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Finite Volume Method

Mathematical Basis

Recall the governing equations for fluid mechanics (idea) in 1D situation:

dp  O(pu)
ot T ox
d(pu) , Apu” + p)
ot ox

8(pet0tal) + 0 [(petotal + p)u]
ot ox

The given equations can be written in the form:

= 0 — Continuity

= 0 — Momentum

= 0 — Energy

=0

@ N dF(U)
ot ox

where U = [p, pu, peiotal] ', and F = [pu, pu® + p, (peiotar + p)u] "
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FVM - Math. Bas.
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Consider a distribution function u(x, t), for discretization we apply a grid
discretize the axis with N points: Ax = (Xmax — Xmin)/N. Hence, at time
step n, the value at gridpoint j is calculated as the average:

(j—&-%)AX
ui = u(xj, t") = / u(x, nAt)dx
(j—3)Ax
This is the application of finite volume method (FVM) for 1D problem.
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FVM - Math. Bas.
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Recall the Euler equation (ideal fluid), we first do the integration.

ou oF
/ﬁ<8t4—8x>cﬂ-—0

To obtain the value at gridpoint j, the flux term can be fully discretized.

%ij +Fi
Applying a finite difference discretization on the time step n, the Euler
equation can be fully discretized as:
U - Unx+F
dt A

_F.

>

=0

Nl=

_F.

>

=0
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Finite Volume Method

I. Geophysics

@ Ocean Modelling for Resource Characterization [1]
@ Sea Earthquake and Earthquake Tsunami [2]

@ Hydrodynamic and ecosystem coupled model and its application to
the eutrophication problem [3]

Il. Thermodynamics
@ Core thermal hydraulics for Industrial Engineering [4]

I1l. Mantle Dynamics

@ Numerical Methods for Mantle Convection [5]

! https://doi.org/10.1016/B978-0-12-810448-4.00008-2
2 https://doi.org/10.1016/B978-0-12-812726-1.00005-X
3 https://doi.org/10.1016/B978-0-444-63536-5.00014-4
4 https://doi.org/10.1016/B978-0-08-101980-1.00020-X
5 https://doi.org/10.1016/B978-044452748-6.00118-8
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Ocean Modelling for Resource Characterization

Finite volume method (FVM), like FEM, is based on an unstructured (e.g.
triangular) mesh. Therefore, it is suitable for irregular and complex geometries.
FVM has another advantage over FEM for fluid mechanic problems. [1]

Hs (m)

Longitude

2 w0 %0
Depth (m)
26

1 https://doi.org/10.1016/B978-0-12-810448-4.00008-2
2 https://www.sciencedirect.com/topics/earth-and-planetary-sciences/finite-volume-method
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Core thermal hydraulics for Industrial Engineering

CFD is also used to evaluate possible local effects that cannot be derived
from one-dimensional system thermal-hydraulic code simulations. [1]

1 https://doi.org/10.1016/B978-0-08-101980-1.00020-X
2 https://www.sciencedirect.com/topics/earth-and-planetary-sciences/finite-volume-method

Hanfeng Zhai (SHU)


https://doi.org/10.1016/B978-0-08-101980-1.00020-X
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/finite-volume-method

Finite Volume Method

Pros & Cons

. Straightforward to implement

i

iii.

on non uniform /unstructured
grid.

Enforces the right
mechanisms for wave
propagation.

FVM preserves the overall
conservation across the entire
domain by maintaining the
conservation of mass and
momentum on each control
volume cell.

o’

Cons

i. Getting high order schemes is
a pain, it is extremly
cumbersome.

ii. the FVM discretizes the
integral form of the
equations. It can be shown
that is equivalent to use a
weak formulation, the only
one that can adopted for non
regular solutions.

https: /e . researchgate. net/post /What _are_the_advantages_of_Finite_volume_method_FVM_over_Finite_
difference_Method_FDM_for_particularly_flow_simulation_CFD
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Illustris Project

Introduction of lllustris Prj.

The Illustris project is an ongoing series of astrophysical simulations
originally carried out bt M. Vogelsberger run by an international collaboration of
scientists aiming to study the processes of galaxy formation and evolution in the
universe with a comprehensive physical model. A followup to the project,
HlustrisTNG, was presented in 2017.

& "
ILLUSTRIS SIM l.ATIDN ¥
Deutschland
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https://en.wikipedia.org/wiki/Illustris_project
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Illustris Prj. - HlustrisTNG

Introduction of the TNG Prj.

The IllustrisTNG project is an ongoing series of large, cosmological
magnetohydrodynamical simulations of galaxy formation. TNG aims to illuminate
the physical processes that drive galaxy formation: to understand when and how
galaxies evolve into the structures that are observed in the night sky, and to make
predictions for current and future observational programs.

300 Mpc
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Illustris Project

Hydro Methods Applications

As in lllustris, we follow the coupled dynamics of DM and gas with the
robust, accurate, and efficient quasi-Lagrangian code AREPO. In this approach,
an unstructured Voronoi tessellation of the simulation volume allows for dynamic
and adaptive spatial discretization, where a set of mesh generating points are
moved along with the gas flow. "
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Illustris Prj. - Hydro. App.

AREPO public release
R. WEINBERGER, V. SPRINGEL, & R. PAKMOR (2020)

To solve the equations of (magneto)hydrodynamics, Arepo uses a
second-order accurate finite-volume discretization. To this end, volume-averaged
primitive variables p, u and B are stored as properties of the cell at its center. "

The discretization step for second order scheme can be written as :

1
p"+1:p"—§At(p"V-u+u-Vp")
n+1 __ n_} n n 1
u =u 2At u'V-u"+4+ -Vp

P

1
pTth = p" = SAH(ypV - utu-Vp)
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Illustris Prj. - Hydro. App.

Schematic for the first and second order time step discretization on finite
volume method to a given function ¢(x), where ¢ could be u, p, p, etc.
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Shock Tube Problem

Problem Formulation

Recall the Euler equation in the explicit conservation form:
ou OF(U)
ot Ox

where U = [p, pu, perotal] ", and F = [pu, pu® + p, (perotal + p)u] .
The equation can be written as:

=0

ou ou
7t " ax 0
where J is the Jacobian matrix, which can be diagonized as:
J=S57IAS
u—c 0 0
The eigenvalue matrix takes the form — A = 0 u 0
0 0 u+c
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- Prob. Form.

t=0

PL, UL, PL PR, UR, PR

The Riemann solver can be applied on the initial conditions:
(U*v P*7 p*) = Riemann(uL, PL; PL; UR; PR, pR)

100 T T T T
Lou, pppy R: Up Pp Pp
80 Contact ]
u*, ,0*,17*
60 - B
- / u \
40 - u-e ‘/ u-+tc b
20 u=100km/s B
c=3x 10’ km/s
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Shock Tube Problem

Parameters & Initial Conditions

Problem | Problem I

@ Cell Numbers = 300 @ Cell Numbers = 200

@ Step Numbers = 200 o Step Numbers = 200

@ Time Steps = 0.001 @ Time Steps = 0.001

o pp=10,pr=1.0 e pp =1.0,pr =03

o uy =0,ur =0 e uy =0,ur=0

e pp=0.7,pr =0.2 e p =1,pr=0.1

e @t=0.2 e @t=02 )

”
https://github.com/bwvdnbro/python_finite_volume_solver
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Shock Tube Problem

Results - Problem |

Density distribution of shock tube @ t = 0.2.
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Shock Tube Problem

Results - Problem |

Velocity distribution of shock tube @ t = 0.2.
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Shock Tube Problem

Results - Problem |

Pressure distribution of shock tube @ t = 0.2.
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Shock Tube Problem

Results - Problem |1

Density distribution of shock tube @ t = 0.2.

— Exact Solution
° 1" Order FVM
& 2" Order FVM
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Shock Tube Problem

Results - Problem |1

Velocity distribution of shock tube @ t = 0.2.
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Shock Tube Problem

Results - Problem |1

Pressure distribution of shock tube @ t = 0.2.
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Thanks for Listening!

Any Questions...?
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