
Mathematical Model of Neural Network

© Hanfeng Zhai

School of Mechanics and Engineering Science, Shanghai Univeristy
Shanghai 200444, PRC

Abstract

Machine learning (ML) has attracted great attentions in recent years due
to their satisfying results and robust functions. With the developing tech-
nologies, machine learning is widely applied on data mining, facial recogni-
tion, and engineering disciplines. Neural network (NN) is among the most
important algorithms in ML. Here, we present basic model and equations for
neural network to show how we applied NN on real world problems.

Neuron

The neural network is a multi-nonlinear regression model inspired from
the information transforming process existed in neurons. The output data is
obatined through neurons from the input data. Here, in figure 1, a schematic
indicate how the information is conveyed through the neuron(s). From fig-
ure 1 we observe that the information is transmitted through an activation
function σ acting on the linear model of the input data. The linear model
consists of weights and thresholds with multiple inputs acting on a single
neuron. Here, we first introduce how the data is transmitted through the
linear model.

Linear Regression

For neural network, the basic neural model is fitted by the multiple linear
regression model:

yw(x) = w0 + w1x1 + w2x2 + w3x3 + ...+ wnxn + b (1)

Where wn is the weight and b is the threshold.

1

!"
!#…

!%

&

'"'#

'%

(

…

Output (= * ∑,-"% ',!, − &

Threshold(s)

Input layer Output layer

Weight(s)

Activation function

!,
',

…
…

Figure 1: The schematic for a single neurons for neural network.

Based on the regression model, which the connecting neurons is activated
by the function to convey the information.

ŷ(x) = σ(wTx + b) (2)

In which ŷi = (ŷ1, ŷ2, ..., ŷn) are the prediction values; σ = σ(z) is the
activation function;

Activation Function

In the information convey process as it is shown in figure 1, we need
an activation function to convey the data from input to output. In actual
applications, any function values from 0 to 1 in range [-1, 1] can be adopted as
an activation function. Here, we introduce three most widely used activation
functions, i.e. the Sigmoid function, the ReLU function and the pure linear
function.

σsigmoid(z) =
1

1 + e−z
; σReLU(z) = max(0, z); σlinear(z) = z (3)

In actual applications such as running on Python or Matlab, the weight(s)
are randomly generated. But the accurate prediction values requires a weight
that fits the input data. Hence, we introduce the concept of learning rate lr

2

-10 -8 -6 -4 -2 0 2 4 6 8 10

z

-0.5

0

0.5

1

sigmoid

ReLU

linear

Figure 2: Diagrams for the three most applied activation functions.

to show how to obtain the best weight. the regression modle is adjusted in
the way:

wi ⇐ wi +∆wi

∆wi = lr(y − ŷ)xi (4)
Based on equation 4, we know that we need to adopt a specific value of

lr for update the weight to adjust the regression model.
Another question there fore arises, How do we update the term ∆w in the

calculation process? Here, we introduce an algorithm most adopted for NN
called the back-propagation algorithm, which means the errors in process are
conveyed backwards to the input layer for a loop.

With previously introduced the output values (predictions) are ŷi =
(ŷ1, ŷ2, ..., ŷn), we can write the predictions in the form:

ŷnj = σ(βj − bj) (5)
Where βj is the input in the ith neurons and bj is the threshold.

The mean suqare error MSE generated from the transmition of neurons
takes the form:

3

MSE =
1

M

M∑
i=1

(yi − ŷi)
2 (6)

Now the goal is clear: minimize the term MSE to update the weight w.
To achieve such goal, we need an optimizer function. Here, we adopt

the most commonly used Gradient Descent method as an example. Now,
let us assume the weight connecting the hth layer to the jth layers takes the
form:

∆whj = −lr
∂MSE

∂whj

(7)

The partial derivatives involved in equation 7 can be written as:

∂MSE

∂whj

=
∂MSE

∂ŷj

∂ŷj
∂βj

∂βj

∂whj

(8)

With the definition of β, we have

∂βj

∂whj

= bh (9)

Based on equations 5 and 6, we define gj as:

gj = −∂MSE

∂ŷj

∂ŷj
∂βj

= −(ŷj − yj)σ̇(βj − bj)

= ŷj(1− ŷj)(yj − ŷj) (10)
Therefore we obtain the update equation for weight wj through layer h

to layer j in the back-propagation algorithm:

∆whj = lrgjbh (11)

Although we adopt the gradient descent as an example in the back-
propagation process, this does not mean that the gradient descent is the
best algorithm for optimization.

In the next section we will introduce basic knowledge about the optimizer
function.

4

Optimizer

In the calculation epochs, we introduce the cost function:

J(w) =
1

N

N∑
i

Cost(yw(xi), yi) (12)

In which Cost(yw(xi), yi) =

{
− log10(yw(x)), if y = 1

− log10(1− yw(x)), if y = 0 .

Based on the cost function J(w) as given in equation 12, we introduce the
optimizer, as to achieve our training goal. we first give the gradient descent
algorithm, which is a general minimization method which updates parameter
values in the “downhill” direction: the direction opposite to the gradient of
the objective function [3]. The update parameter h in step i, that moves the
parameters in the direction of steepest descent is given by:

hgd = lrJ(w)wi(yi − ŷi) (13)

In which lr is the learning rate, which determines the length of the step in
the steepest-descent direction.

We simultaneously gives another method for minimizing a sum-of-squares
objective function, the Gauss-Newton method [3], in which the resulting
normal equations for the Gauss-Newton update are:[

J(w)TwiJ(w)
]

hgn = J(w)Twi(yi − ŷi) (14)

Based on the equations 13 to 14, we obtain the Levenberg-Marquardt
method, which adaptively varies the parameter updates between the gradient
descent update and the Gauss-Newton update:[

J(w)TwiJ(w) + Iλ
]

hlm = J(w)Twi(yi − ŷi) (15)

Networks

With the knowledge of how neurons transform the input data into out-
puts, we can thence move further into how we form a neural network structure
consisting of neurons.

Here, in figure 3, we present a classic full connected neural network. The
input layer with data x = (x1, x2, ..., xi, ..., xn) are the input variables, which

5

!"
!#

!$

%"
%#
%&

%'

%

%

%

%

%

%

("
(#

()

…

…

…

…

…

…

Input layer Output layer

Hidden layer(s)

Activation & Threshold

Weight

…
Neurons in

 hidden layer

…

n input variables

q output variables

Figure 3: The basic structure for neural network.

are further transmitted into the hidden layer through the neuron model we
introduced as shown through the arrays. With multi-hidden layers the initial
input datasets are transformed through the activation σ on the linaer model
for multiple times. Then the last hidden layer with transmit the data to
the output layer with the predictions of output data of q output variables
ŷi = (y1, y2, . . . , yq).

Example

For better understanding, here, we will provide an example to visual-
ize how neural network works. Provided that a class has many students
preparing for a sport constest consisting running, weight lifting, jumping,
and push-ups. Here we need to use the neural network to predict how well
they will perform on the sport contest. In this problem we will detect their
food ingest (pounds per day), sleeping hours, and trainings (work out hours
per day).

With the provided informations, we deduce that there are 3 input data

x = (xfood[lbs/day], xsleep[hrs], xtrain[hrs/day])

6

and 4 output data
y = (yrun[m/sec], yweight[kg], yjump[m], ypush[times])

We deduce that these datasets all has different units, which are trou-
blesome for computations. Thence, we need to nondimensionalize the data
preceding to input the data. The nondimensionalized variables x′ obeys

x′ =
x

xmax

(16)

The data can be written in the form:

Input layer Hidden layer(s) Output layer
xfood xσ yrun
xsleep ... yweight

xtrain xσ yjump

ypush

Table 1: Parameter setting in simulation and experiment.

In actual trainings, for supervised trainings, we set training sets and
testing sets. For big datasets we sometimes set validation sets. The training
process can be summariezed as train the training sets on the NN and verify
the network with the testing sets. For validation, MSE can be one parameter
to verify the accuracy. However, we usually adopt R2 for verification:

R2 = 1− (
∑n

i yi − ŷi)
2∑n

i (yi − ŷi)2
(17)

These are the basic information for neural network. More details and
other knowledge available at http://hanfengzhai.net/categories/note.

References
[1] Z.-H. Zhou (2016). Machine Learning. THU Press, ISBN 978-7-302-

42328-7.

[2] A.Y. Ng (2016). Machine Learning. Coursera.

[3] H.P. Gavin (2019). The Levenberg-Marquardt algorithm for nonlinear
least squares curve-fitting problems. Matlab Tutorials, Duke University.

7

http://hanfengzhai.net/categories/note

