.4.0/_modules/torch_geometric/utils/subgraph.html

Computational Mechanics

Fig. 5 Schematic illustration for
the proposed subgraph training
method using the subgraph
extracted from the full graph.
The subgraph Gsub are extracted
from the sampled nodes from
the full graph G, in which the
nodes containing full-edge
information (e.g., i, j,& k)
were considered in the loss
function during training

Fig. 6 Schematic illustration of
the presampling methods for
subgraphs training to improve
training efficiency and
prediction accuracy. Subgraphs
GN
sub are presampled for N

epochs for the full graph G. All
the FEM graphs in the training
sets are presampled for N
epochs before training

Fig. 7 The predictions of the
trained model on the training &
testing sets for all the stress
components. The left subfigure
is the prediction on the training
set and the right subfigure is on
the testing set. The distribution
of MAE is then visualized in the
right-bottom corners

“y = x” line, indicating predictions equal to benchmark val-
ues. The insets in each subfigure show the mean absolute
error (MAE) distributions, further highlighting the model’s

performance. These results demonstrate the model’s robust
predictive accuracy on both training and testing datasets.

123

Computational Mechanics

Fig. 8 The comparison between
FEM and GNN predictions,
with absolute errors (visualized
on elements with marked color
bars) on von Mises stress. The
unit for stress is [MPa]. The
evaluation of the prediction
quality on von Mises stress for
the example polycrystal. The
unit for stress is [MPa]

Algorithm 1 Training algorithms for message-passing GNN
Require: Graph data files containing G(V , E) converted from finite
element meshes, stored in the form of Torch Geometric tensors;
mapping the nodal input to outputs ε ∈ R

N×6 ⊕ � ∈ R
M×1 �→ σ ∈

R
N×6. Number of training graphs NG (= 72).

Hyperparameters: Subgraph ratio: ξtrain; The embedding dimension
emb; Number of epochs Epochs; Select optimizer Adam(·); pre-
sampled subgraphs list BG(Epochs) from the training graphs.
Load pretrained GNN model GNN[·].
 optional based on existence
for ep < Epochs do

B(ep)
G ← BG(ep)

for IDG in NG do
Gsub ← B(ep)

G (IDG)
 obtain pre-sampled subgraph
cind ← F (Gsub, G).
 F(·): filtering function to sort

connection indices
σ̃ ← GNN [Gsub (ε, �)]
 based on defined GNN in Sect. 3.2.
L ← MSE(σ̃ [cind], σ [cind])
 only active nodes are included

in the loss.
GNN(
)

backward←−−−−− L.
 backpropagation
Clips gradient norm, & optimization: argmin
 L.
 Adam(·)

end for
ep+ =1

end for
Save the trained GNN model GNN.
 requires the specified device
for testing.

4.2 Analysis on finite elementmeshes

The von Mises stresses are calculated on each cell as5

σvM =
√
1

2

[
(σ1−σ4)2+(σ4−σ6)2+(σ6 − σ1)2+6(σ 2

2 +σ 2
3 +σ 2

5)
]

(12)

5 Using the stress notation introduced in Sect. 2.2.

are visualized on the virtual polycrystals (Fig. 8) compar-
ing FEM and GNN, accompanied by the absolute errors.
The general stress distribution trends are well learned on the
meshes, demonstrated by the stress data distribution. Fig-
ure 8 quantitatively verifies this observation with a high R2

value of 0.94 and Pearson coefficient of 0.99. The overall
MAE for the von Mises stress for this polycrystal is 56.63
[MPa], verifying and quantifying the low deviation of the
GNN predictions from the benchmark. Combined analysis
from Figs. 18 and 8 detailedly illustrates GNN’s effective
learning. Note that because the GNN is trained directly on
the stress tensor components, accurate predictions of the von
Mises stress are inherently expected due to the model’s effi-
cient learning capabilities.

One of the main advantages of the proposed approach is
that it reduces the computational burden for plasticity mod-
eling. Figure 9 presents the speed-up evaluation comparing
the GNN and FEM methods by comparing the FEM and
GNN computational time on 10 randomly selected polycrys-
tals in the testing sets. From the subfigure, one observes that
the time does not vary much for the 10 polycrystal sam-
ples (blue & red dots). The average speed-up is estimated
at 158, showing that the proposed GNN plasticity can sig-
nificantly accelerate plasticity modeling with high-accuracy
predictions. Several reasons could contribute to this speed-
up: (i) In the FEM model, the solver updates stress fields
iteratively for each step. This involves nested loops to account
for the nonlinear plasticity model, resulting in a significantly
increased computational load [36]. (ii) The forward evalu-
ation is computationally efficient in PyTorch [46]. (iii) Our
model size is compact (Eq. (6) with small embedding size);

123

Computational Mechanics

Fig. 9 Speed up time comparing constitutivemodel evaluations of FEM
and GNN from 10 randomly selected polycrystal samples. The models
are evaluated on a single CPU node on the Sherlock system [47]

this lightweight nature further contributes to the high-speed
evaluation mentioned in (ii).

4.3 Deployment on validation dataset

To thoroughly analyze the generalizability of the proposed
GNN method, we extend our evaluation beyond the testing
sets by running 30 unseen simulations with newly gener-
ated polycrystals as the validation set and estimating the
prediction quality of the GNN. Figure 10 provides an anal-
ysis of another polycrystal, achieving an overall R2 value
of 0.993 for stress components. The von Mises stresses are
predicted with high accuracy, as demonstrated by the qualita-
tive observations on the left and quantitative comparisons on
the right, yielding R2 values of 0.94 and 0.96. It demon-
strates the GNN-based plasticity method generalizes well
beyond the training and testing sets,maintaining high-quality
predictions on unseen polycrystals. Notably, the polycrystal
meshes used in the training, testing, and validation datasets
have varying dimensions.Conducting inference on such sam-
ples would be nearly impossible with traditional regression
methods like vanilla MLPs or CNNs, highlighting the effec-
tiveness of the GNN approach. The overall R2 score for the
validation set is 0.992 and a Pearson coefficient of 0.996 (see
Fig. 10).

Figure 11 presents an error analysis that compares train-
ing and testing sets with validation data sets in all stress
components (σ1 to σ6), by directly visualizing the MAE dis-
tribution. The distributions for the training and testing sets
closely resemble those of the validation datasets, validating
that the proposed GNN plasticity method does not overfit

and generalizes well to the stress distributions across various
polycrystals.

4.4 Limitations of the proposedmethod

With the demonstrated fast, accurate, and generalizable pre-
dictability of our method on polycrystal plasticity, there
are still several limitations. (1) The model is not able to
predict the loading path, instead, we are demonstrating
the map between strain-stress snapshots that are learn-
able from our GNN model. (2) Currently, the model is
not agnostic to the given material parameters (i.e., elas-
tic moduli, hardening coefficients, etc.).6 The test cases are
material-dependent. (3) Uncoupled stress components with
the loading orientation are not accurately captured. By tak-
ing all the stress components as a full dataset, since loading
coupled stress components

{
σi j | i = 1, j = 1, 2, 3

}
(using

general tensor notation) and uncoupled stress components{
σi j | i �= 1, j = 1, 2, 3

}
are not on the same scale, it is quite

challenging for the GNN to accurately predict all the stress
components. These are valuable future directions that con-
tinue with our current model.

5 Summary and conclusions

In this paper, we introduce a novel approach for stress predic-
tions using graph neural networks with subgraph training in
polycrystal plasticity. The key advantages of our method are:
(1)Handlingdatawith varyingdimensions—ourGNNmodel
accommodates different node counts generated from various
polycrystal meshes, allowing for flexible input data; (2) Effi-
cient subgraph training—by randomly sampling subgraphs
from polycrystals containing ∼ 105 nodes and edges,7 we
reduce the computing memory requirements; (3) Preserving
geometric features—our GNNmodel incorporates nodal and
edge information, preserving the spatial distribution of stress
and strain, thereby enhancing the “learnability" of the data.

Our numerical experiments demonstrate that the GNN
model accurately predicts stress components, achieving R2

scores greater than 0.99 on the training, testing, and valida-
tion datasets. Additionally, the von Mises stress predictions
for the polycrystals indicate that the proposed GNN method
accurately captures von Mises stress features. The model
generalizes well beyond the training and testing data, as evi-
denced by the similar MAE distribution across the training,
testing, and validation datasets. The proposed GNN method
speeds up stress predictions in the plastic regime more than
150 times comparedwith the benchmark finite elementmeth-
ods.

6 According to the data is generated for a defined material in Sect. 2.2.
7 I.e., on the order of.

123

Computational Mechanics

Fig. 10 The evaluation of the
prediction quality on von Mises
stress for an example polycrystal
in the validation dataset. The left
figures visualize the comparison
between FEM and GNN
predicted von Mises stress and
absolute errors (visualized on
elements with color bars
marked). The right figure shows
the direct map between FEM
and GNN predicted von Mises
stresses

Fig. 11 Comparison of absolute error distributions between the training, testing, and validation datasets

We also briefly outline the limitations of our framework:
stress components that are uncoupled from the loading direc-
tion are not accurately captured. Only the map between
stress-strain snapshots is the learning target for our GNN.
However, these uncoupled stress components will not evi-
dently affect the effectiveness of theGNNmethod inmechan-
ical analysis, particularly when estimating the critical stress

under plastic deformation as the vonMises stresses are accu-
rately captured.

This work outlooks surrogate modeling of polycrystal
plasticity using graphs to demonstrate the transient strain-
stress map can be learned by GNNs. Future work could
include incorporating physics-informed features into the
framework and tacklingmore path-dependent plasticitymod-
eling tasks, leaving open space to the field.

123

Computational Mechanics

Appendix A Data preparation

Appendix A.1 Graph conversionmethods

The training graphs were converted from the FEMmesh cells
and the neighboring connections (Sect. 2). There were three
main considerations for converting the graph in such a way:
(1) The numerical values fromFEMare solved onmesh cells.
Hence, directly converting mesh elements to nodes makes
defining the map from strain to stress much more straight-
forward. (2) Such FEM graphs are agnostic to the order of
the test functions used in our FEM calculations. (3) In some
sense, only the “first-order” connections between the mesh
cells are created as edges, making the conversion process
much faster and more efficient. The FEM graphs converted
from this method are inspired by respecting the conformality
of FEM, in which two common mesh elements share the
edge. One of the other intuitive ways is to use the FEM
node as a graph vertex directly, where nodal connections are
edges. The left subfigure of Fig. 12 (Node graph) illustrates
this graph conversion method. As mentioned previously, the
drawbacks are that it is hard to define the strain-stress map
on the graphs, that elements of higher order introduce redun-
dant nodes, and that the edges do not preserve the connections
between element cells. The right subfigure of Fig. 12 (Mesh
graph) illustrates the graph using the mesh cell method we
proposed.

Appendix A.2 Finite element implementation of
crystal plasticity

Here we briefly discuss the implementation of crystal plas-
ticity using FEM using FEPX. Note that only the main steps
are summarized herein for a clearer understanding of the
manuscript; for numerical implementation details, please
refer to Refs. [37, 42]. For the elastic deformation, the cubic
symmetry for the stiffness matrix is employed, representing
the stress-strain relationship following:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

τ11
τ22
τ33
τ23
τ13
τ12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C12
C12 C11 C12
C12 C12 C11

C44
C44

C44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

e11
e22
e33
2e23
2e13
2e12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.1)

where ei j and τi j are the shear strain and stress.
In the kinematic evolution, themotion can be split into vol-

umetric and deviatoric parts,8 inwhich the elasticity equation

8 For convenience of numerical implementation.

relating the Kirchhoff stress and elastic strain writes:

tr{τ } = κ

3
tr{ee}, {τ ′} = [

C
′] {ee′ } (A.2)

where κ is bulk modulus, following the relationship κ =
3(C11 + 2C12). For the components in

[
C

′], they relates to
[C] as C′

11 = C11 − C12, C′
22 = C11 − C12, and C′

33 = C′
44 =

C′
55 = C44 based on cubic symmetry.
The spatial time-rate difference of the elastic strain can be

expressed in finite difference scheme:

{ėe} = 1

�t

({ee} − {ee0}
)

(A.3)

where {ee} and {ee0} are the elastic strains at the end and
beginning of a time step. �t is the time step.

For the deviatoric portion of the motion, the deformation
rate can be expanded in the form (from Eq. (3))

{D′} = 1

�t

{
ee

′} +
{
D̂p

}
+
[
Ŵp

] {
ee

′} − 1

�t

{
ee

′
0

}

(A.4)

The deviatoric portion of the Cauchy stress can be updated
following:

{
σ ′} = [s]

({
D′} − {h}) (A.5)

where

[s]−1 = β

�t

[
C

′]−1 + β [m]

{h} =
[
Ŵp

] {
ee

′} − 1

�t

{
ee

′
0

} (A.6)

in which β = det(ve), and [m] is the map from the devia-
toric Kirchhoff stress τ ′ to D̂p.

The interpolation function [N(ξ, η, ζ)] interpolates the
nodal coordination points and the velocity fields via {x} =
[N(ξ, η, ζ)] {X} and {v} = [N(ξ, η, ζ)] {V} for the global
assembly. Under the Galerkin formulation, weight functions
were used to construct the residual, where the weight func-
tion ψ can be interpolated in the same way:

{ψ} = [N(ξ, η, ζ)] {�} (A.7)

To achieve equilibrium for the system, one would solve
the global weighted residual equation:

Ru =
∫

B
ψ · (∇ · σ + f) dB = 0 (A.8)

where B is the continuum body to be solved.

123

Computational Mechanics

Fig. 12 Schematic illustration
for different graphs obtained
from FEMmesh nodes and cells

After the global assembly, one could solve the nonlinear
system to obtain the velocity field V from9:

[[Kd] + [Kv]] {V} = {Fa} + {Fd} + {Fv} (A.9)

where the details of calculating the elements in the global
stiffness matrix and force vectors can be checked in Ref.
[37].

Appendix B Graph neural networks

Appendix B.1 Training procedure

Since the model is directly trained on the stress data (∼ 103),
the loss is the MSE loss between the predicted & bench-
mark stress, hence displaying a large loss also on the scale
of 103. Based on our observations, the training loss shows
a minimal decrease beyond 1000 epochs, indicating that the
model has effectively converged. To further investigate this,
we extended the training to 3000 epochs, and the correspond-
ing loss curve is presented in Fig. 13.

It is important to note that the GNN is iteratively trained
on 72 graphs for each epoch. Thus, training for 3000 epochs
corresponds to approximately 216,000 iterations. The figure
shows that the loss stabilizes after approximately 5000 iter-
ations, plateauing to fluctuating values without significant
further reduction. This behavior suggests that 1000 epochs
are sufficient for the GNN to achieve “convergence”.

We believe this demonstrates that the choice of 1000
epochs is appropriate for training the GNN, as it ensures
convergence without unnecessary computational overhead.

Appendix B.2 Model characterization

Figure 14 shows the model prediction quality with and with-
out message-passing (MP) layers tested with full graph ratio.
Interestingly, for this test, both models perform well with
high-quality predictions. However, it can be seen that the

9 Nonlinear in the sense that [Kd] and [Kv] depends on [V].

Fig. 13 Loss curve w.r.t. iterations during the training process for 3000
epochs

predictions with MP have more high-quality predictions by
comparing the blue and red bars and comparing the light
blue with the yellow bars at the relatively lower R2 scores
regime (< 0.99). This suggests that the message-passing
mechanism improves GNN’s predictability but does not sig-
nificantly improve the model.

Figure 15a visualizes the Pearson correlations between
the FEM calculated stress components, indicating the corre-
lations between σ1 j , j = 1, 2, 3 is much higher than that
of other stress components. Figure 15b visualizes the Pear-
son correlations between the stress components predicted
by GNN and FEM. It can be observed that GNN predicts
much more accurately for stress components σ1 j . This sug-
gests that the loading-coupled stress components,whose both
numerical values and correlations are higher, are much more
well-predicted by the GNN, which is consistent with the
physical scenario in which 1-directional loading is applied.

Figure 16 presents the R2 scores for GNN predictions
trained with varying subgraph ratios. The results indicate
that a subgraph ratio of 0.25 does not yield accurate predic-
tions. However, increasing the ratio to 0.5 allows the GNN
to achieve an overall R2 = 0.994 for both training and test-

123

Computational Mechanics

Fig. 14 R2 values comparing GNN with and without message-passing
mechanisms for full-graph training

ing sets, with no low-accuracy samples observed. Per our
standard, R2 > 0.99 signifies a high-accuracy model. These
findings suggest that a subgraph ratio of 0.5 is a decent bal-
ance, enabling the GNN to maintain high accuracy while
preserving the essential information of the graph.

Appendix C Additional results

Appendix C.1 Predictions from GNN

Accompanying the high R2 values, to directly verify the high-
quality predictions using GNN, the stress values on each

Fig. 16 R2 scores from GNN predictions based on different subgraph
ratios

finite element cell for both the training and testing sets are
visualized (Fig. 17). The general data trends are well cap-
tured. With von Mises stress as label marks, the predictions
preserve the stress distribution among mesh cells for both
the training and testing sets, indicating no overfitting for the
proposed method. Figure 7 demonstrates the quality of the
predictions with direction prediction data visualization and
high R2 scores.

Associated with the visualization of the data (Fig. 17), we
directly visualize the stress distributions on the virtual poly-
crystals (Fig. 18) for a test polycrystal with R2 of 0.994. Data
scales are well captured by the GNN for each stress compo-
nent σi , with comparably small absolute errors (Fig. 18).
GNN predicts much more accurately in the active loading
directions by learning different stress value ranges for each
component.

Fig. 15 Pearson correlation between the stress components. a Self-correlations for the FEM calculated stress components. b Correlations for
calculated stress components predicted by GNN and FEM

123

Computational Mechanics

Fig. 17 The comparison between the ground truth (by FEPX) and pre-
dictions on the strain-stress maps for all the stress & strain components.
The upper figures correspond to the training sets. The bottom figures

correspond to the testing sets. The data points are visualized according
to the calculated von Mises stresses

Following the analysis procedure, we demonstrate the
effective learning of the GNN by analyzing two other poly-
crystals with overall R2 values of 0.992 and 0.991 from
inferences, respectively (Figs. 19 and 20). From the upper
left figures, one observes very similar von Mises ranges
are predicted by FEM and GNN, accompanied by low
absolute errors. The quantitative comparison in the right fig-
ures confirms the qualitative observation for the von Mises
stress inferences, with R2 and Pearson coefficients of 0.96
and 0.99 for both the two polycrystals, respectively. Also,
the two methods both predict similar stress component
ranges demonstrated in the bottom left figures, illustrated
by different color histograms. To summarize, these results
demonstrate a few aspects of the robustness of the proposed
GNN plasticity modeling: (1) overall stress components are
predicted well by the high R2 values, with no overfitting

for testing sets; (2) general trends of stress components
are captured; (3) von Mises stress are well learned verified
both qualitatively and quantitatively, demonstrated via simi-
lar stress distribution and high R2 and Pearson coefficients.
Specifically, von Mises is not introduced (or constrained)
in the training process. Additionally, the plasticity model is
effectively learned from a limited amount of training data.

Figure 20 also reflects the potential limitation of the pro-
posed method: the distribution of the stress components σ4,
σ5, and σ6 are not fully captured by the GNN. Qualita-
tively, onemay argue that the variance of the data distribution
around zero is not learned via GNN. This can be explained
by the low-stress value range for the related stress compo-
nents uncoupled with the loading direction (i.e., 1-direction).
However, as can be visually observed and with Eq. (12), the
stresses in the uncoupled directions do not significantly con-

123

Computational Mechanics

Fig. 18 The comparison between FEM and GNN predictions, with absolute errors of stress components on one example grain in the testing sets
for stress components σ1, σ2 and σ3 (visualized on elements with marked color bars). The unit for stress is [MPa]

Fig. 19 The evaluation of the prediction quality on von Mises stress
for another example polycrystal. The upper left figures visualize the
comparison between FEM and GNN-predicted von Mises stress and
absolute errors (visualized on elements with color bars marked). The

bottom left figures visualize the distributions of different stress compo-
nents. The right figure shows the direct map between FEM and GNN
predicted von Mises stresses

123

Computational Mechanics

Fig. 20 The evaluation of the prediction quality on von Mises stress
for another example polycrystal. The upper left figures visualize the
comparison between FEM and GNN predicted von Mises stress and
absolute errors (visualized on elements with colorbars marked). The

bottom left figures visualize the distributions of different stress compo-
nents. The right figure shows the direct map between FEM and GNN
predicted von Mises stresses

Fig. 21 The comparison between the ground truth (by FEPX) and predictions on the strain-stress maps for all stress-strain components. The data
points are visualized according to the calculated von Mises stresses

tribute to the vonMises stresses, considering the high-quality
predictions on the von Mises stresses (Figs. 19 and 20). The
stress components correlated to the loading direction match
well with the benchmark as illustrated in the left-bottom fig-
ure.

Figure 21 shows the comparison of the stress components
predictions per cell for the overall ε �→ σ and ε11 �→ σ11
maps, respectively. The GNN inferences effectively preserve
the stress data trends, including both the data distribution
and the von Mises stress values. Interestingly, one may

123

Computational Mechanics

Fig. 22 The overall prediction results on the validation dataset and the
absolute error distribution

discern qualitatively higher discrepancies between the two
methods in the “low-stress regime.” This observation aligns
with the discussion on the limitations highlighted in Fig. 20:
the values for stress components around zero are not accu-
rately captured. Nonetheless, the model demonstrates high
performance and provides good overall predictions on the
strain-stress maps.

Figure 22 presents the overall predictions of stress compo-
nents for the 30 unseen simulations, demonstrating accurate
predictions with an R2 value of 0.992 and a Pearson coeffi-
cient of 0.996. These results indicate that the proposed GNN

method not only generalizes well within the provided train-
ing and testing sets (i.e., interpolation) but also effectively
extrapolates to data outside the given data regime.

Appendix C.2 Discussions on loading-coupled
directions

Figures 23 and 24 illustrate the 1-directional strain-to-stress
mapping, comparing FEM and GNN predictions alongside
Figs. 17 and 21. The results show that the GNN achieves
significantly more accurate predictions for these maps. We
hypothesize that this improved accuracy arises from the
larger value range in the loading direction (and its coupled
components), which may enhance the model’s ability to pre-
dict the map more effectively.

To further elaborate, Fig. 25 presents the predicted stress
components σ3, σ4, and σ5 (uncoupled from the loading
direction), corresponding to Fig. 18. The predictions for these
loading-direction-uncoupled components are observably less
accurate. This visualization supports and reinforces our ear-
lier discussions.

Appendix C.3 Error distribution for stress
components

Figure 26 visualizes the prediction error distribution corre-
sponding to Fig. 11, comparing the error distributions across
different stress components. The results confirm that the
errors remain consistent across the training, testing, and val-
idation datasets. Additionally, the data range shows minimal
variation between the training and testing sets and the valida-
tion set. This serves as further evidence supporting Fig. 11,
demonstrating the strong generalizability of the GNN.

123

Computational Mechanics

Fig. 23 Comparison on FEM and GNN predictions on the ε1-σ1 mapping between the training and testing sets corresponding to Fig. 7

Fig. 24 Comparison on FEM and GNN predictions on the ε1-σ1 mapping for the validation sets corresponding to Fig. 21

123

Computational Mechanics

Fig. 25 The comparison between FEM and GNN predictions for the loading uncoupled directions, with absolute errors of stress components on
one example grain in the testing sets for stress components σ4, σ5 and σ6 (visualized on elements with marked color bars). The unit for stress is
[MPa]

Fig. 26 Error distribution between the training & testing sets and the validation dataset (marked as unseen) for comparing the six stress components

123

Computational Mechanics

Acknowledgements Theauthor acknowledges support from theEnlight
FoundationGraduate Fellowship via Leland Stanford Junior University.
The author thanks Myung Chul Kim of Stanford University for discus-
sions on presampling algorithms for training GNNs, Romain Quey of
CNRS for discussions on the implementation of Neper and FEPX for
simulation visualizations, and Matthew Kasemer of The University of
Alabama for the general comments on GNN, discussions on plastic-
ity theory, and on the FEPX implementation. The author also thanks
the anonymous reviewers for their invaluable comments, which signif-
icantly improved the manuscript.

Data Availability The associated codes and data are available at https://
gitlab.com/hanfengzhai2/GNN-FEM-PolyPlas. All data and code are
published under MIT License. The virtual polycrystals are generated
and visualized using Neper, accessible at https://neper.info/, The FEM
plasticity simulations utilize the open-source software package FEPX,
publicly available at https://fepx.info/index.html [37, 42].

Declarations

Conflicts of Interest None.

References

1. von Mises R (1913) Mechanik der festen körper im plastisch-
deformablen zustand, Nachrichten von der Gesellschaft der Wis-
senschaften zu Göttingen. Mathematisch-Physikalische Klasse
1913:582–592

2. Huber MT (1904) Właściwa praca odkształcenia jako miara
wytezenia materiałłu, Czasopismo Techniczne, vol 22

3. Azushima A, Kopp R, Korhonen A, Yang D, Micari F, Lahoti
G, Groche P, Yanagimoto J, Tsuji N, Rosochowski A, Yanagida
A (2008) Severe plastic deformation (SPD) processes for metals.
CIRPAnn57:716–735. https://doi.org/10.1016/j.cirp.2008.09.005

4. Krempl E (1997) Design for fatigue resistance. ASM Interna-
tional, vol 20, pp 516–532. https://doi.org/10.31399/asm.hb.v20.
a0002469

5. Jiang T,Wu C, Spinella L, Im J, Tamura N, KunzM, Son H-Y, Gyu
Kim B, Huang R, Ho PS (2013) Plasticity mechanism for copper
extrusion in through-silicon vias for three-dimensional intercon-
nects. Appl Phys Lett. https://doi.org/10.1063/1.4833020

6. Hu D, Grilli N, Yan W (2023) Dislocation structures formation
induced by thermal stress in additive manufacturing: multiscale
crystal plasticity modeling of dislocation transport. J Mech Phys
Solids 173:105235. https://doi.org/10.1016/j.jmps.2023.105235

7. Mitchell JA (2011) A nonlocal, ordinary, state-based plasticity
model for peridynamics, Technical Report SAND2011-3166, San-
dia National Laboratories

8. Drucker DC, Prager W (1952) Soil mechanics and plastic analysis
for limit design. Q Appl Math 10:157–165

9. DouW,XuZ,HuH,HuangF (2021)Ageneralized plasticitymodel
incorporating stress state, strain rate and temperature effects. Int J
Impact Eng 155:103897. https://doi.org/10.1016/j.ijimpeng.2021.
103897

10. Sills RB, Bertin N, Aghaei A, Cai W (2018) Dislocation networks
and the microstructural origin of strain hardening. Phys Rev Lett.
https://doi.org/10.1103/PhysRevLett.121.085501

11. Luan B, Robbins MO (2021) Friction and plasticity in contacts
between amorphous solids. Tribol Lett. https://doi.org/10.1007/
s11249-021-01429-7

12. Chen J, Furushima T (2024) Effects of intergranular deformation
incompatibility on stress state and fracture initiation at grain bound-

ary: experiments and crystal plasticity simulations. Int J Plasticity
180:104052. https://doi.org/10.1016/j.ijplas.2024.104052

13. Alharbi HF, Kalidindi SR (2015) Crystal plasticity finite element
simulations using a database of discrete Fourier transforms. Int J
Plasticity 66:71–84. https://doi.org/10.1016/j.ijplas.2014.04.006

14. NeedlemanA,Asaro R, Lemonds J, PeirceD (1985) Finite element
analysis of crystalline solids. Comput Methods Appl Mech Eng
52:689–708. https://doi.org/10.1016/0045-7825(85)90014-3

15. Kalidindi S, Bronkhorst C, Anand L (1992) Crystallographic tex-
ture evolution in bulk deformation processing of FCC metals.
J Mech Phys Solids 40:537–569. https://doi.org/10.1016/0022-
5096(92)80003-9

16. RaissiM,YazdaniA,KarniadakisGE (2020)Hidden fluidmechan-
ics: learning velocity and pressure fields from flow visualizations.
Science 367:1026–1030. https://doi.org/10.1126/science.aaw4741

17. Zhai H, Zhou Q, Hu G (2022) Predicting micro-bubble dynamics
with semi-physics-informed deep learning. AIP Adv. https://doi.
org/10.1063/5.0079602

18. Guo Z, Roy Chowdhury P, Han Z, Sun Y, Feng D, Lin G, Ruan
X (2023) Fast and accurate machine learning prediction of phonon
scattering rates and lattice thermal conductivity. npj ComputMater.
https://doi.org/10.1038/s41524-023-01020-9

19. GuoZ,HanZ, FengD,LinG,RuanX (2024) Sampling-accelerated
prediction of phonon scattering rates for converged thermal con-
ductivity and radiative properties. npj Comput Mater. https://doi.
org/10.1038/s41524-024-01215-8

20. Zhai H, Yeo J (2022) Computational design of antimicrobial active
surfaces via automated Bayesian optimization. ACS Biomater Sci
Eng 9:269–279. https://doi.org/10.1021/acsbiomaterials.2c01079

21. Zhai H, Yeo J (2023) Controlling biofilm transport with
porous metamaterials designed with Bayesian learning. J Mech
Behav Biomed Mater 147:106127. https://doi.org/10.1016/j.
jmbbm.2023.106127

22. Zhai H, Hao H, Yeo J (2024) Benchmarking inverse optimiza-
tion algorithms for materials design. APL Mater. https://doi.org/
10.1063/5.0177266

23. Yang Z, Papanikolaou S, Reid ACE, Liao W-k, Choudhary AN,
Campbell C, Agrawal A (2020) Learning to predict crystal plastic-
ity at the nanoscale: deep residual networks and size effects in
uniaxial compression discrete dislocation simulations. Sci Rep.
https://doi.org/10.1038/s41598-020-65157-z

24. Salmenjoki H, AlavaMJ, Laurson L (2018)Machine learning plas-
tic deformation of crystals. Nat Commun. https://doi.org/10.1038/
s41467-018-07737-2

25. Mińkowski M, Laurson L (2023) Predicting elastic and plastic
properties of small iron polycrystals by machine learning. Sci Rep.
https://doi.org/10.1038/s41598-023-40974-0

26. Yang Z, Buehler MJ (2022) Linking atomic structural defects to
mesoscale properties in crystalline solids using graph neural net-
works. npj Comput Mater. https://doi.org/10.1038/s41524-022-
00879-4

27. AmigoN, Palominos S, Valencia FJ (2023)Machine learningmod-
eling for the prediction of plastic properties in metallic glasses. Sci
Rep. https://doi.org/10.1038/s41598-023-27644-x

28. Dai M, Demirel MF, Liang Y, Hu J-M (2021) Graph neural net-
works for an accurate and interpretable prediction of the properties
of polycrystalline materials. npj Comput Mater. https://doi.org/10.
1038/s41524-021-00574-w

29. Fan Z, Ma E (2021) Predicting orientation-dependent plastic sus-
ceptibility from static structure in amorphous solids via deep learn-
ing. Nat Commun. https://doi.org/10.1038/s41467-021-21806-z

30. Thomas A, Durmaz AR, Alam M, Gumbsch P, Sack H, Eberl C
(2023)Materials fatigue prediction using graph neural networks on
microstructure representations. Sci Rep. https://doi.org/10.1038/
s41598-023-39400-2

123

https://gitlab.com/hanfengzhai2/GNN-FEM-PolyPlas
https://gitlab.com/hanfengzhai2/GNN-FEM-PolyPlas
https://gitlab.com/hanfengzhai2/GNN-FEM-PolyPlas/-/blob/main/LICENSE
https://neper.info/
https://fepx.info/index.html
https://doi.org/10.1016/j.cirp.2008.09.005
https://doi.org/10.31399/asm.hb.v20.a0002469
https://doi.org/10.31399/asm.hb.v20.a0002469
https://doi.org/10.1063/1.4833020
https://doi.org/10.1016/j.jmps.2023.105235
https://doi.org/10.1016/j.ijimpeng.2021.103897
https://doi.org/10.1016/j.ijimpeng.2021.103897
https://doi.org/10.1103/PhysRevLett.121.085501
https://doi.org/10.1007/s11249-021-01429-7
https://doi.org/10.1007/s11249-021-01429-7
https://doi.org/10.1016/j.ijplas.2024.104052
https://doi.org/10.1016/j.ijplas.2014.04.006
https://doi.org/10.1016/0045-7825(85)90014-3
https://doi.org/10.1016/0022-5096(92)80003-9
https://doi.org/10.1016/0022-5096(92)80003-9
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1063/5.0079602
https://doi.org/10.1063/5.0079602
https://doi.org/10.1038/s41524-023-01020-9
https://doi.org/10.1038/s41524-024-01215-8
https://doi.org/10.1038/s41524-024-01215-8
https://doi.org/10.1021/acsbiomaterials.2c01079
https://doi.org/10.1016/j.jmbbm.2023.106127
https://doi.org/10.1016/j.jmbbm.2023.106127
https://doi.org/10.1063/5.0177266
https://doi.org/10.1063/5.0177266
https://doi.org/10.1038/s41598-020-65157-z
https://doi.org/10.1038/s41467-018-07737-2
https://doi.org/10.1038/s41467-018-07737-2
https://doi.org/10.1038/s41598-023-40974-0
https://doi.org/10.1038/s41524-022-00879-4
https://doi.org/10.1038/s41524-022-00879-4
https://doi.org/10.1038/s41598-023-27644-x
https://doi.org/10.1038/s41524-021-00574-w
https://doi.org/10.1038/s41524-021-00574-w
https://doi.org/10.1038/s41467-021-21806-z
https://doi.org/10.1038/s41598-023-39400-2
https://doi.org/10.1038/s41598-023-39400-2

Computational Mechanics

31. Pagan DC, Pash CR, Benson AR, Kasemer MP (2022) Graph neu-
ral network modeling of grain-scale anisotropic elastic behavior
using simulated and measured microscale data. npj Comput Mater.
https://doi.org/10.1038/s41524-022-00952-y

32. Yee Tung S, Ee Siang Tan (2023) Influence of curing agent on ther-
mal conductivity and mechanical properties of epoxy composite
with silicon nitride nanofillers. In: IOP conference series: materi-
als science and engineering, vol 1284, p 012052. https://doi.org/
10.1088/1757-899X/1284/1/012052

33. HuangW,Zhu J-Y, SongC-Y, SunL, Zheng J-P (2024)Mesh-based
GNN surrogates for time-independent PDEs. Sci Rep 14:53185.
https://doi.org/10.1038/s41598-024-53185-y

34. Mozaffar M, Bostanabad R, Chen W, Ehmann K, Cao J, Bessa
MA (2019) Deep learning predicts path-dependent plasticity. Proc
Natl Acad Sci 116:26414–26420. https://doi.org/10.1073/pnas.
1911815116

35. Fuhg JN, van Wees L, Obstalecki M, Shade P, Bouklas N, Kase-
mer M (2022) Machine-learning convex and texture-dependent
macroscopic yield from crystal plasticity simulations. Materialia
23:101446. https://doi.org/10.1016/j.mtla.2022.101446

36. Quey R, Dawson P, Barbe F (2011) Large-scale 3d random poly-
crystals for the finite element method: generation, meshing and
remeshing. Comput Methods Appl Mech Eng 200:1729–1745.
https://doi.org/10.1016/j.cma.2011.01.002

37. Dawson PR, Boyce DE (2015) Fepx—finite element polycrystals:
Theory, finite element formulation, numerical implementation and
illustrative examples. arXiv:1504.03296

38. Maurizi M, Gao C, Berto F (2022) Predicting stress, strain and
deformation fields in materials and structures with graph neural
networks. Sci Rep. https://doi.org/10.1038/s41598-022-26424-3

39. Gulakala R, Markert B, Stoffel M (2023) Graph neural network
enhanced finite element modelling. PAMM. https://doi.org/10.
1002/pamm.202200306

40. Aifantis EC (1987) The physics of plastic deformation. Int J Plas-
ticity 3:211–247. https://doi.org/10.1016/0749-6419(87)90021-0

41. Han C-S, Gao H, Huang Y, Nix WD (2005) Mechanism-based
strain gradient crystal plasticity-I. Theory. J Mech Phys Solids
53:1188–1203. https://doi.org/10.1016/j.jmps.2004.08.008

42. Quey R, Kasemer M (2022) The neper/fepx project: free/open-
source polycrystal generation, deformation simulation, and post-
processing. In: IOP conference series: materials science and
engineering, vol 1249, p 012021. https://doi.org/10.1088/1757-
899X/1249/1/012021

43. Vlassis NN, Sun W (2023) Geometric learning for computational
mechanics part II: graph embedding for interpretable multiscale
plasticity. Comput Methods Appl Mech Eng 404:115768. https://
doi.org/10.1016/j.cma.2022.115768

44. Gavris GB, Sun W (2024) Topology optimization with graph neu-
ral network enabled regularized thresholding. Extreme Mech Lett
71:102215. https://doi.org/10.1016/j.eml.2024.102215

45. Rusch TK, Bronstein MM, Mishra S (2023) A survey on over-
smoothing in graph neural networks. arXiv:2303.10993

46. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z,
Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic dif-
ferentiation in PyTorch. In: NIPS 2017 Workshop Autodiff, pp
–. https://openreview.net/forum?id=BJJsrmfCZ, Accessed 28 Oct
2017 (modified: 28 Oct 2017)

47. University S (2024) Sherlock cluster documentation. https://www.
sherlock.stanford.edu/docs. Accessed: 05 08 2024

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1038/s41524-022-00952-y
https://doi.org/10.1088/1757-899X/1284/1/012052
https://doi.org/10.1088/1757-899X/1284/1/012052
https://doi.org/10.1038/s41598-024-53185-y
https://doi.org/10.1073/pnas.1911815116
https://doi.org/10.1073/pnas.1911815116
https://doi.org/10.1016/j.mtla.2022.101446
https://doi.org/10.1016/j.cma.2011.01.002
http://arxiv.org/abs/1504.03296
https://doi.org/10.1038/s41598-022-26424-3
https://doi.org/10.1002/pamm.202200306
https://doi.org/10.1002/pamm.202200306
https://doi.org/10.1016/0749-6419(87)90021-0
https://doi.org/10.1016/j.jmps.2004.08.008
https://doi.org/10.1088/1757-899X/1249/1/012021
https://doi.org/10.1088/1757-899X/1249/1/012021
https://doi.org/10.1016/j.cma.2022.115768
https://doi.org/10.1016/j.cma.2022.115768
https://doi.org/10.1016/j.eml.2024.102215
http://arxiv.org/abs/2303.10993
https://openreview.net/forum?id=BJJsrmfCZ
https://www.sherlock.stanford.edu/docs
https://www.sherlock.stanford.edu/docs

	Stress predictions in polycrystal plasticity using graph neural networks with subgraph training
	Abstract
	1 Introduction
	2 Crystal plasticity
	2.1 Mechanistic model and problem formulation
	2.2 Material parameters and data generation
	3 Message-passing graph neural networks
	3.1 Message-passing on edges for nodal inference
	3.2 Model framework and training algorithm
	3.2.1 Subgraph sampling and training
	3.2.2 Training algorithm

	4 Results and discussions
	4.1 Training and testing results
	4.2 Analysis on finite element meshes
	4.3 Deployment on validation dataset
	4.4 Limitations of the proposed method

	5 Summary and conclusions
	Appendix A Data preparation
	Appendix A.1 Graph conversion methods
	Appendix A.2 Finite element implementation of crystal plasticity

	Appendix B Graph neural networks
	Appendix B.1 Training procedure
	Appendix B.2 Model characterization
	Appendix C Additional results
	Appendix C.1 Predictions from GNN
	Appendix C.2 Discussions on loading-coupled directions
	Appendix C.3 Error distribution for stress components
	Acknowledgements

	References

