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Finite Volume Method

Mathematical Basis

Recall the governing equations for fluid mechanics (idea) in 1D situation:

∂ρ

∂t
+
∂(ρu)

∂x
= 0→ Continuity

∂(ρu)

∂t
+
∂(ρu2 + p)

∂x
= 0→ Momentum

∂(ρetotal)

∂t
+
∂ [(ρetotal + p)u]

∂x
= 0→ Energy

The given equations can be written in the form:

∂U

∂t
+
∂F(U)

∂x
= 0

where U = [ρ, ρu, ρetotal]
T, and F = [ρu, ρu2 + p, (ρetotal + p)u]T.
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FVM - Math. Bas.
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Consider a distribution function u(x , t), for discretization we apply a grid
discretize the axis with N points: ∆x = (xmax − xmin)/N. Hence, at time
step n, the value at gridpoint j is calculated as the average:

unj = u(xj , t
n) ≈ 1

∆t

∫ (j+ 1
2

)∆x

(j− 1
2

)∆x
u(x , n∆t)dx

This is the application of finite volume method (FVM) for 1D problem.
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FVM - Math. Bas.
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Recall the Euler equation (ideal fluid), we first do the integration.∫ (
∂U

∂t
+
∂F

∂x

)
dx = 0

To obtain the value at gridpoint j , the flux term can be fully discretized.

dU

dt
∆xj + Fj+ 1

2
− Fj− 1

2
= 0

Applying a finite difference discretization on the time step n, the Euler
equation can be fully discretized as:

Un+1
j − Un

j

dt
∆xj + Fj+ 1

2
− Fj− 1

2
= 0
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Finite Volume Method

Appications

I. Geophysics

Ocean Modelling for Resource Characterization [1]

Sea Earthquake and Earthquake Tsunami [2]

Hydrodynamic and ecosystem coupled model and its application to
the eutrophication problem [3]

II. Thermodynamics

Core thermal hydraulics for Industrial Engineering [4]

III. Mantle Dynamics

Numerical Methods for Mantle Convection [5]

1 https://doi.org/10.1016/B978-0-12-810448-4.00008-2
2 https://doi.org/10.1016/B978-0-12-812726-1.00005-X
3 https://doi.org/10.1016/B978-0-444-63536-5.00014-4
4 https://doi.org/10.1016/B978-0-08-101980-1.00020-X
5 https://doi.org/10.1016/B978-044452748-6.00118-8
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FVM - App.

Ocean Modelling for Resource Characterization

Finite volume method (FVM), like FEM, is based on an unstructured (e.g.
triangular) mesh. Therefore, it is suitable for irregular and complex geometries.
FVM has another advantage over FEM for fluid mechanic problems. [1]

1 https://doi.org/10.1016/B978-0-12-810448-4.00008-2
2 https://www.sciencedirect.com/topics/earth-and-planetary-sciences/finite-volume-method
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FVM - App.

Core thermal hydraulics for Industrial Engineering

CFD is also used to evaluate possible local effects that cannot be derived
from one-dimensional system thermal-hydraulic code simulations. [1]

1 https://doi.org/10.1016/B978-0-08-101980-1.00020-X
2 https://www.sciencedirect.com/topics/earth-and-planetary-sciences/finite-volume-method
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Finite Volume Method

Pros & Cons

Pros

i. Straightforward to implement
on non uniform/unstructured
grid.

ii. Enforces the right
mechanisms for wave
propagation.

iii. FVM preserves the overall
conservation across the entire
domain by maintaining the
conservation of mass and
momentum on each control
volume cell.

Cons

i. Getting high order schemes is
a pain, it is extremly
cumbersome.

ii. the FVM discretizes the
integral form of the
equations. It can be shown
that is equivalent to use a
weak formulation, the only
one that can adopted for non
regular solutions.

https://www.researchgate.net/post/What_are_the_advantages_of_Finite_volume_method_FVM_over_Finite_

difference_Method_FDM_for_particularly_flow_simulation_CFD
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Illustris Project

Introduction of Illustris Prj.

The Illustris project is an ongoing series of astrophysical simulations
originally carried out bt M. Vogelsberger run by an international collaboration of
scientists aiming to study the processes of galaxy formation and evolution in the
universe with a comprehensive physical model. A followup to the project,
IllustrisTNG, was presented in 2017.

https://en.wikipedia.org/wiki/Illustris_project
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Illustris Prj. - IllustrisTNG

Introduction of the TNG Prj.

The IllustrisTNG project is an ongoing series of large, cosmological
magnetohydrodynamical simulations of galaxy formation. TNG aims to illuminate
the physical processes that drive galaxy formation: to understand when and how
galaxies evolve into the structures that are observed in the night sky, and to make
predictions for current and future observational programs.

https://www.tng-project.org/
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Illustris Project

Hydro Methods Applications

As in Illustris, we follow the coupled dynamics of DM and gas with the
robust, accurate, and efficient quasi-Lagrangian code AREPO. In this approach,
an unstructured Voronoi tessellation of the simulation volume allows for dynamic
and adaptive spatial discretization, where a set of mesh generating points are
moved along with the gas flow. ”

16 R. Weinberger, V. Springel & R. Pakmor

Table 4. Code parameters for time step constraints.

Description Symbol Code Parameter

Gravity time step parameter Cgrav ErrTolIntAccuracy

Courant factor for MHD CCFL CourantFac

primitive quantities

conserved quantaties, all cells

time

update
primitive 
variables

add 
!uxes

calculate 
gradients

build
mesh

"nd 
active 
cells

3

2

1

timebin

Figure 3. Illustration of the time evolution of the Euler equations using local time stepping (in this case, only three time
bins are sketched, for simplicity) and the roles of primitive and conserved quantities. For cells of each time bin, time evolution
follows the same steps: update of the primitive variables, calculation of gradients, first flux calculation, determination of mesh
at the end of the time step and a second flux calculation. Fluxes through interfaces of cells on di↵erent time steps are added to
both cells’ conserved quantities during the smaller time step. This leads to partially updated states in conserved quantities of
cells in larger time bins.

7.3. Time stepping gravity

The gravitational time integration is done with a second-order accurate leapfrog scheme, expressed through alter-

nating ‘drift’ (which modify the positions) and ‘kick’ (which modify the velocities) operations. For fixed time step

sizes, this results in a symplectic integration scheme. The particular implementation is very similar to that of the

Gadget-2 code (Springel 2005).

Normally, an active particle receiving a kick interacts with the full mass distribution, independent of its time bin.

This breaks manifest momentum conservation when local time steps are used and necessitates a full tree construction

even if only a small fraction of particles requires force calculations, negatively impacting performance for deep time step

hierarchies. This can be addressed with an alternative hierarchical time integration approach (HIERARCHICAL GRAVITY),

in which the gravitational Hamiltonian is systematically split, such that shorter time bins are evolved with their own

part of the Hamiltonian only. The particular implementation of this idea as adopted in Arepo is based on Pelupessy

et al. (2012), with full details given in Springel at al. (2020, in preparation).

7.4. Time stepping the finite-volume scheme

The time integration of the hydrodynamic quantities is described in Pakmor et al. (2016b), and di↵ers slightly from

the original implementation of a MUSCL-Hancock scheme in Springel (2010b). In particular, now a scheme more

similar to Heun’s method for time integration is used, ensuring that only a single mesh construction is required for

https://www.tng-project.org/
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Illustris Prj. - Hydro. App.

Arepo public release

R. Weinberger, V. Springel, & R. Pakmor (2020)

To solve the equations of (magneto)hydrodynamics, Arepo uses a
second-order accurate finite-volume discretization. To this end, volume-averaged
primitive variables ρ, u and B are stored as properties of the cell at its center. ”

The discretization step for second order scheme can be written as :

ρn+1 = ρn − 1

2
∆t(ρn∇ · u + u · ∇ρn)

un+1 = un − 1

2
∆t

(
un∇ · un +

1

ρ
∇p
)

pn+1 = pn − 1

2
∆t(γp∇ · u + u · ∇p)
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Illustris Prj. - Hydro. App.

Schematic for the first and second order time step discretization on finite
volume method to a given function φ(x), where φ could be u, p, ρ, etc.

x

φ

1st Order FVM
x

φ

2nd Order FVM
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Shock Tube Problem

Problem Formulation

Recall the Euler equation in the explicit conservation form:

∂U

∂t
+
∂F(U)

∂x
= 0

where U = [ρ, ρu, ρetotal]
T, and F = [ρu, ρu2 + p, (ρetotal + p)u]T.

The equation can be written as:

∂U

∂t
+ J

∂U

∂x
= 0

where J is the Jacobian matrix, which can be diagonized as:

J = S−1ΛS

The eigenvalue matrix takes the form → Λ =

 u− c 0 0
0 u 0
0 0 u + c


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Shock Tube Prob. - Prob. Form.

!", $", %" !&, $&, %&

' = 0

The Riemann solver can be applied on the initial conditions:
(u∗, ρ∗, p∗) = Riemann(uL, ρL, pL, uR , ρR , pR)
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Shock Tube Problem

Parameters & Initial Conditions

Problem I

Cell Numbers = 300

Step Numbers = 200

Time Steps = 0.001

ρL = 1.0, ρR = 1.0

uL = 0, uR = 0

pL = 0.7, pR = 0.2

@ t = 0.2

Problem II

Cell Numbers = 200

Step Numbers = 200

Time Steps = 0.001

ρL = 1.0, ρR = 0.3

uL = 0, uR = 0

pL = 1, pR = 0.1

@ t = 0.2
https://github.com/bwvdnbro/python_finite_volume_solver
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Shock Tube Problem

Results - Problem I

Density distribution of shock tube @ t = 0.2.
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Shock Tube Problem

Results - Problem I

Velocity distribution of shock tube @ t = 0.2.
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Shock Tube Problem

Results - Problem I

Pressure distribution of shock tube @ t = 0.2.
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Shock Tube Problem

Results - Problem II

Density distribution of shock tube @ t = 0.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

Exact Solution

1st Order FVM

2nd Order FVM

Hanfeng Zhai (SHU) HW #2 Nov. 28, 2020 20 / 23



Shock Tube Problem

Results - Problem II

Velocity distribution of shock tube @ t = 0.2.
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Shock Tube Problem

Results - Problem II

Pressure distribution of shock tube @ t = 0.2.
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Thanks for Listening!

Any Questions...?
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